Supplementary Information

Liquid-liquid phase separation in supercooled water from ultrafast heating of low-density amorphous ice

Katrin Amann-Winkel^{1,2}, Kyung Hwan Kim³, Nicolas Giovambattista^{4,5}, Marjorie Ladd-Parada¹, Alexander Späh¹, Fivos Perakis¹, Harshad Pathak¹, Cheolhee Yang³, Tobias Eklund¹, Thomas J. Lane⁶, Seonju You³, Sangmin Jeong³, Jae Hyuk Lee⁷, Intae Eom⁷, Minseok Kim⁷, Jaeku Park⁷, Sae Hwan Chun⁷, Peter H. Poole⁸, and Anders Nilsson¹

¹Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden

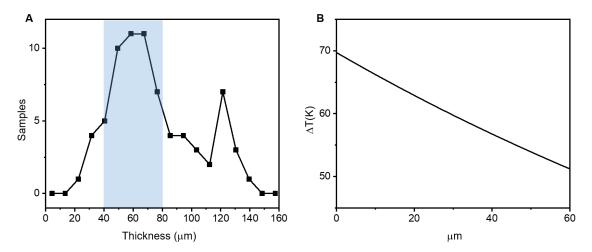
²Max Planck Institute for Polymer Research and Johannes Gutenberg University, 55128 Mainz, Germany.

³Department of Chemistry, POSTECH, Pohang 37673, Republic of Korea ⁴Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA

⁵Ph.D. Programs in Chemistry and Physics, The Graduate Center of the City University of New York, New York, New York 10016, USA

⁶SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA

⁷Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea ⁸Department of Physics, St. Francis Xavier University, Antigonish, Nova Scotia B2G2W5, Canada


December 20, 2022

Supplementary Note 1

Thickness distribution of the sample and temperature profile in a slab

The thickness of each individual sample spot is calibrated by comparing the integrated scattering intensity around the first peak of S(q) with the value measured from a sample of known thickness. The thickness distribution is shown in Figure S1(A). The results in the main text were obtained by restricting the analysis to samples of thickness between 40 and 80 μ m.

The temperature profile in a slab is simulated and shown in Figure S1(B). The IR laser spectrum at PAL-XFEL is assumed to have a Gaussian profile centered at 2 μm wavelength and a bandwidth spread (2 σ or FWHM) of 0.30 μm . The laser profile was convoluted with the absorption spectrum of ice and the average temperature jump is assumed to be 60 K. As shown in Figure S1(B), the temperature profile in the ice slab varies over a range from 50 to 70 K (i.e. 60 K \pm 10 K).

Supplementary Figure 1. (A) Thickness distribution of the sample spots that is used for the measurement. The thickness range used for the main data is indicated in blue. (B) Estimated temperature gradient in an ice slab (thickness= $60 \mu m$) as a function of distance.