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Abstract: Olive (Olea europaea) is one of the most extensive crops in the Mediterranean countries, and
an important source of extra distinctive compounds that has been widely tested due to its known
health benefits. Olive derivatives, such as extra virgin olive oil (EVOO) and olive leaves are rich
in antioxidant compounds such as hydroxytyrosol (HXT) and oleuropein and oleic acid, as main
monounsaturated fatty acid. Because of HXT molecular structure, its regular consumption reports
important beneficial properties such as anti-inflammatory, antimicrobial, antioxidant, and anticancer.
As a matter of fact, its antioxidant and antimicrobial effects made this compound a good preservative
agent against meat deterioration and spoilage, capable of replacing some synthetic additives whose
continued and regular consumption may negatively affect the human health. On the contrary side,
this extract has an unpleasant odor and flavor, so a synthetic source of HXT could also be used to
improve the sensory quality of the meat products. In this sense, this review exposes the health benefits
provided by the consumption of EVOO and HXT, and the newest research about its application on
meat, together new trends about its use as functional ingredient in meat and meat products.

Keywords: Olea europaea; functional; antioxidant; antimicrobial; anti-inflammatory; meat; clean
label; food

1. Introduction

Nowadays, consumer concerns have increased to demand new healthy and safer
foods. One reason is the potential risk of the consumption of some synthetic additives such
as sulphites, nitrites, BHA, or BHT, which are widely used as preservatives in most of the
animal products that are frequently included in the occidental diet [1–5]. Based on this
concern on heath perception, there is a new research trend to achieve the reduction and/or
substitution of these synthetic compounds by natural extracts or essential oils from fruits,
plants, or spices [6–8]. Additionally, most of these natural extracts shown to be antioxidants
in meat and fish, but they have a negative impact on organoleptic characteristics of foods
due to their high concentration in terpenoids and phenolic. For this reason, its commercial
application would not be viable, despite being focused on a population increasingly aware
of its health and that demands products free of synthetic additives [9].

In this sense, a part of this field of research is to study the different ways to produce,
select, and combine natural extracts or essential oils that do not modify sensory charac-
teristics of animal origin products while maintaining their antioxidant, antimicrobial, and
preservative potential. Therefore, the main objective of this research field is to achieve
a variety of animal origin products free of artificial ingredients by using organic plant
and fruits extracts obtained from food industry by-products, specially from traditional
Mediterranean ingredients, among others.

Animals have been the principal food source of proteins for humans since 5 million
years ago. However, in last century, the excessive intake of animal protein has influenced
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on human health, since population is more sedentary than before and combined with the
high fat food intake, an increment in heart diseases is produced [10]. In addition, meat
is an important source of 25 essential and non-essential elements. These compounds are
oxygen, carbon, hydrogen, nitrogen, minerals (Fe–heme, Ca, P, K, S, Na, Cl, Zn, Mg, and
Se), and vitamins (A, complex B -B1, B2, B3, B6, B9, B12-, D, and K) [11]. In this sense, meat
and meat products are an important source of high-quality proteins, and are also necessary
for a balanced diet.

In this way, the application of natural ingredients to avoid the meat spoilage and
to allow the total or partial substitution of synthetic additives has been highly increased
during las twenty years. In fact, as non-edible parts of fruits and vegetables are especially
rich in bioactive compounds, these have become important sources of natural extracts for
its use in food and pharmaceutical industry.

One of the most antioxidant compounds known in the world comes directly from the
main pillar of the Mediterranean diet (MD): the olive oil. In consequence, first analyses
of olive by-products started in 1999 [12] and the process for obtaining hydroxytyrosol
(HXT) from olive leaves was patented in 2004 by Beverungen, C. (EP1582512A1). From
this moment to today, the number of research related to this compound ascend to 21.400.
Indeed, in 2018, our research group launched a review describing the nutraceutical activity
of this phytochemical and its use in food industry [13].

The objective of this work is to review the latest literature about olive derivatives and
HXT consumption benefits, its extraction, its use as natural preservative, and its application
in meat and meat products with special emphasis on perspectives and new trends in meat
industry. In addition, we will also focus on new research into new synthetic sources of
HXT and its application in industry.

2. Olive Tree and Derivatives

The olive tree (Olea europaea L.) is one of the most extensive crops in the countries
that bordered the Mediterranean Sea. Almost six million ha of olive trees are cultivated
worldwide, from which the 98% of them are on the Mediterranean countries, especially
on Italy, Greece, and Spain. As a matter of fact, one million ha of olive trees are only
cultivated in Spain. Fruit and oil obtained from Olea europaea L. have been widely studied
for its alimentary use, one of the main pillars of the MD (Figure 1). During the recollection
of olive trees and the production of olive oil, huge quantities of olive by-products are
generated with no practical applications, which have been studied to their application
in cosmetic, pharmaceutical, and food industry. For instance, olive leaves represent the
10% of the weight of olives before processing. Furthermore, this part of the tree is the
main site of plant metabolism, where primary and secondary plant products are produced
from photosynthesis. For that, olive leaves can be considered potential sources of bioactive
compounds, such as oleuropein or HXT.

2.1. Extra Virgin Olive Oil

The main source of HXT is extra virgin olive oil (EVOO), once of the principal ingredi-
ents of MD, that is used as cooking fat and salad dressing. EVOO is rich in unsaturated
fatty acids (especially oleic) and phenolic groups, as antioxidant substances, followed by
tocopherols and carotenes, that are also present [14]. The phenols detected in EVOO can be
divided into alcohols, acids, flavonoids, lignans and psecoiridoids. In fact, HXT is the most
important psecoiridoid in EVOO.

Great variations in the concentration of these antioxidant compounds exist according
to one olive oil or another (0.02–600 mg/kg), which can occur due to factors such as
the olive variety, ripening, processing or the region and cultivation technique used [15].
These compounds are characterized by their antimicrobial, antioxidant, anti-inflammatory,
and anti-cancer biological properties. Numerous studies have demonstrated the capacity
of EVOO phenolic groups to reduce the excess of free radicals that can cause oxidative
damage [16–21].
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2.2. Hydroxytyrosol

HXT (or 4-(2-dihydroxyphenyl) ethanol) is known to be one of the most powerful
natural antioxidant extracts, and it is just below gallic acid [22]. In this sense, part of its
bioactivity lies in the fact that the fourth carbon of its catechol ring (benezene-1,2-diol) have
been substituted by a 2-hydroxyethyl group. Thus, HXT is ten times more antioxidant that
green tea and two times more antioxidant than coenzyme Q10 (ubiquinone) and is also
effective as anti-inflammatory and antineoplastic compound [22]. HXT is a phenylethanoid
whose antioxidant properties have been proved in vitro; it is obtained from olive leaves;
it is characterized by an intense flavor and aroma; and oleuropein is its precursor [23,24].
Moreover, the antioxidant capacity in vivo of HXT has been proved in several studies with
rats, as in Merra et al. [25] or in Lemonakis et al. [26], who showed the power of HXT to
reduce the risk of suffering from metabolic syndrome. In fact, in the chemical structure
of HXT, the compound has an additional hydroxyl group in its benzene ring, compared
to tyrosol (TYR). Therefore, it obtains a greater function as a free radical scavenging,
which means an increase in its antioxidant power, as well as in its efficacy under stress
conditions [26].

3. Health Benefits

As a matter of fact, several studies have shown that HXT, which is known to be a highly
bioactive ortho-diphenol, has interesting antioxidant and antimicrobial characteristics and
important beneficial effects (Table 1) on the cardiovascular system and on several human
diseases [13,27–29]. The list of biological activities turns out to be inexhaustible, including
a negative regulation of the immune response, which protects human erythrocytes from
hydrogen-peroxide-induced oxidative damage, and anti-inflammatory, antithrombotic, and
hypocholesterolemia activities. In addition, it is a powerful monoamine oxidase (MAO-
B) inhibitor, which makes HXT a perfect compound for the treatment of Alzheimer’s,
Parkinson’s, and other neurological diseases [27,28]. In addition, HXT has been proved
to be a powerful superoxide anion and a hydroxyl radical scavenger. As a result, this
compound protects cells located in many parts of the human anatomy from damage and
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death, which results in a decrease of cell death frequency and a significant prolongation in
the mean of the cell life [13].

Table 1. Health benefits of olive derivatives consumption as in vitro as in vivo.

Health Benefit Form/Specie Dose Used Model Main Effects Reference

Cardiovascular
EVOO included in

a Mediter-
ranean Diet

10 or 20 g/day
In Vivo: humans

(25 subjects;
36 years old)

Prevented the production of
ROS in the

post-prandial period
[30]

Anti-diabetic and
cardiovascular

EVOO included in
a Mediter-

ranean Diet
10 g/day In Vivo: humans

(25 subjects)

Reduction of blood glucose,
LDL cholesterol and its

oxidized form, and improved
insulin level in comparison

with the use of corn oil

[31]

Cardiovascular
EVOO included in

a Mediter-
ranean Diet

14.8 mL/day
In Vivo: humans

(137 subjects;
>64 years old)

Lower systolic blood pressure
and improved endothelial

function
[32]

Anti-diabetic and
cardiovascular

Oleuropein in a
basal diet 20 mg/day

In Vivo: humans
(20 subjects;
33 years old)

Reduces glucose and
oxidative markers while

increases insulin blood levels
[33]

Anti-sclerosis EVOO and HXT in
a basal diet 20 mg/kg/day In Vivo: rats

(25 subjects)

Reduces oxidation of lipids
and proteins while increases

levels of glutathione
peroxidase.

[34])

Anti-diabetic
benefit and

Hepatic protection
HXT in a basal diet 20 mg/kg/day In Vivo: mice

(10 subjects) Prevention of hepatic steatosis [35]

Cardiovascular HXT in a
high-fat diet 5 mg/kg/day In Vivo: mice

(28 subjects)

Reduce cardiovascular risk by
reduction of oxidative stress

and increase of plasma
antioxidant profile

[36]

Cardiovascular
and anti-tumor EVOO (89.4 HXT) 30 mL

In Vitro: breast
cancer cell lines

(MCF-7 and
MDA-MB-231)

In Vivo: rats
(22 subjects)

Decrease the oxidation of LDL
cholesterol. Improve of the
endothelial function, which

reduced the size of the tumour

[37]

Anti-bacterial and
anti-fungal HXT 100–500 mM

In Vitro: Standard
fungal strains:

A. nidulans,
A. fumigatus,

A. flavus,
F. oxysporum and

C. albicans.
Standard bacterial

strains:
P.aeruginosa, E. coli,

Klebsiella sp.,
P. fluorescens,
S. aureus, and

B. subtilis.

Strong antifungal activity in
studied fungal strains. High
efficiency in fungal plasma

membrane destruction.

[38]

Cardiovascular
and anti-diabetic HXT 9.7 mg/day In Vitro: hepatic

cell lines (HepG2)

Improvement pancreatic
β-cell responsiveness which

produces an increase in
insulin sensitivity

[39]
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Table 1. Cont.

Health Benefit Form/Specie Dose Used Model Main Effects Reference

Cardiovascular Tyrosol 25 mg/day In Vivo: humans
(33 subjects)

Improved endothelial
function, increased HDL

cholesterol and antithrombin
IIII, while decreased plasma

homocysteine, and gene
expression in peripheral
blood mononuclear cells.

[40,41]

Neuro-protector HXT 5 mg/kg/day In Vivo: rats
(8 subjects)

Brain accumulation of HXT
produced the reduction of the

oxidative stress at neuronal
level, which suggested its
neuroprotective activity

[42]

Anti-inflammatory
and anti-tumour HXT 100 µg/day In Vivo: rats

(8 subjects)

Oleuropein acts as
pro-inflammatory status,

whereas HXT promotes an
anti-inflammatory status.

[43]

Digestive HXT 150 ppm In Vitro: CACO-2
cell lines

Increase bioavailability of Fe
and Zn [13]

EVOO: extra virgin olive oil; ROS: reactive oxygen substance.

From our last review [22], research on the health benefits of the consumption of olive
by-products have been growing until today (Table 1).

In this way, cardiovascular benefits have been widely demonstrated by several authors,
as in vitro as in vivo, both in animals and humans. For instance, Carnevale et al. [30]
showed as 10–20 g EVOO per day, following a Mediterranean Diet, reported a decrease in
the production of oxidative markers in the post-prandial period in 25 middle-age subjects.
After that, Violi et al. [31] also showed cardiovascular and anti-diabetic benefits in humans
after following a Mediterranean Diet including 10 g EVOO per day. These benefits implied
a reduction of blood glucose and the LDL cholesterol, which improved the insulin level
while reducing the oxidized LDL in blood. These results agree with Carnevale et al. [33],
who also showed the same behavior after the intake of 20 mg oleuropein extract per day.
In relation to this effect, also in humans, Boronat et al. [40,41] reported an improve of the
endothelial function by the consumption of 25 mg tyrosol extract per day. Furthermore,
Davis et al. [32] showed lower systolic blood pressure after three and six months in >64
years-old humans (n = 137) who followed a Mediterranean Diet including 14.8 mL EVOO
per day.

Moreover, this cardiovascular benefit was also observed in mice after an intake of 5 mg
HXT/kg/day, which implied a reduction of the oxidative stress even in combination with
a high-fat diet [36]. In addition, El-azem et al. [37] reported a decrease of the oxidized LDL
in rats with the consumption of 30 mL EVOO (89.4% HXT), which was also related with
the reduction of the size of the tumour in vitro (MCF-7 and MDA-MB-231 breast cancer
cell lines).

In particular, cardiovascular protection has been also associated to the prevention of
steatosis in mice after application of 20 mg HXT/kg/day [35]. In addition, 100 µg HXT/day
in rats has shown to promote an anti-inflammatory status, which has been also linked with
its anti-cancer [43] and its anti-sclerosis benefits [34]. Besides, the accumulation of HXT in
the brain of rats, after an intake of 5 mg/kg/day has suggested its neuroprotective activity
by the reduction of the oxidative stress and, hence the protection of neuronal cells [42].

Knowing the anti-bacterial and anti-fungal benefits of HXT [38] and that this com-
pound can increase de bioavailability of Fe and Zn with a minimum degradation during
the digestion [13] after its incorporation to a meat product, there are plenty of reasons for
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incorporating this extract into meat products to extend their shelf life while improving
their nutritional properties.

4. Olive and Its Derivatives as Functional Ingredients in Meat Product Production

According to its antioxidant and antimicrobial activities, olive derivatives have widely
studied as food preservatives, especially in meat products. This compound has shown
its antioxidant capacity in meat products, especially in those rich in unsaturated fatty
acids. This is the case of, for example, sausages and frankfurters made with nuts and
EVOO and also enriched in HXT to avoid lipid and protein oxidation [44,45]. In addition,
HXT is an antioxidant compound, which can link to certain minerals (gluconate Fe (II)
in black olives) and catalyzes its oxidation. Then, it may be possible that HXT affects to
availability of some trace minerals [24]. In this way, last obtained results about the effect
of olive derivatives incorporation into manufactured meat products are shown in Table 2.
Furthermore, this incorporation has followed two different ways: the endogenous way,
throughout the animal feed, and the exogenous way, either by the meat formula (making
process) or by bioactive packed.

By the endogenous way, Mattioli et al. [46] incorporated 10% olive leaves extract to
rabbit feed, which did not influence to the physical-chemical properties of rabbit meat. In
fact, meat from rabbits fed with enriched diets in olive leaves showed an improvement in
the fatty acid profile by increasing the content of oleic acid and its derivatives [46]. Similarly,
Papadomichelakis et al. [47] reported an important improvement of fatty acid profile of the
chicken meat from broilers feed with 50 g/kg/day dried olive pulp for 42 days. Moreover,
Jabalbarezi Hukerdi et al. [48] and Jabalbarezi Hukerdi et al. [49] improved the proportions
of unsaturated fatty acids and the oxidative stability of Mahabadi male goat kids meat
after supplementation of 75 and 150 g olive leaves/kg/day. Lastly, similar results has been
also obtained by El Otmani et al. [50] after addition of 200 g olive cake (made with olive
leaves)/kg/day to the diet of male goat kids.
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Table 2. Olive derivatives used as a preservative in meat products.

Incorporation Extract Form Dose Used Meat Product Storage Conditions Main Effects Reference

Packed (multilayer
polyethylene film) Olive leaves extract 2, 5, 10, and 15% Fresh minced pork

meat

16 days at 4 ◦C, packed
under MAP conditions
(30% CO2 and 70% O2)

Improved the stability of fresh minced meat
against oxidation. [51]

Packed (bioactive
edible films)

HXT and 3,4-
dihydroxyphenylglycol

extracts
0.1 and 0.5% Beef meat 6–7 days at 4 ◦C, packed

under aerobic conditions

The combination of the film, which acted as
oxygen barrier, and the HXT as antioxidant
compound reduced lipid oxidation by 100%

for 7 days.

[52]

Animal feed Olive leaves extract 10% Rabbit meat -
It did not affect to meat characteristics, but
fatty acid profile was improved by increase

the oleic acid content.
[46]

Animal feed Dried olive pulp 25 and 50 g/kg/day Broiler chicken (42
days) meat -

Meat was enriched in monounsaturated fatty
acids, such as c18:1 n-9. Higher concentration
rates (than 50 g/kg) may negatively affect to

pH and color of breast meat.

[47]

Animal feed Olive leaves extract 75 and 150 g/kg/day Mahabadi male goat
kids meat -

Increased the content of MUFA (especially
LA, LNA, and CLA), PUFA, PUFA:SFA ratio,
and decreased hh n-6/n-3 ratio in lamb meat.

[49]

Animal feed Olive leaves extract 75 and 150 g/kg/day Mahabadi male goat
kids meat -

It did not affect to meat characteristics while
increased the antioxidant properties of the

meat by increasing the olive leave dose.
[48]

Animal feed
Olive cake (made with

dry matter of olive
leaves)

200 g/kg/day Male goat kids meat - It did not affect to physical characteristics, fat,
or meat quality. [50]

Making process HXT from olive leaf and
from olive fruit extracts 200 ppm Fish patties 11 days at 4 ◦C, packed

under aerobic conditions

Reduction of the TVC and the lipid oxidation
measured by nonanal, 1,6-octadien-3-ol, and

hexanal presence after 11 days.
[56]

Making process into
double emulsions as

fat replacers
Olive leaves extract 100 mg oleuropein/kg

Pork meat systems
(10.4% fat and 15%

muscle)

14 days at 4 ◦C and 7
days at 60 ◦C to study the

oxidative stability

High stability and antioxidant activity.
Oleuropein encapsulation avoid its

degradation, which kept its antioxidant
properties against lipid oxidation.

[53]
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Table 2. Cont.

Incorporation Extract Form Dose Used Meat Product Storage Conditions Main Effects Reference

Making process HXT from vegetable
water extract 200 ppm Fish patties 14 days at 4 ◦C, packed

under aerobic conditions

Reduction of the TVC, the lipid and the
protein oxidation, and the trimethilamine

content.
[57]

Making process HXT from olive
leaf extract 750 ppm Chicken nuggets

12 months at −18 ◦C,
packed under aerobic

conditions

Reduction of the TVC, the lipid and the
protein oxidation. [55]

Making process

HXT from an organic
source (olive leaf) and

from a synthetic
source extract

200 ppm Lamb burgers 6 days at 4 ◦C, packed
under aerobic conditions

Both extracts reduced the TVC, the protein
oxidation and the lipid oxidation measured

by nonanal and hexanal presence after 6 days.
However, only the synthetic HXT did not

alter the sensory quality of the lamb burgers.

[58]

Making process as
fat replacer Olive oil 4% Low-fat Harbin dry

sausages
36 days at room

temperature

Reduced the fat content, increased the MUFA
(especially oleic acid), reduced lipid

oxidation, and improved sensory perception
of sausages.

[54]

Making process

HXT from an organic
source (olive leaf) and

from a synthetic
source extract

200 ppm Dry-cured pork
sausage: fuet 100 days at 5 ◦C

Both extracts reduced the TVC, the protein
oxidation and the lipid oxidation. However,

only the synthetic HXT did not alter the
sensory quality of the fuet.

[59]

MAP: modified atmosphere packaging; TVC: total viable count; SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty acids; LA: linoleic acid; CLA: conjugated linoleic
acid; LNA: linolenic acid.



Foods 2021, 10, 2611 9 of 14

Regarding the incorporation of olive derivatives by the bioactive packed, Moudache
et al. [51] elaborated a multilayer polyethylene film with different doses (from 2 to 15%)
of olive leaf extract. These films were used to pack fresh minced pork meat for 16 days
at 4 ◦C and olive leaf extract incorporation enhanced the stability of fresh meat against
lipid and protein oxidation processes. In a similar form, Bermúdez-Oria et al. [52] used
bioactive edible films with 0.1 and 0.5% HXT and 3,4-dihydroxyphenylglycol extracts to
preserve beef meat for 7 days at 4 ◦C. As a result, the edible film enriched in olive phenols
and made of pectin and fish gelatin was effective to control the lipid oxidation of raw beef
meat. As a matter of fact, it delayed lipid oxidation by 100% for 7 days, which can be
justified by the combined effect of the film, as oxygen barrier, and the incorporation of HXT
as antioxidant agent.

Nevertheless, the easiest way to preserve new “super foods” has been the exogenous
way, by incorporating olive derivatives into meat formulas.

In this way, Robert et al. [53] reformulated low fat pork meat systems by incorporating
100 mg oleuropein/kg. As a result, pork meat reported a good physical stability during
refrigerated storage for 14 days. In fact, the encapsulation of oleuropein hindered the
degradation of the antioxidant compound (oleuropein), leading to meat with lower contents
of peroxide and malondialdehyde, as well as higher antioxidant capacity. Furthermore,
Zhu et al. [54] reduced the fat content by increasing the content of MUFA (especially oleic
acid) while reducing SFA in Harbin dry sausages throughout the incorporation of 4%
EVOO. In fact, the addition of healthy fat replacers provided the formation of muscle
protein gels. Besides, the reduction of fat also decreased the lipid oxidation and the sensory
perception of the sausages [54].

Particularly, our research group has recently developed different meat products ex-
ogenously enriched in HXT, as main antioxidant compound obtained from olive leaves.
For instance, chicken nuggets with 750 ppm HXT from olive leaf presented a reduction of
the microbial growth, a better oxidative stability, and a good sensory quality for 12 months
at −18 ◦C [55]. In addition, in a pioneering way, we have compared the action in meat
derivatives of this derivative of the olive tree, as a natural source of HXT, against HXT
synthetically obtained.

5. New Trends: Natural vs. Synthetic Hydroxytyrosol

Olive oil extraction involves different processes such as extraction, olive washing,
beating and grinding. A number of different byproducts are originated during olive oil
production, such as leaves, wastewater, and pomace, and the uses of which can be the
focus of a sustainable valorization in innovative products such as HXT [60]. According
to Luque de Castro and Japón-Luján [61], leaves have the most potent radical scavenging
power of the different parts of olive trees. Specifically, in olive leaves there are several
a great diversity of compounds such as, substituted phenols (hydroxytyrosol, tyrosol,
vanillin, caffeic acid, vanillic acid) flavones (diosmetin, apigenin-7-glucoside, diosmetin-7-
glucoside, luteolin, and luteolin-7-glucoside), flavan-3-ols (catechin), flavonols (rutin), and
secoiridoids (oleuropein).

Natural HXT is mainly found in olive leaves fruits, and waste waters from olive oil
production, where it is naturally created through the hydrolysis of oleuropein. Natural HXT
extracts from byproducts of olive oil industry contains a maximum of 7–25% of pure HXT,
along with other bioactive olive compounds. The natural mechanism by means of which
olive trees form free HXT is enzymatic hydrolysis, and it involves enzymes glucosidase and
esterase [62]. As a matter of fact, procedures that generate high amounts of HXT by means
of the use of by-products obtained after the milling and extraction of olive oil have been
considered in several studies. The water waste from olive mills have been studies after
the extraction, since such water is very rich in free HXT [44]. This is, indeed, the best way
to use the large amounts of waste generated during the production of olive oil. However,
knowing the broad health benefits of the HXT molecule, other industrial methods have
been developed to obtain extracts with a higher purity degree. Alternatively, synthetic
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enzymatic HXT procedures have been suggested [63], but acid hydrolysis from oleuropein
is the most used mechanism to obtain this antioxidant in industrial processes. It is in this
way where HXT extracts can reach a purity level of 94–99%.

For instance, our research group has evaluated the antioxidant capacity by several
methods (oxygen radical absorbance capacity -ORAC-, and Ferric reducing antioxidant
power -FRAP- methods) and the scavenging activity (against 2,2 -azino-bis(3-ethylbenzo-
thiazoline-6-sulfonic acid)-ABTS- and 2,2-diphenyl-1-picrilhidrazilo -DPPH-) of the syn-
thetic HXT following different ways and obtaining promised results (Figure 2).
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As appreciated, after measuring the antioxidant capacity of both extracts through
several methods, HXT obtained from the synthetic source reported the highest antioxidant
and scavenging activity compared to natural HXT obtained from olive leaf, which is directly
related to the purity of both extracts. This behavior is useful for the optimization and
production of medicines and foods enriched in HXT to enhance their health benefits.

For that reason, we tested these extracts in two different meat products. Firstly,
200 ppm of HXT, from both origins, reduced the microbial growth, the protein and the
lipid oxidation being the synthetic HXT the only that did not alter the sensory quality of
fresh lamb burgers for 6 days at 4 ◦C [58]. In this manner, we tested these extracts also
a dry-cured pork sausage (‘fuet’) obtaining similar results [59]. In this sense, although
on these days society prefers natural products than synthetic, the stability of the natural
isolated HXT may have lower and limited stability, which may reduce its bioactivity. For
that reason, encapsulation of the natural product may avoid the negative flavor problems
and increase its activity.

In this way, companies as the Chinese Shandong Bailong Chuandyuan BIO-TECH
Co., Ltd., the German Willy Benecke GMBH, and the Spanish Coralim ADITIVOS S.L. are
experts in organic additives markets. In the same way, there are more companies focused
on development, production, and distribution of free additives solutions used by the meat
industry, for example, Murcian Catalina Food Solutions S.L. (Spain). Other multinational
industries also focused on production of natural flavorings, have also aimed their view
in food industry, such as the Spanish Indukern Food Division, which has developed
the Blend-a-Kern CFX, CEX, and CII solutions for the elaboration of manufactured meat
products without E numbers, or the Israeli Frutarom Industries Ltd., which specializes
in the production and distributions of natural extracts obtained from herbs, fruits, and
vegetables for flavor and fragrances.

This kind of companies gives the possibility to the meat industry to elaborate clean
label meat products. For example, North American Coleman Natural Foods Llc. is launch-
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ing a new clean label meat products line, such as beef burgers, chicken sausages, and
maple-smoked bacon. In addition, French ActiMeat® is on the lookout for clean label
and organic products with the aim objective of develop natural, authentic, and respectful
with environment meat products. In the Spanish market, Domínguez Meat Products, SL.
has developed the “Bo&San” line, which includes meat products free of additives and
allergens, such as “Spanish cured “chorizo,” bacon, roast ham, Celtic cured ham, and
burgers, while Mafriseu S.A. produces traditional manufactured meat products, such as
sausages, meatballs, minced meat, Spanish “chorizo,” burgers, “butifarra,” paté, or “fuet,”
among others. In addition, Noel Alimentaria S. L. sells since several years ago roast ham
and roast poultry breast free of additives.

6. Conclusions

Beneficial effects of olive and HXT consumption have been extensively studied due
to its antioxidant, antimicrobial, and anti-inflammatory power. For this reason, in last
20 years, researchers have focused on the reduction and the removal of preservatives and
dyes by olive derivatives and HXT incorporation to achieve “clean label” meat products.
Unfortunately, HXT from olive leaf cannot be directly incorporated to manufactured meat
products, since its characteristic flavor has been palatably unaccepted, as it has been
described above. Therefore, it can be concluded that this incorporation can be reached by
synthetic sources of HXT, as an ingredient in their formula, throughout its application in
new systems of packaging or by encapsulation, are valid to obtain its health benefits and
antioxidant properties on meat. Consequently, a great opportunity exists for meat products
processors to use natural antioxidants, such as HXT, to replace synthetic additives while
maintaining product quality.
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