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Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with memory loss
and cognitive impairment. The white matter (WM) BOLD signal has recently been shown
to provide an important role in understanding the intrinsic cerebral activity. Although
the altered homotopic functional connectivity within gray matter (GM-HFC) has been
examined in AD, the abnormal HFC to WM remains unknown. The present study
sought to identify changes in the WM-HFC and anatomic characteristics by combining
functional magnetic resonance imaging with diffusion tensor imaging (DTI). Resting-state
and DTI magnetic resonance images were collected from the OASIS-3 dataset and
consisted of 53 mild cognitive impairment (MCI) patients, 90 very MCI (VMCI), and 100
normal cognitive (NC) subjects. Voxel-mirrored HFC was adopted to examine whether
WM-HFC was disrupted in VMCI and MCI participants. Moreover, the DTI technique
was used to investigate whether specific alterations of WM-HFC were associated with
anatomic characteristics. Support vector machine analyses were used to identify the
MCI and VMCI participants using the abnormal WM-HFC as the features. Compared
with NC, MCI, and VMCI participants showed significantly decreased GM-HFC in the
middle occipital gyrus and inferior parietal gyrus and decreased WM-HFC in the bilateral
middle occipital and parietal lobe-WM. In addition, specific WM-functional network
alteration for the bilateral sub-lobar-WM was found in MCI subjects. MCI subjects
showed abnormal anatomic characteristics for bilateral sub-lobar and parietal lobe-
WM. Results of GM-HFC mainly showed common neuroimaging features for VMCI
and MCI subjects, whereas analysis of WM-HFC showed specific clinical neuromarkers
and effectively compensated for the lack of GM-HFC to distinguish NC, VMCI, and
MCI subjects.

Keywords: Alzheimer’s disease, DTI, homotopic functional connectivity, mild cognitive impairment, support
vector machine
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative
disease characterized clinically by memory loss and cognitive
impairment. Both mild cognitive impairment (MCI) and
very MCI (VMCI) are two crucial transitional states between
normal aging and neurodegenerative AD, but VMCI is
generally considered a precursor of MCI (Petersen et al.,
1999; Storandt et al., 2006). Accumulating brain imaging
studies have demonstrated abnormal morphological and
functional magnetic resonance imaging (fMRI) in MCI
and AD subjects (Kantarci et al., 2001; Mito et al., 2018;
Nho et al., 2019). However, few studies have compared the
pathological mechanism of neuroimaging between VMCI
and MCI. Moreover, a comprehensive characterization of the
standard features and specific alterations between VMCI and
MCI subjects has important applications in the treatment and
prognosis of AD.

Because resting-state homotopic functional connectivity
(HFC) was a key characteristic of the intrinsic functional
architecture in the human brain (Salvador et al., 2008; Stark et al.,
2008). Zuo et al. (2010) developed a voxel-mirrored homotopic
connectivity method (VMHC) to investigate the functional
connectivity between each voxel and its mirrored counterpart in
hemispheres. Subsequently, this method was used to investigate
the aberrant interhemispheric functional connectivity in various
disorders, such as autism (Anderson et al., 2011), epilepsy
(Ji et al., 2014; Liu et al., 2016), schizophrenia (Liao et al., 2019),
cocaine addiction (Kelly et al., 2011), and AD (Wang et al., 2015).
However, these studies have primarily focused on the brain’s gray
matter (GM). The signals from white matter (WM) have usually
been considered as noises and are rarely reported in the literature.

The WM densely connects different regions of GM and
accounts for nearly half of the human brain (Teo et al., 1997;
Zhang and Sejnowski, 2000; Harris and Attwell, 2012). The
WM BOLD signal has recently been shown to provide an
important role in understanding the intrinsic cerebral activity
(Ji et al., 2017; Peer et al., 2017; Ding et al., 2018; Li et al.,
2019; Wang et al., 2020, 2021). Ji et al. (2017), in a seminal
study, first demonstrated that the BOLD signal in WM varied
with physiological states and was correlated with structural
features. Ding et al. (2018) have found that BOLD signals in
certain WM tracts are functionally correlated with specific GM
regions during different tasks. Peer et al. (2017) first reported
the existence of symmetric WM functional networks (WM-FNs)
closely related to GM networks and the underlying structural
WM tracts. In our previous study, we have demonstrated the
reproducible WM-FNs and that the corpus callosum had a unique
spatial distribution pattern corresponding to different WM-FNs
(Wang et al., 2020, 2021). As the WM structural alterations
have characterized many brain disorders, researchers have further
explored the functional anomaly within WM during rest, such as
schizophrenia (Jiang et al., 2019), Parkinson’s disease (Ji et al.,
2019), and pontine strokes (Wang et al., 2019). However, few
studies have investigated the abnormal homotopic functional
connectivity within WM (WM-HFC) in patients within the brain
(Zhao et al., 2019; Gao et al., 2020).

Diffusion tensor imaging (DTI) examines the microstructural
properties of the WM and provides important information on
in vivo neuronal fiber tracts (Chua et al., 2008). Tractography,
a method to extract neuronal fiber tract information using the
diffusion tensor MRI, can assess AD progression. For instance,
WM tracts in the corpus callosum have revealed significant
changes as patients progressed from NC to MCI and finally to AD
(Douaud et al., 2011). As DTI provides unique information on
WM and three-dimensional visualization of a neuronal pathway,
the current study explored the abnormal WM-HFC and the
anatomical characteristics of abnormal WM-HFC regions by
combing resting-state fMRI and DTI.

We hypothesize abnormal interhemispheric connectivity in
VMCI and MCI subjects compared with normal cognitive (NC)
subjects. To this end, VMHC was adopted to examine whether
WM-HFC was disrupted in VMCI and MCI subjects. Moreover,
the DTI technique was used to investigate whether specific
regional functional changes within WM were associated with
the disrupted anatomical characteristic. Finally, the support
vector machine (SVM) analysis was performed to identify the
VMCI/MCI using the above abnormal WM-HFC as features.

MATERIALS AND METHODS

This study had used publicly available data from the OASIS-3
dataset1 and consisted of 53 MCI subjects, 90 VMCI subjects, and
100 NC subjects. These data were collected across several ongoing
studies in the Washington University Knight Alzheimer’s Disease
Research Center. The dementia status of all patients was assessed
using the Clinical Dementia Rating (CDR) Scale (Morris, 1993),
with CDR = 0 (NC), CDR = 0.5 (VMCI), and CDR = 1
(MCI). The severity of cognitive impairment was assessed based
on the Mini-Mental State Examination (Folstein et al., 1975).
Written informed consent was obtained from all participants
before fMRI or neurologic evaluations. Additionally, clinical scale
information was obtained from all the patients’ subjects. The
detailed information is shown in Table 1.

We obtained the diffusion data from 26 MCI, 44 VMCI, and
43 NC from the functional analysis dataset discussed earlier in
the study. These subjects of diffusion data have matched the age,

1https://central.xnat.org

TABLE 1 | Demographics and clinical characteristics of subjects.

Characteristics NC (N = 100) VMCI (N = 90) MCI (N = 53) P-value

Age 74.41 ± 8.227 74.76 ± 7.668 75.89 ± 8.554 P = 0.494a

Sex (M/F) 50/50 48/42 33/20 P = 0.347b

Education 14.32 ± 1.757 14.59 ± 3.016 14.75 ± 3.204 P = 0.844a

Mean FD 0.282 ± 0.150 0.302 ± 0.176 0.315 ± 0.149 P = 0.281a

MMSE 28.86 ± 1.318 25.99 ± 2.882 22.08 ± 4.057 P < 0.001a

Handness (L/R) 0/100 0/90 0/53

M, male; F, female; MMSE, Mini-Mental State Examination; Mean FD, mean
framewise displacement.
aOne-way ANOVA (using non-parametric test).
bChi-square.
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sex, and education. The detailed clinical information is shown in
Supplementary Table 1. Because the current study focused on
classifying MCI, VMCI, and NC based on the SVM analysis, we
also obtained the subjects as testing data collected using another
fMRI machine with 3-T Siemens’s Biograph scanners (8 MCI, 18
VMCI, and 14 NC).

Data Acquisition
All patients and healthy controls were collected with 3-T
Siemens’s Trio Tim scanners. They were instructed to rest with
their eyes closed, lie still, not to think anything in particular,
and not to fall asleep during scanning. Resting-state functional
images were collected using the following parameters: voxel
size = 4 × 4 × 4 mm3, echo time = 27 ms, repetition time = 2.2 s,
flip angle = 90◦, slice thickness = 4 mm, and number of
time points = 164. The high-spatial-resolution three-dimensional
T1-weighted anatomic images were acquired using following
parameters: voxel size = 1 × 1 × 1 mm3, echo time = 3.16 ms,
repetition time = 2.4 s, flip angle = 8◦, slice thickness = 1 mm.
DTI covering the whole brain was obtained using an echo-planar
imaging sequence, including 24 volumes with diffusion gradients
applied along 24 non-collinear directions. The parameters of DTI
were as follow: voxel size = 2 × 2 × 2 mm3, echo time = 0.112 s,
repetition time = 14.5 s, flip angle = 90◦, slice thickness = 2 mm.

Data Preprocessing
Functional Images
fMRIs were preprocessed using the Data Processing Assistant
for Resting-State fMRI2 and SPM12 software3 toolkits. The
preprocessing steps included: excluding the first five volumes
from each fMRI data to allow for T1 relaxation stabilization,
correcting for head motion-related signal changes. Individual
T1-weighted structural images were co-registered to the mean
functional image. Each structural image was segmented into
GM, WM, and cerebrospinal fluid (CSF) using the DARTEL
segmentation algorithm. Linear trends were removed to correct
for signal drift. The mean signals from CSF and 24 rigid body
motion parameters (6 head motion parameters, 6 values at
previous time points of 6 head motion parameters, and the 12
corresponding squared items) were regressed from the functional
images. Scrubbing using motion “spikes” was performed as
separate regressors identified by framewise displacement greater
than 1 mm to further reduce the effect of head motion. The
head motion scrubbing regressors were used in this study, as it
is effective in eliminating the effect of head motion at the spike
on the signal without changing the correlation values (Power
et al., 2012; Satterthwaite et al., 2013). Temporal filtering was
done in the low-frequency range of 0.01–0.1 Hz. To avoid mixing
WM and GM signals, the functional images were minimally
spatially smoothed (4 mm full-width half-maximum, isotropic)
separately within WM and GM templates for each subject. The
WM and GM voxels were identified using the segmentation
results from each subject (using a threshold of 0.5 using SPM12’s

2http://rfmri.org/DPARSF
3http://www.fil.ion.ucl.ac.uk/spm/software/spm12

tissue segmentation). After smoothing, the functional image was
normalized into MNI space in 3 × 3 × 3 mm3.

To account for differences in the geometric configuration
of the cerebral hemispheres, we further transformed the
preprocessed functional images to a symmetric space using
the following procedures: (a) the normalized T1 images were
averaged across all the subjects to create a mean T1 image
template; (b) create a symmetric T1 template by averaging
the mean T1 template with its left–right mirrored version; (c)
normalized T1 images were registered to the symmetric template
and applied to the non-linear transformation to the normalized
functional images. Finally, we calculated the Pearson correlation
coefficient between the time series of every pair of symmetrical
interhemispheric voxels. The resulting correlations for each
paired voxel constituted a VMHC map. These VMHC maps were
standardized by Fisher’s z transform so that individual maps
could be averaged and compared among participants.

Diffusion Tensor Images
Diffusion tensor images were preprocessed and analyzed using
FSL4 and DSI Studio.5 For each subject, the EDDY tool was
used to correct eddy current distortions and subject movements
(Yamada et al., 2014). For each subject, the axial diffusivity
(AD), fractional anisotropy (FA), and mean diffusivity (MD)
were computed based on the voxel-wise estimates and then saved
in the DSI studio.

Several regions showing abnormal WM-HFC in patients were
selected as regions of interest (ROIs) for subsequent analysis of
DTI data. Before we obtained the DTI indexes, the space for
abnormal WM-HFC regions was transformed from MNI space
to individual default diffusion space of DSI studio.

Creation of Group Functional Gray
Matter/White Matter Symmetric Mask
Each structural image was segmented to identify each voxel in
the whole brain as belonging to the GM, WM, or CSF. The
group GM symmetric mask was produced using the following
procedures: (a) the normalized GM probability maps were
averaged across all the subjects to obtain a mean group GM
mask; (b) a symmetric group GM mask was created by averaging
the mean group GM mask with its left–right mirrored version.
Finally, a binarized group GM symmetric mask was obtained by
thresholding symmetric group GM mask defined earlier at 0.2
in line with previous WM functional study to obtain the group
GM mask using the same threshold (Peer et al., 2017). Using the
same method, a binarized group WM symmetric mask was also
obtained by thresholding the symmetric group WM mask defined
earlier at 0.8. In addition, as the SPM segment did not exclude the
subcortical nucleus from the WM, we also obtained the group
WM symmetric mask excluding the subcortical nucleus from the
WM referring to previous WM functional study (Ji et al., 2019).
Based on the group WM mask mentioned earlier, we have further
estimated the effect on our results after excluding the subcortical
nucleus from the WM mask (Supplementary Material 3).

4http://www.fmrib.ox.ac.uk/fsl
5http://dsi-studio.labsolver.org

Frontiers in Neuroscience | www.frontiersin.org 3 September 2021 | Volume 15 | Article 697493

http://rfmri.org/DPARSF
http://www.fil.ion.ucl.ac.uk/spm/software/spm12
http://www.fmrib.ox.ac.uk/fsl
http://dsi-studio.labsolver.org
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-697493 September 17, 2021 Time: 10:4 # 4

Wang et al. Altered WM-HFC in MCI

Statistical Analysis
The one-way analysis of variance (ANOVA) was performed
using the DPABI software (DPABI_V6.0_210501),6 and post hoc
analysis was performed to calculate the two-sample t-test using
the GraphPad software.7 Abnormal regions of HFC within-group
GM symmetric mask among three groups were identified using
one-way ANOVA, with age, sex, and education as covariates
[p < 0.05, false discovery rate (FDR)-corrected and one-tailed].
Two pairs of bilateral ROIs were obtained for post hoc analysis
and were compared using the two-sample t-test with age, sex,
and education as covariates [two-tailed, p < 0.05, Bonferroni-
corrected for multiple comparisons (p < 0.05/6)].

The one-sample t-test was calculated for the individual WM-
HFC maps across participants in each of the three samples within
the group WM symmetric mask (p < 0.05, FDR-corrected).
Using a similar statistical analysis, the abnormal regions of
WM-HFC were obtained among three groups using one-way
ANOVA (p < 0.05, FDR-corrected and one-tailed). Three pairs

6http://rfmri.org/dpabi
7https://www.graphpad.com/

of bilateral ROIs were obtained for post hoc analysis and
were compared using the two-sample t-test, with age, sex, and
education as covariates (two-tailed, Bonferroni-corrected for
multiple comparisons, p< 0.05/9). For each pair of bilateral ROIs
within WM, the bilateral anatomic characteristics within WM
were further analyzed among three groups. Mean AD, FA, and
MD in the ROIs of abnormal WM-HFC were compared between
three groups using a two-sample t-test (Bonferroni-corrected for
multiple comparisons, p < 0.05/9).

Classification Model Based on
Homotopic Functional Connectivity
Within White Matter
To investigate the classification at early stages of AD, SVM
was performed to identify patient participants from healthy
controls and discriminate MCI and VMCI subjects using the
LIBSVM software package (Chang and Lin, 2011). The previous
study has demonstrated that the SVM was a useful classification
approach that helped identify the patients at the individual level
(Auria and Moro, 2008). SVM analysis was performed using

FIGURE 1 | Abnorma homotopic functional connectivity within GM among groups. Magnetic resonance images maps show abnormal GM-HFC among groups
(P < 0.05, FDR-corrected). Histogram shows results of post hoc analysis between three groups. (A,B) The mean GM-HFC for the middle occipital gyrus and inferior
parietal gyrus, respectively. Statistical significance level was set at P < 0.05. ∗∗denotes Bonferroni correction with p < 0.05/6.
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166 voxel signals of each subject in the three ROIs obtained
from the WM-HFC analysis. SVM classification diagnoses were
performed using the voxel signals, age, sex, education, and Mini-
Mental State Examination information in line with previous SVM
analysis (Matsuo et al., 2019). The kernel function for SVM
analysis was selected to be linear. In addition, we have used the
optimization of hyper-parameters to estimate the c parameter
(cmin, cmax, cstep = 2−8, 23, 2−2). To improve the accuracy of
multiclass SVM (NC vs. VMCI vs. MCI), we performed feature
optimization. Specifically, for each feature, we have performed
three two-sample t-tests between NC, VMCI, and MCI (NC vs.
VMCI, NC vs. MCI, and VMCI vs. MCI). If all three p-values
were less than 0.05, we kept this feature; otherwise, the feature
was excluded from the total features. All features were scaled to
have unit variance. Consequently, we obtained one classification
model for multiclass SVM and then directly applied it to the
validation samples. The validation samples were collected using
a different 3T Siemens MRI scanner.

RESULTS

Homotopic Functional Connectivity
Within Gray Matter
The current study reported the results using the viewer
function in the DPABI package (see text footnote 6). We
have described the location of result regions using the

Automated Anatomical Labeling atlas containing 116 regions
(90 cortical/subcortical and 26 cerebellar/vermis regions)
(Tzourio-Mazoyer et al., 2002). Within-group analysis for
homotopic functional connectivity within GM (GM-HFC)
indicated that NC, VMCI, and MCI subjects (Supplementary
Figures 1A–C) had robust regional differences (p < 0.05,
FDR-corrected). We found that GM-HFC maps for the
NC group exhibited the strongest connection, followed by
the VMCI group (GM-HFCNC > GM-HFCVMCI > GM-
HFCMCI) (Supplementary Figure 1), which was similar
to the previous amplitude of low-frequency fluctuation
(ALFF) study pattern (ALFFNC > ALFFVMCI > ALFFMCI)
(Desikan et al., 2006). The ALFF is a resting-state fMRI
parameter that measures the regional intensity of spontaneous
fluctuations in the BOLD signal and reflects the neural
activity of a specific brain region (Zang et al., 2012).
Significantly abnormal GM-HFC among three groups is
shown in Figure 1 and Table 1. Specifically, GM-HFCs for the
bilateral middle occipital gyrus and inferior parietal gyrus were
lower in MCI and VMCI subjects than in NC subjects with
GM-HFCNC > GM-HFCVMCI > GM-HFCMCI.

Homotopic Functional Connectivity
Within White Matter
We further analyzed WM-HFC to explore the specific
alterations between MCI and VMCI subjects. Similar to
within-group GM-HFC maps, within-group WM-HFC

FIGURE 2 | Homotopic functional connectivity within WM for each group. Colored voxels indicate significant functional connectivity with voxels at symmetric
positions of other hemispheres (p < 0.05, FDR corrected).
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maps showed consistent connectivity patterns among three
groups (WM-HFCNC > WM-HFCVMCI > WM-HFCMCI)
(Figure 2). Significantly abnormal WM-HFC regions were
found in the bilateral middle occipital gyrus and sub-lobar
and parietal lobe within WM. Specifically, compared with
NC subjects, WM-HFC for the bilateral middle occipital-
WM and parietal lobe-WM was lower in MCI and VMCI
subjects (Figure 3 and Table 2). This result was similar to
the GM-HFC results with a declining tendency. Moreover,
WM-HFCs for the bilateral sub-lobar-WM were significantly
lower in MCI subjects than in NC subjects but no difference
between VMCI and NC.

Anatomical Characteristics Within
Abnormal Homotopic Functional
Connectivity Within White Matter
Regions
To further explore the anatomical characteristic within abnormal
WM-HFC regions, the mean AD, FA, and MD values within three
abnormal WM-HFC regions were analyzed. Compared with NC
subjects, MCI subjects showed a significant increase in FA and
MD in the bilateral sub-lobar-WM and a significant increase
in AD and MD in the bilateral parietal lobe-WM (Figure 4).
Although VMCI subjects did not show significant anatomical

abnormality in the WM-HFC regions discussed earlier, we found
an increased tendency in the bilateral sub-lobar and parietal
lobe-WM (p < 0.05, no-correction).

Support Vector Machine
The current study performed the multiclass SVM to identify the
patient participants from NC and discriminate MCI and VMCI
subjects (NC vs. VMCI vs. MCI). The accuracy of multiclass SVM
was 60%. As the baseline accuracy of the three classifications
was 33.33%, the 60% accuracy of multiclass SVM was moderate.
The confusion matrix of results is shown in Figure 5. The NC
class was the correct classifier, with only a few instances being
misclassified as VMCI. The precision, recall, and F1-score values
for the multiclass classification results are reported in Table 3.

DISCUSSION

In the present study, we investigated the WM-HFC in VMCI and
MCI subjects and further analyzed the anatomical characteristics
within these abnormal WM-HFC regions by combining the
fMRI and DTI. The GM-HFC results primarily showed common
neuroimaging features between VMCI and MCI subjects.
Specifically, both VMCI and MCI subjects showed reduced
GM-HFC for the bilateral middle occipital gyrus and inferior

FIGURE 3 | Abnormal homotopic functional connectivity within WM among groups. Brain slices and histogram, respectively, show abnormal regions and results of
post hoc analysis. (A–C) The mean WM-HFC for the middle occipital-WM, sub-lobar-WM, and parietal lobe-WM, respectively. ∗∗represents significant differences
between NC, VMCI, and MCI with Bonferroni correction (p < 0.05/9).
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TABLE 2 | Regions showing abnormal homotopic functional
connectivity among groups.

Brain regions Cluster size
(mm3)

Peak intensity
(F-value)

MNI coordinates

x y z

GM-HFC

Middle occipital gyrus 2,106 18.03 ± 18 −90 3

Inferior parietal gyrus 918 16.97 ± 30 −48 54

WM-HFC

Middle occipital-WM 2,430 17.27 ± 18 −90 6

Sub-lobar-WM 1,431 15.13 ± 24 −21 21

Parietal lobe-WM 621 10.69 ± 36 −42 33

parietal gyrus. The WM-HFC results showed not only the
common alterations but also specific changes. VMCI and
MCI subjects showed reduced WM-HFC for the bilateral
middle occipital and parietal lobe-WM. Specific WM-HFC
abnormality was shown in the bilateral sub-lobar-WM in MCI
subjects. Further, DTI analysis demonstrated that mean AD,
FA, and MD within the sub-lobar and parietal lobe-WM were

significantly altered in MCI subjects. Our study provided new
insight into the pathophysiology of early stages of AD in
relation to WM-HFC.

Resting-state HFC is a key characteristic of the intrinsic
functional architecture in the human brain (Salvador et al., 2008;
Stark et al., 2008). In the study, GM-HFC was estimated in the
early stages of AD (Figure 1). Our results showed a decreased
GM-HFC for the bilateral middle occipital gyrus and inferior
parietal gyrus in VMCI and MCI subjects (Figures 1A,B).
In detail, GM-HFC for NC exhibited the strongest bilateral
connection, followed by VMCI subjects (GM-HFCHC > GM-
HFCVMCI > GM-HFCMCI) and was consistent with previous
ALFF study with ALFFHC > ALFFVMCI > ALFFMCI
(Desikan et al., 2006). One review of the available researches
indicates that parietal lobe damage could cause episodic memory
impairments (Cabeza et al., 2008). Moreover, visual attention
deficit in AD was closely associated with decreased activation
of the parietal lobe during visual search tasks (Hao et al., 2005).
The abnormal GM-HFC for the bilateral middle occipital
gyrus and inferior parietal gyrus might be associated with
episodic memory and visual attention impairment in VMCI
and MCI subjects.

FIGURE 4 | Anatomical characteristics within abnormal WM-HFC regions among groups. Magnetic resonance images maps show abnormal WM-HFC regions.
Histogram shows difference of mean AD, FA, and MD within abnormal WM-HFC regions between three groups. (A–C) The anatomical characteristics for the middle
occipital-WM, sub-lobar-WM, and parietal lobe-WM, respectively. ∗∗represents significant differences between NC, VMCI, and MCI with Bonferroni correction
(p < 0.05/9).
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FIGURE 5 | Confusion matrix for multiclass classification (NC vs. VMCI vs.
MCI). Abscissa and ordinate, respectively, represent predicted label and true
label.

TABLE 3 | Precision, recall, and F1-score values for multiclass classification
results broken down by class.

Class Precision Recall F1-score

NC 57.89% 78.57% 66.67%

VMCI 60.00% 50.00% 54.55%

MCI 66.67% 50.00% 57.14%

Resting-state fMRI enabled us to assess temporally
synchronized brain activity across local brain regions (Biswal
et al., 1995; Lowe et al., 1998). Despite the prominence of
resting-state HFC, few studies of WM-HFC exist. In this study,
we observed decreased WM-HFC for the bilateral middle
occipital and parietal lobe-WM in VMCI and MCI subjects
(Figures 3A,C). We found that these two abnormal WM regions
were close to the areas of GM-HFC abnormalities and showed a
similar tendency in different stages of AD (WM-HFCNC > WM-
HFCVMCI > WM-HFCMCI). The abnormal WM-HFC for the
bilateral middle occipital and parietal lobe-WM might also be
related to episodic memory and visual attention impairment
(Hao et al., 2005; Cabeza et al., 2008). In addition, the specific
WM-HFC alteration for the bilateral sub-lobar-WM was found
in MCI subjects (Figure 3B), suggesting that the sub-lobar-WM
was crucial to distinguish VMCI and MCI subjects. Previous
morphometric studies demonstrated a significant reduction of
GM volume in GM sub-lobar regions in AD subjects (Ibrahim
et al., 2009; Krueger et al., 2010).

To further explore the anatomic characteristics within the
above abnormal WM-HFC regions, the mean AD, FA, and MD
were calculated and analyzed among three groups (Figure 4). We
found that the specific decreased WM-HFC for the bilateral sub-
lobar-WM well corresponded to reduced FA and increased MD
in MCI subjects (Figure 4B). Compared with NC, the FA values
in MCI and AD subjects were significantly reduced in the sub-
lobar regions extranuclear WM (Medina et al., 2006; Ibrahim
et al., 2009). The sub-lobar-WM regions showed significant
changes of WM-HFC and anatomic characteristics in MCI

instead of VMCI, suggesting that specific regions could be used
to distinguish MCI from NC. In addition, we also found that
MCI subjects showed significantly abnormal AD and MD for
the bilateral parietal lobe-WM (Figure 4C), which demonstrated
that functional abnormality generally corresponded to structural
abnormality well.

There is a growing interest in identifying the AD at an early
clinical phase before dementia, with the hope that therapeutic
intervention can slow the progression of neuropathological
features and symptoms (Dekosky and Marek, 2003; Dickerson
and Sperling, 2005; Lleo et al., 2006). The current study
performed the SVM analyses to identify the MCI and VMCI
subjects using the abnormal WM-HFC as the features. The
accuracy of multiclass SVM was 60%. However, as the baseline
accuracy of the three classifications was 33.33%, the 60% accuracy
of multiclass SVM was moderate. The confusion matrix of results
is shown in Figure 5. The moderate classification accuracy among
NC, VMCI, and MCI subjects suggests that BOLD signals within
WM can be a potential biomarker to identify brain disorders and
not simply be considered as noises.

Although the findings of the present study are promising,
several limitations are worth mentioning. First, several
researchers have speculated that BOLD signal from WM
may be infiltrated from the GM due to partial volume effect.
To minimize the influence of GM BOLD signals, we performed
the spatial smoothing on the WM and GM separately and used
only voxels identified as WM for each subject. In addition, a
strict threshold (of 0.8) was used to create a group WM mask.
Second, although it was commendable for SVM analyses to use
the neuroimaging data collected using another fMRI machine as
a test set, the sample size for each group was too small. Future
research is necessary to add enough participants to perform
classification analyses. Third, as the patients in the current
study were all in the early of AD (MCI and VMCI), we did not
analyze the abnormal WM-HFC in AD. Finally, the current
study obtained the diffusion data from 26 MCI, 44 VMCI, and
43 NC from the functional analysis dataset (53 MCI, 90 VMCI,
and 100 NC), which prevented us from including the DTI
parameters from the relevant ROIs as features for SVM analysis
due to the lack of DTI data from all the subjects. Future study
is necessary to identify the patient participants from healthy
controls and discriminate MCI and VMCI subjects by combining
the resting-state functional and DTI data within WM.

CONCLUSION

The present study explored the WM-HFC alterations in
VMCI and MCI subjects and further analyzed the anatomical
characteristics within these abnormal WM-HFC regions by
combining the fMRI and DTI. We found that VMCI and
MCI subjects showed abnormally decreased WM-HFC for the
bilateral middle occipital and parietal lobe-WM. Specific WM-
HFC abnormality was shown in the bilateral sub-lobar-WM in
MCI subjects. Further DTI analysis demonstrated that mean AD,
FA, and MD within the sub-lobar and parietal lobe-WM showed
significant alterations in MCI subjects. Our study provided new
insight into the pathophysiology of early stages of AD in relation
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to WM-HFC. Moreover, BOLD signals within WM should not be
simply considered as noises and can be a potential biomarker to
identify brain disorders.
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