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Abstract: Vascular Access (VA) is often referred to as the “Achilles heel” for a Hemodialysis (HD)-
dependent patient. Both the patent and sufficient VA provide adequacy for performing dialysis and
reducing dialysis-related complications, while on the contrary, insufficient VA is the main reason
for recurrent hospitalizations, high morbidity, and high mortality in HD patients. A non-invasive
Vascular Wall Motion (VWM) monitoring system, made up of a pulse radar sensor and Support
Vector Machine (SVM) classification algorithm, has been developed to detect access flow dysfunction
in Arteriovenous Fistula (AVF). The harmonic ratios derived from the Fast Fourier Transform (FFT)
spectrum-based signal processing technique were employed as the input features for the SVM
classifier. The result of a pilot clinical trial showed that a more accurate prediction of AVF flow
dysfunction could be achieved by the VWM monitor as compared with the Ultrasound Dilution
(UD) flow monitor. Receiver Operating Characteristic (ROC) curve analysis showed that the SVM
classification algorithm achieved a detection specificity of 100% at detection thresholds in the range
from 500 to 750 mL/min and a maximum sensitivity of 95.2% at a detection threshold of 750 mL/min.

Keywords: arteriovenous fistula; SVM; harmonic ratio; vascular wall motion monitor

1. Introduction

The National Kidney Foundation Kidney Disease Outcomes Quality Initiative (NKF-
K/DOQI) guidelines suggest two monitoring methods for VA flow surveillance, physical
examination, and the measuring of arteriovenous VA flow through special equipment [1].
Guideline 13 of the NKF-K/DOQI specifically states that the underlying cause of AV access
flow dysfunction is either stenosis or thrombosis. Hence, the purpose of flow dysfunction
surveillance is to detect stenosis early on before the development of thrombosis, which
then requires surgical intervention to replace the AV access.

Amongst the current monitoring instruments available, the Ultrasound Dilution (UD)
flow monitoring instrument has been extensively studied. For example, the benefits of
AV Fistula (AVF) flow surveillance using the UD measurement was studied [2], where the
effectiveness of UD measurement in detecting stenosis and predicting thrombosis was in-
vestigated [3–5]. Our clinical experience regarding the application of the UD measurement
technique shows that it is limited due to its cost, the disposable consumables used, and its
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dependence on the operator’s experience with the instruments. However, through the use
of skillful operation techniques, it has been accepted as a reference standard for AV access
flow surveillance.

Studies have been performed surrounding the use of optical sensor and machine
learning algorithms for the detection of stenosis or flow dysfunction. However, either two
finger Photoplethysmography (PPG) sensors were used, which may cause measurement
uncertainties [6] or additional physiological measurements other than the PPG signal were
required as input features for classification of the algorithm [7,8]. Phono-angiography
employs a digital stethoscope to record bruit sounds in the AVF. However, four locations
are required in order to search for the most probable stenosis site [9,10]. Therefore, for
the most part, detection sensitivity and specificity of the aforementioned methods do not
meet the requirements for them to be reliable monitoring instruments. A qualified moni-
toring technique should possess standardized diagnostic thresholds, as well as sufficient
sensitivity and specificity for the detection of flow dysfunction.

The physical examination techniques for VA flow surveillance include inspection,
palpation (pulse, thrill), and auscultation (bruit) [1]. One of the clinical indicators for VA
flow dysfunction is alterations in the pulse characteristics such as weak and persistent
pulses which are difficult to compress in the area of stenosis. Although recommended by
the NKF-K/DOQI guidelines, the technique of pulse palpation relies upon the subjective
experiences of the examiner. Studies performed on the hemodynamics of stenosis in
arteries were reviewed [11]. In a stenotic blood vessel, turbulent blood flow is generated
approximately 1.5 to 6.0 diameters downstream from the site of stenosis. Finite element
numerical simulation was employed to investigate pulsatile and turbulent blood flow in
an elastic artery with single as well as double stenosis, with the results showing that the
displacement of the arterial walls in the pre-stenotic regions was higher than that in the
post-stenotic regions [12]. Raminari et al. investigated the potential clinical application
of ultrasound Tissue Doppler Imaging (TDI) of arterial wall motion in order to quantify
simple wall motion indices in normal and diseased carotid arteries. Their results showed
a wide variation in arterial wall motion indices across the stenotic region. However,
their experimental data showed noticeable changes in the morphology of the diseased
arterial wall motion waveforms when compared to those of normal arteries [13]. The
aforementioned studies demonstrate that stenosis of the arterial blood vessel, which is
the underlying cause of flow dysfunction, can be detected by analyzing the characteristic
changes in the waveform of arterial wall motion.

In the present work, the spectral analysis technique was adopted by analyzing the
variations in the spectrum of the distorted VWM waveform due to the AVF flow dys-
function. A machine learning algorithm based on Support Vector Machines (SVM) was
chosen to classify the spectrum data of VWM monitoring data. Through a comparison
with the corresponding UD flow measurements, the performance of the SVM classifier was
evaluated in terms of its detecting sensitivity, specificity, and accuracy.

2. Materials and Methods
2.1. The Sensing Device and System

The VWM monitor consists of a pulse radar sensor, a Microcontroller Unit (MCU),
as well as a data analysis and classification unit, as shown in Figure 1A. The pulse radar
sensor serves the purpose of sensing the motion of the A-V fistula vessel wall [14,15]. The
operation principle of the pulse radar sensor is described as follows. Damped sinusoidal
pulses with a pulse duration of 4 ns and repetition frequency of 250 K Hz are generated
in the pulse generator, with its input connected to the square wave generator. As shown
in Figure 1B, a sequence of damped sinusoidal pulses is emitted by the transmit antenna
towards the patient’s arm where the AVF is located. The damped sinusoidal pulses can
be expressed by Equation (1), where A is the pulse envelope of X̃(t) and fp is the carrier
frequency of X̃(t).

X̃(t) = Asin
(
2π fpt

)
(1)



Biosensors 2021, 11, 297 3 of 13

Biosensors 2021, 11, x FOR PEER REVIEW 4 of 13 
 

(ݐ)ܤ        = ଵܥ − ଶܥ ∗ (8) ((ݐ)ݎ∆)

Therefore, as derived in Equation (8), the baseband signal B(t) is linearly related to 
the displacement of the AVF wall ∆(ݐ)ݎ. 

 
Figure 1. The system diagram of the VWM monitor and the principle of measuring the AVF vessel 
wall movement (A). The diagram of pulse radar sensor detect blood flow (B). The diagram of pulse 
Doppler radar emit and receive the signals of wave (C).  

The pulse radar sensor is fabricated on a flexible substrate (polyimide, size 8.0 × 3.5 
cm, thickness 0.25 mm). Both antennas are planar microstrip monopoles. The input to each 
antenna is connected to a 50-ohm coplanar transmission microstrip line. The antenna 
input impedance matching was measured using a Vector Network Analyzer (Rohde & 
Schwartz, Muehldorfstrasse 15, 81671 Munich, Germany). The return loss was −20 dB at a 
resonant frequency of 1.38 GHz and the −10 dB bandwidth was 120 MHz. This lower 
antenna resonant frequency was chosen so that emitted pulses could penetrate the 
subcutaneous tissue surrounding the AVF vessel [18]. Since the antenna is working in the 
near field region, the medium between the sensor and skin surface is critical for coupling 
signal power through the skin barrier and subcutaneous tissues. Merli et al. [19] showed 
that the radiation efficiency of implanted antennas depended upon the dielectric 
properties of an insulating layer which separated the antenna from the surrounding 
muscle tissues. In the present work, it was found that a thin layer (0.25 to 1.0 mm) of textile 
material such as cotton or polyester cotton blended fiber is suitable for providing the 
desired properties. In addition to the insulating properties, the material’s biocompatibility 
and adherence to the skin are also important factors when selecting coupling materials. 

The active low-pass filter smooths the mixed pulsatile signal into the baseband 
signal (ݐ)ܤ (Figure 1A). The cutoff frequency of the active low pass filter is 25 Hz. The 
baseband signal is then amplified and fed into the MCU (Nordic Semiconductor, 
Trondheim, Norway), in which the A to D converter’s sampling frequency is set to 64 Hz. 
The digitized data are then transferred to a mobile phone using the built-in Low Energy 
Bluetooth Transceiver (LEBT) of the MCU. An App has been designed to display the 

Figure 1. The system diagram of the VWM monitor and the principle of measuring the AVF vessel
wall movement (A). The diagram of pulse radar sensor detect blood flow (B). The diagram of pulse
Doppler radar emit and receive the signals of wave (C).

The scattered pulses from the AVF wall to the receiving antenna is then expressed
by Equation (2), where R(t) is the distance between the antenna and the AVF wall,
c (meter/sec) is the speed of light, and ∈ is the effective permittivity of the skin and
subcutaneous tissue.

Ỹ(t) = X̃
(

t− 2R(t)
c/
√
∈

)
(2)

Due to variations in blood pressure, the AVF wall is displaced towards the radar
(Figure 1C), with the distance expressed by Equation (3), where Ro is the initial distance
between the antenna and the AVF wall and ∆r(t) is the displacement of the AVF wall.
Substitute Equation (3) into Equation (2) and the scattered pulses are expressed by Equa-
tion (4).

R(t) = Ro − ∆r(t) (3)

Ỹ(t) = Asin

(
2π fp

(
t− 2(Ro − ∆r(t))

c√
∈

))
(4)

The reference pulse (shown in Figure 1A) with a time delay of X̃(t) can be expressed.

X̃(t− τ)= Asin
(
2π fp(t− τ)

)
(5)

The received signal Ỹ and the delayed reference pulse X̃(t− τ) is then mixed and the
carrier frequency component is filtered out to leave the baseband signal B(t) expressed by
Equation (6), where λp = c√

∈ ·
1
fp

is the wavelength of the emitted and scattered pulses in
the subcutaneous tissue.

B(t) = Bsin
(

4π(Ro − ∆r(t))
λp

)
(6)

For hemodialysis patients, the distance Ro between the AVF wall and skin is less
than 6 mm and the diameter of the AVF is larger than 6 mm [16], with the periodical
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variation of the radius of the AVF, ∆r estimated to be 0.028 mm [17]. Since ∆r(t)� Ro, the
motion of the AVF wall can be linearized to the following Equations (7) and (8), where
C1=B(sin

(
4π
λp

Ro

)
and C2 = B 4π

λp
cos
(

4π
λp

Ro

)
are constants.

B(t) = B[
(

sin
(

4π

λp
Ro

)
− 4π

λp
cos
(

4π

λp
Ro

)
(∆r(t))

)
(7)

B(t) = C1 − C2 ∗ (∆r(t)) (8)

Therefore, as derived in Equation (8), the baseband signal B(t) is linearly related to the
displacement of the AVF wall ∆r(t).

The pulse radar sensor is fabricated on a flexible substrate (polyimide, size 8.0 × 3.5 cm,
thickness 0.25 mm). Both antennas are planar microstrip monopoles. The input to each
antenna is connected to a 50-ohm coplanar transmission microstrip line. The antenna input
impedance matching was measured using a Vector Network Analyzer (Rohde & Schwartz,
Muehldorfstrasse 15, 81671 Munich, Germany). The return loss was −20 dB at a resonant
frequency of 1.38 GHz and the −10 dB bandwidth was 120 MHz. This lower antenna
resonant frequency was chosen so that emitted pulses could penetrate the subcutaneous
tissue surrounding the AVF vessel [18]. Since the antenna is working in the near field
region, the medium between the sensor and skin surface is critical for coupling signal
power through the skin barrier and subcutaneous tissues. Merli et al. [19] showed that
the radiation efficiency of implanted antennas depended upon the dielectric properties of
an insulating layer which separated the antenna from the surrounding muscle tissues. In
the present work, it was found that a thin layer (0.25 to 1.0 mm) of textile material such as
cotton or polyester cotton blended fiber is suitable for providing the desired properties. In
addition to the insulating properties, the material’s biocompatibility and adherence to the
skin are also important factors when selecting coupling materials.

The active low-pass filter smooths the mixed pulsatile signal into the baseband signal
B(t) (Figure 1A). The cutoff frequency of the active low pass filter is 25 Hz. The baseband
signal is then amplified and fed into the MCU (Nordic Semiconductor, Trondheim, Norway),
in which the A to D converter’s sampling frequency is set to 64 Hz. The digitized data are
then transferred to a mobile phone using the built-in Low Energy Bluetooth Transceiver
(LEBT) of the MCU. An App has been designed to display the signal waveform on the
mobile phone during testing of the patient. To preserve the essential frequency contents of
the baseband signal, a Hamming window-based bandpass, linear phase FIR filter has been
designed using MATLAB 2020a (MathWorks, 1 Apple Hill Drive Natick, MA 01760, USA)
in the frequency range of 0.2 to 10 Hz. The filtered data is then stored in the mobile phone
and sent to a PC via a USB communication link for data analysis and classification.

Figure 2A shows baseband signals of three patients having normal AVF flows (1410,
1380, and 790 mL/min, respectively), in which stable and consistent VWM waveforms are
evident. Figure 2B shows baseband signals of three patients having abnormal AVF flows
(350, 430, and 360 mL/min, respectively), in which unstable and superimposed oscillations
were observed on the VWM waveforms.



Biosensors 2021, 11, 297 5 of 13

Biosensors 2021, 11, x FOR PEER REVIEW 5 of 13 
 

signal waveform on the mobile phone during testing of the patient. To preserve the 
essential frequency contents of the baseband signal, a Hamming window-based bandpass, 
linear phase FIR filter has been designed using MATLAB 2020a (MathWorks, 1 Apple Hill 
Drive Natick, Massachusetts 01760 USA) in the frequency range of 0.2 to 10 Hz. The 
filtered data is then stored in the mobile phone and sent to a PC via a USB communication 
link for data analysis and classification. 

Figure 2A shows baseband signals of three patients having normal AVF flows (1410, 
1380, and 790 mL/min, respectively), in which stable and consistent VWM waveforms are 
evident. Figure 2B shows baseband signals of three patients having abnormal AVF flows 
(350, 430, and 360 mL/min, respectively), in which unstable and superimposed oscillations 
were observed on the VWM waveforms. 

 
Figure 2. (A) Baseband signals of normal AVF with stable and consistent VWM waveforms. (B) Baseband signals of 
abnormal AVF with unstable and superimposed oscillations on VWM waveforms. 
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abnormal AVF with unstable and superimposed oscillations on VWM waveforms.

2.2. A Clinical Testing Protocol

The clinical trial was approved by the Institutional Review Board of Taichung Veterans
General Hospital (TCVGH). A total of 46 patients regularly treated at the hemodialysis
center in TCVGH were chosen for the clinical trial according to the inclusion criteria. There
were 18 females with 67.9 ± 11.4 years old and 28 males with 61.9 ± 12.5 years old. One
patient was excluded from the trial as his blood flow was not measurable due to difficulty
in finding suitable sites for needle puncture. Informed consent was obtained from each
patient prior to the start of the test session. The AVF locations on the tested patients were
in various positions, from the wrist to the upper arm. The pulse radar sensor was attached
according to each patient’s AVF location, and positioned near the venous outflow side
distal to the AVF, as shown in Figure 3. The patient was instructed to remain still for
1 min with their arm supported on the table top. The acquired VWM data were wirelessly
transferred using a Bluetooth transceiver in real time from the pulse radar sensor to the
mobile phone, where the signal waveform was displayed and data stored. The stored data
were then transferred from the mobile phone through the USB communication link to a
laptop PC. The hemodialysis treatment was then applied to the same patient, with AVF
flow measured by the UD flow instrument (HD03, Transonic Systems Inc., Ithaca, NY, USA)
within the first 30 min of the hemodialysis treatment session. The measured flow data was
recorded and stored in a laptop PC for later analysis.
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Figure 3. The hemodialysis patient during testing using a pulse radar sensor. Note that the App
displays the signal waveform on a mobile phone. The detailed strategy of immobilizing as developed
by the VWM monitoring system on patients, shown in Appendix A.

2.3. Data Processing and SVM Classification

The VWM data were converted to spectrum data using the Fast Fourier Transform
algorithm in MATLAB 2020a. Due to its advantage in classifying small-sized complex
datasets, the SVM machine learning classification algorithm was developed to predict the
patient’s AVF status using the features derived from the FFT spectrum data. The Radial
Basis Function (RBF) kernel was chosen to train the SVM algorithm for classification of
the non-linear datasets. The cutoff value between the abnormal and normal data sets was
chosen according to the suggestions of the NKF-K/DOQI guidelines with a threshold of
600 mL/min and followed up in the hemodialysis center in TVGH for the detection of flow
dysfunction. In addition to this regularly used cutoff value, the ROC analysis was used to
verify the performance of the SVM classifier and to search for an optimal threshold in the
detection of flow dysfunction.

The spectral (frequency-domain) analysis of physiological variables, using the fast
Fourier transformation (FFT), has been reported [20]. A total of five features was used
in this study, which are the ratios of FFT spectral peaks of the higher harmonics to those
of the nearest lower harmonics, defined as the Harmonic Ratio (HR), i.e., P2/P1, P3/P2,
P4/P3, P5/P4, and P6/P5. For example, Figure 4 compares the FFT spectrum of a normal
VWM signal (left panel) with that of an abnormal VWM signal (right panel), in which a
distinct difference exists in the ratio of P3 to P2. To validate the HRs as being features for
VSM classification, the mean differences between the HRs of abnormal FFT spectrums and
those of normal FFT spectrums were tested using the independent T-test (α = 0.05). Table 1
shows that P5/P4 is a sensitive feature for a detection threshold of 600 mL/min (p = 0.008),
and that P3/P2 is a sensitive feature for a detection threshold of 750 mL/min (p = 0.041).
Based on this sensitivity analysis, the HRs for each patient were chosen to be the input
features for the SVM classification algorithm.
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Table 1. Independent T-test of the mean difference in harmonic ratios between low flow cases and high flow cases relative
to cutoff values at 600 and 750 mL/min (referenced in Figure 4). Notice symbol * represents the p-value < 0.05.

Harmonic
Ratio

≤600 (n = 11) >600 (n = 34)
Difference p-Value

≤750 (n = 21) >750 (n = 24)
Difference p-Value

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

P2/P1 0.357 (0.203) 0.380 (0.178) −0.023 0.722 0.347 (0.168) 0.398 (0.195) −0.051 0.356
P3/P2 0.665 (0.313) 0.491 (0.285) 0.174 0.093 0.630 (0.277) 0.449 (0.296) 0.181 0.041 *
P4/P3 0.591 (0.289) 0.785 (0.456) −0.193 0.195 0.774 (0.475) 0.705 (0.387) 0.069 0.591
P5/P4 1.075 (0.601) 0.711 (0.273) 0.365 0.008 * 0.818 (0.510) 0.784 (0.293) 0.035 0.777
P6/P5 0.659 (0.235) 0.751 (0.347) −0.092 0.417 0.696 (0.352) 0.758 (0.300) −0.062 0.529

3. Results

Figure 5 displays the results of training the SVM classifier with detection thresholds
of 600 mL/min. Each data point in the figure represents a set of two values in which the
correponding value on the x axis is the value of the decision function, while that on the y
axis is the measured flow data by UD. The value of the decision function shows whether
an output by the SVM classifier lies to the right or left side of the hyperplane (y axis), as
well as how far it is from the hyperplane. The hyperplane is an optimal plane separating
the two classes with maximum margin. When the output value of the decision function
is close to zero on the hyperplane, it represents a low-confidence decision, whereas when
the output values of the decision function are a larger magnitude of positive or negative
values, the more confident the decisions are. The locations of the data points relative
to both the detection threshold (horizontal red line) and hyperplane determine whether
the classification results are true or false. As defined by the hyperplane and detection
threshold, when a data point is located either in the lower left or upper right region, it is
being classified correctly as true positive or true negative, respectively. Alternatively, when
a data point is located either in the upper left or lower right region, it is being classified
incorrectly as fase positive or false negative, respectively. For a detection threshold of
600 mL/min, the outputs of the SVM classifier were mostly located in the true positive and
true negative regions, with no false positive predictions and only one false negative being
classified (shown in Figure 5).

The trained SVM classifier was validated using the method of 10-fold cross validation.
Table 2 summarizes the validated results of the VSM classifier with a detection threshold
of 600 and 750 mL/min. The performance of the SVM classifier shows a sensitivity of
90.9% (95.2%), specificity of 100.0% (100.0%), and an accuracy of 97.8% (97.8%) for 600
(750) mL/min. Notice that the prediction accuracy is 100.0% if measured by the positive
prediction value.

As mentioned in the NKF-K/DOQI guidelines, there exists a need for standardized
diagnostic thresholds with sufficient sensitivity as well as specificity. In the present work,
the ROC curve analysis was performed with the results showing that the Area Under the
Curve (AUC) was 0.994. The specificity and positive prediction value for the detection
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thresholds of 750, 650, 600, and 500 mL/min were all 100%, with the maximum sensitivity
being 95.2% at a detection threshold of 750 mL/min (shown in Figure 6). This result
indicates that the VWM monitor-based AVF flow dysfunction detector provides an excellent
correlation with the UD flow monitor within a large range of AVF flow. However, a single
optimal detection threshold could not be determined solely on the value of sensitivity.
Instead, two levels of detection thresholds, e.g., firth level at 750 mL/min and second level
at 600 mL/min, may be more reliable for the early detection of flow dysfunction before
proceeding to pre-emptive angioplasty.
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Table 2. The 10-fold cross validation results for SVM classifier at a detection threshold of 600 and 750 mL/min, respectively.

Ground Truth

Threshold Prediction Flow ≤ 600 Flow > 600 Total %Correct Index

600
Flow ≤ 600 10 0 10 90.9 Sensitivity
Flow > 600 1 34 35 100.0 Specificity

Total 11 34 45 97.8 Accuracy

Threshold Prediction Flow ≤ 750 Flow > 750 Total %Correct Index

750
Flow ≤ 750 20 1 21 95.2 Sensitivity
Flow > 750 0 24 24 100.0 Specificity

Total 20 25 45 97.8 Accuracy



Biosensors 2021, 11, 297 9 of 13

Biosensors 2021, 11, x FOR PEER REVIEW 9 of 13 
 

Table 2. The 10-fold cross validation results for SVM classifier at a detection threshold of 600 and 750 mL/min, respectively. 

  Ground Truth    

Threshold Prediction Flow ≤ 600 Flow > 600 Total %Correct Index 

600 
Flow ≤ 600 10 0 10 90.9 Sensitivity 
Flow > 600 1 34 35 100.0 Specificity 

Total 11 34 45 97.8 Accuracy 
Threshold Prediction Flow ≤ 750 Flow > 750 Total %Correct Index 

750 
Flow ≤ 750 20 1 21 95.2 Sensitivity 
Flow > 750 0 24 24 100.0 Specificity 

Total 20 25 45 97.8 Accuracy 

As mentioned in the NKF-K/DOQI guidelines, there exists a need for standardized 
diagnostic thresholds with sufficient sensitivity as well as specificity. In the present work, 
the ROC curve analysis was performed with the results showing that the Area Under the 
Curve (AUC) was 0.994. The specificity and positive prediction value for the detection 
thresholds of 750, 650, 600, and 500 mL/min were all 100%, with the maximum sensitivity 
being 95.2% at a detection threshold of 750 mL/min (shown in Figure 6). This result 
indicates that the VWM monitor-based AVF flow dysfunction detector provides an 
excellent correlation with the UD flow monitor within a large range of AVF flow. 
However, a single optimal detection threshold could not be determined solely on the 
value of sensitivity. Instead, two levels of detection thresholds, e.g., firth level at 750 
mL/min and second level at 600 mL/min, may be more reliable for the early detection of 
flow dysfunction before proceeding to pre-emptive angioplasty. 

 
Figure 6. The results of ROC analysis on the performance of the SVM classifier. 

4. Discussion 
The wall motion in a stenotic carotid artery was investigated by Kanber et al. [21]. 

Due to the difficulty to measure stable signals in the stenotic region, the proximal shoulder 
of the atherosclerotic region was chosen as the measurement site, with ultrasound image 
sequences being acquired over several cardiac cycles. Results showed that both absolute 
and percentage diameter changes did not have any statistically significant relationship to 
the degree of stenosis. In the present work, measurement sites on patients’ arms were all 
located at the venous outflow side of AVFs distal to where the periodical generation of 
flow turbulence took place. The signals acquired by the VWM monitor showed differences 
in waveform morphology between the abnormal flow cases and those of the normal flow 
cases. Figure 7A shows an example of a distorted AVF VWM signal (low flow, flow = 360 
mL/min) whose waveform morphology displayed oscillations superimposed on one cycle 

Figure 6. The results of ROC analysis on the performance of the SVM classifier.

4. Discussion

The wall motion in a stenotic carotid artery was investigated by Kanber et al. [21].
Due to the difficulty to measure stable signals in the stenotic region, the proximal shoulder
of the atherosclerotic region was chosen as the measurement site, with ultrasound image
sequences being acquired over several cardiac cycles. Results showed that both absolute
and percentage diameter changes did not have any statistically significant relationship to
the degree of stenosis. In the present work, measurement sites on patients’ arms were all
located at the venous outflow side of AVFs distal to where the periodical generation of
flow turbulence took place. The signals acquired by the VWM monitor showed differences
in waveform morphology between the abnormal flow cases and those of the normal
flow cases. Figure 7A shows an example of a distorted AVF VWM signal (low flow,
flow = 360 mL/min) whose waveform morphology displayed oscillations superimposed
on one cycle of the original AVF VWM waveform. This is believed to be the result of the
modulation of two signals, i.e., the original VWM signal and the signal with oscillations due
to flow turbulence. Consequently, as shown in Figure 7B, new harmonics P3 and P5 appear
with higher strengths in the FFT spectrum than those of the original VWM signal. Since
the oscillating frequency is three to five times the fundamental frequency, the modulation
effect would increase the strength of the higher frequency harmonics. This observation
could be the basis for future work on detection of flow dysfunction by combining time
domain and frequency domain analytical techniques.

Tessitore et al. [5] investigated the optimal thresholds for stenosis detection using the
UD flow measurement. Their results showed that a detection threshold of 750 mL/min
was optimal for AVFs at the wrist and 1000 mL/min for AVFs at the mid-forearm. In the
present work, 50% of AVFs were located on patients’ mid-forearms, 40% on patients’ wrists,
and the remaining 10% on patients’ elbows. The ROC analysis results of the SVM classifier
found that maximum sensitivity was achieved at a detection threshold of 750 mL/min,
which was identical to that reported in [5] on stenosis detection. In the future, through the
use of fistulography as the gold standard, an expanded clinical study will be needed in
order to validate the SVM classifier in predicting stenosis.
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5. Conclusions

In conclusion, this study is based on previous studies which demonstrated that
stenosis of the arterial blood vessel could be detected by analyzing the characteristic
changes in the waveform of VWM. In this work, the operating principle of the pulse radar
sensor for detection of VWM was derived theoretically and the performance of the VWM
monitoring system was verified clinically. The VWM monitoring system was applied to
detect the flow dysfunction in AVFs on patients who were receiving the hemodialysis
treatment. Harmonic ratios derived from the FFT spectrum of the VWM monitoring
signals were used as the input features to a SVM classification algorithm. Ten-fold cross
validation results revealed an excellent correlation between the VWM monitor and UD
flow monitor. To ensure the operation reliability of the VWM monitoring system, the
long-term reproducibility of the as developed VWM monitoring system will be evaluated
in the near future.

By adapting the two-level detection threshold method for early detection, the VWM
monitoring technique for self-tests at home, or regular screening in hemodialysis centers,
can provide the benefits of both reducing the present workload in testing AVF flow dys-
function in the hospital, as well as assuring the quality of care needed to preserve AVF
patency. Meanwhile, the long-term reproducibility of the as developed VWM monitoring
system should be evaluated in the near future.
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Appendix A

A detailed strategy of immobilizing the as developed VWM monitoring system on
patients, as illustrated below.

1. Place the arm on the table top. Make sure that the side of the arm with AVF is in
parallel with the table top and the weight of the arm should be fully supported by the
table, as shown in Figure A1.

2. Position the pulse radar sensor in Figure A2 near the venous outflow junction of the
AVF, as shown in Figure A3.

3. Attach the pulse radar sensor to the skin using the soft cloth tape.
4. Start the measurement while keeping the body still for 1 min.Biosensors 2021, 11, x FOR PEER REVIEW 12 of 13 
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