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Clb3-centered regulations are recurrent across distinct
parameter regions in minimal autonomous cell cycle oscillator
designs
Thierry D. G. A. Mondeel 1,2,3, Oleksandr Ivanov4,5, Hans V. Westerhoff3,6, Wolfram Liebermeister 7,8 and Matteo Barberis 1,2,3✉

Some biological networks exhibit oscillations in their components to convert stimuli to time-dependent responses. The eukaryotic
cell cycle is such a case, being governed by waves of cyclin-dependent kinase (cyclin/Cdk) activities that rise and fall with specific
timing and guarantee its timely occurrence. Disruption of cyclin/Cdk oscillations could result in dysfunction through reduced cell
division. Therefore, it is of interest to capture properties of network designs that exhibit robust oscillations. Here we show that a
minimal yeast cell cycle network is able to oscillate autonomously, and that cyclin/Cdk-mediated positive feedback loops (PFLs) and
Clb3-centered regulations sustain cyclin/Cdk oscillations, in known and hypothetical network designs. We propose that Clb3-
mediated coordination of cyclin/Cdk waves reconciles checkpoint and oscillatory cell cycle models. Considering the evolutionary
conservation of the cyclin/Cdk network across eukaryotes, we hypothesize that functional (“healthy”) phenotypes require the
capacity to oscillate autonomously whereas dysfunctional (potentially “diseased”) phenotypes may lack this capacity.
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INTRODUCTION
Living systems exhibit dynamic self-organization, i.e. the sponta-
neous emergence of spatio-temporal order with the formation of
various spatio-temporal patterns1. Self-organization may involve
oscillations in the concentrations of a system’s components2–4,
which have been observed at various temporal scales in cell
populations. Oscillatory behavior arises from non-linear interac-
tions among two or more components of a system5. An example is
given by the eukaryotic cell cycle, the sequential process through
which a growing cell replicates and divides into two daughter
cells. The dynamics of this process are implemented through
biochemical interactions between genes and proteins, and are
governed by periodic waves of cyclin-dependent kinase (Cdk)
activities6–10.
Here, self-organization in the form of oscillations results from

the sequential activation and inactivation of a number of cyclin/
Cdk complexes that regulate a timely cell cycle8. The periodic
fluctuations of cyclin/Cdk activities are regulated by cyclin levels (i)
through transcription factors and (ii) through targeted degrada-
tion by multi-protein complexes such as the anaphase-promoting
complex (APC).
Sustained cyclin/Cdk oscillations equate to growth and cell

division. For bacteria and single-cell organisms such as budding
yeast, (faster) growing subpopulations will outperform slower
growing and not-growing subpopulations, thus providing a
selectable advantage. Thus, the increased fitness of an organism,
realized through sustained, autonomous oscillations, can be
considered a functional or “healthy” phenotype of a cell. In
contrast, lack of oscillations in cyclin/Cdk complexes is to be

considered dysfunctional or “diseased” behavior, unless quiescent
cells are considered.
Mathematical modeling can be of help to better understand

how cell cycle networks exhibit oscillations with certain properties,
e.g. a specific amplitude and/or frequency and a definite order of
appearance among a system’s components. Cell cycle oscillations
have been modeled (i) by sustained oscillations in the form of
autonomous limit cycles, where cyclin/Cdk oscillations arise
independently from external factors, or (ii) by checkpoint
mechanisms, where external requirements such as attaining a
minimum cell size to progress from the G1 to S phase are explicitly
taken into account in the form of irreversible transitions between
steady-states. Here, checkpoints act as signals that delay the cell
cycle phase transitions by stabilizing the dynamics in alternative
stable steady states of the underlying biochemical system.
Contrarily, sustained autonomous oscillations exhibit limit cycles
around a single steady-state. The checkpoint view is currently
prevalent, due to correlations observed between the cell cycle
period and the growth rate11, although noise-induced oscillations
have been theoretically predicted when cell size is constant12.
However, models that exhibit autonomous oscillations in the form
of limit cycles are better suited when networks are investigated in
the absence of external controls such as cell size.
Among the network designs that have been described to

characterize cell cycle oscillators, positive feedback loops (PFLs)
enhance amplitude and robustness of cyclin/Cdk oscillations13–15.
PFLs promote switch-like responses that guarantee unidirection-
ality of cell cycle progression5. Similarly, negative feedback loops
(NFLs) with delays can produce oscillations, and combinations of
the two can enhance robustness of the oscillations15,16, and a

1Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK. 2Centre for Mathematical and
Computational Biology, CMCB, University of Surrey, Guildford, UK. 3Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of
Amsterdam, Amsterdam, The Netherlands. 4Theoretical Research in Evolutionary Life Sciences, Groningen Institute for Evolutionary Life Sciences, University of Groningen,
Groningen, The Netherlands. 5Systems, Control and Applied Analysis Group, Johan Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Groningen,
The Netherlands. 6Molecular Cell Physiology, VU University Amsterdam, Amsterdam, The Netherlands. 7Institute of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany.
8Université Paris-Saclay, INRAE, MaIAGE, Jouy en Josas, France. ✉email: m.barberis@surrey.ac.uk

www.nature.com/npjsba

Published in partnership with the Systems Biology Institute

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-020-0125-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-020-0125-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-020-0125-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-020-0125-0&domain=pdf
http://orcid.org/0000-0002-8132-8360
http://orcid.org/0000-0002-8132-8360
http://orcid.org/0000-0002-8132-8360
http://orcid.org/0000-0002-8132-8360
http://orcid.org/0000-0002-8132-8360
http://orcid.org/0000-0002-2568-2381
http://orcid.org/0000-0002-2568-2381
http://orcid.org/0000-0002-2568-2381
http://orcid.org/0000-0002-2568-2381
http://orcid.org/0000-0002-2568-2381
http://orcid.org/0000-0001-5640-7422
http://orcid.org/0000-0001-5640-7422
http://orcid.org/0000-0001-5640-7422
http://orcid.org/0000-0001-5640-7422
http://orcid.org/0000-0001-5640-7422
https://doi.org/10.1038/s41540-020-0125-0
mailto:m.barberis@surrey.ac.uk
www.nature.com/npjsba


model consisting of at least three ordinary differential equations
(ODEs) is needed for sustained oscillations to occur5. It has been
conjectured that PFLs have evolved to facilitate oscillations in
NFLs at lower, kinetically achievable, degrees of cooperativity5.
Alteration in the frequency of cyclin/Cdk oscillations or of a cell
cycle as a whole may correspond to alteration of cell proliferation,
thereby to a dysfunctional or “diseased” phenotype of a cell, as a
result of deregulation of timely cyclin/Cdk activities9,17,18. This
deregulation may impinge on the cellular concentrations and
properties of cyclin and Cdk proteins, which already exhibit
significant oscillations in a wild-type cell19.
Here we build on our previously published minimal model of

the cell cycle network10 to generate a truly autonomously
oscillating model of Clb/Cdk1 complexes in budding yeast, with
the intent to: (i) simplify our previously published model to make
it more amenable to the parameter scans performed in this work,
(ii) integrate new evidence in order for the model to accurately
reflect the experimental observations, and (iii) investigate the
effect of hypothetical interactions that can be validated experi-
mentally. For each of the 11 resulting network designs we
investigate (i) which network designs exhibit autonomous, stable
limit cycle oscillations, and (ii) how network designs and
associated parameters influence the occurrence and frequency
of these oscillations.
The design described by our model(s) comprehends: (i) three

cyclin/Cdk complexes, i.e. Clb5,6/Cdk1, Clb3,4/Cdk1, and Clb1,2/
Cdk1, which exert their function in the S–G2–M (mitotic) phases of
the cell cycle, and (ii) their stoichiometric inhibitor Sic1 that is
active in the G1 phase. We consider all the interactions among the
three Clb/Cdk1 complexes and Sic1 that are reported in literature.
One key feature of our model design is the incorporation of the
Clb3 cyclin, which is lacking in existing cell cycle models20,21. We
investigated whether the experimentally characterized properties
of this minimal network would allow for autonomous oscillations
to occur. Our analysis is driven by the hypothesis that some
elements of the experimentally characterized interaction network
are critical, or more important, than others to generate sustained
oscillations. Dynamic models based on this design exhibit
transient oscillations of all mitotic cyclins simultaneously10, and
thereby of cyclin/Cdk activities, which may result in a frequency
characteristic of a functional wild type cell. However, so far no
analysis has been conducted to investigate: (i) whether these
models are actually able to oscillate autonomously, and (ii) how
the occurrence and properties of cyclin/Cdk oscillations can be
modulated by variation of model parameters, suggesting shifts to
dysfunctional or hyperfunctional states.
Other models of the cell cycle have been investigated in terms

of their potential to show oscillations (briefly called “oscillatory
potential” below)8,20,21; however, these are: (i) larger in size, (ii)
different in the network structure, and (iii) analyzed only using
bifurcation analysis techniques to find single oscillating points or
regions in the parameter space. Due to the differences in network
design and model size, it is not clear a priori that the results from
existing models would translate to the simplified network
investigated here.
Identifying limit cycles is an open mathematical challenge for

high-dimensional systems, and even numerically this is challen-
ging. This problem is exacerbated if the interest is to find multiple
limit cycles across distinct regions in the parameter space. Several
methods exist for finding parameter sets leading to bifurcations
and oscillations in biochemical networks22–24. In this work, we
make use of the System Design Space (SDS) methodology25–27 to
detect limit cycles more easily28, and analyze the ability of our
minimal cell cycle model to generate sustained oscillations. The
application of the SDS methodology to analyze oscillatory
behavior is new in the cell cycle field, and it has never been
applied to models of the size considered here. Our pipeline
centered around the SDS method allows to search for oscillations

across a set of regions that partition the parameter space, each
with unique network properties. The SDS methodology relates
genotype and environment, which affect biochemical and
environmental parameters in the system, to the phenotype of
steady-state attributes of the biochemical system. It does this by
deconstructing the biochemical system into a finite number of
qualitatively distinct subsystems. The analogy is that the genotype
and environment set the specific parameter values in the system
which, when altered, generate differences in phenotypic char-
acteristic such as steady-state stability. Within this approach, the
term “phenotype” refers to a combination of “dominant terms”, i.e.
a subset of interactions in the network that are large in numerical
value with respect to the other terms, which are then neglected
from the equations. Note that the parameters (genotype and
environment) and dynamic concentrations in the system define
which terms are dominant (numerically large) and therefore which
phenotype is expressed.
The computational cost of using the SDS methodology

increases with the number of terms in the model equations, since
this number translates into more distinct phenotypes. For this
reason, it is advantageous to use our previously published model,
which has significantly fewer terms than other published models
for budding yeast20,21,29. Applying the pipeline considered here to
the more complex yeast cell cycle models would most likely
require significant computer cluster usage. The disadvantage of
using a minimal model is that biochemical details that have been
uncovered about the cell cycle regulatory network may be lacking.
However, one may expect that if the core design of a minimal and
detailed models are similar, the general properties are the same as
those of the more complete cell cycle models for both budding
yeast29 and fission yeast30. Furthermore, the implementation time
of the complex, yet powerful, framework provided by the SDS
methodology is greatly simplified by utilizing the Systems Design
Space Toolbox31.
In this work, we present the pioneer autonomously oscillating

Clb/Cdk1 model for budding yeast, and explore the oscillatory
behavior of 11 known and hypothetical network designs. We
recover the known importance of PFLs and NFLs for oscillations.
More specifically, we show that a PFL by Clb3/Cdk1 on CLB3
synthesis (Clb3 PFL) improves the ability of our models to produce
sustained Clb/Cdk1 oscillations, and that a PFL by Clb2/Cdk1 on
CLB2 synthesis (Clb2 PFL) takes over this key role when the model
takes into account the inhibition of G1/S cyclins by Clb2/Cdk1.
Furthermore, we show that two regulatory activations, i.e. Clb5→
Clb3 and Clb3→ Clb2, forming a transcription factor-mediated
linear CLB cascade that we have recently discovered32 are more
frequently dominant in phenotypes that yield sustained Clb/Cdk1
oscillations as compared to the feed-forward Clb5→ Clb2 regula-
tion described earlier33. We thus hypothesize that functional
(“healthy”) phenotypes require the capacity to oscillate autono-
mously—through Clb3-centered regulations—compared to dys-
functional (potentially “diseased”) cellular phenotypes—where
these designs are altered and the potential for oscillatory behavior
is reduced. We envision a scenario in which Clb5 and Clb2 are
involved in the checkpoints, whereas Clb3-centered regulations
that coordinate Clb5 and Clb2 drive autonomous cell cycle
oscillations to maintain cell proliferation. This scenario thus
reconciles checkpoint and oscillatory views of cell cycle regulation.
In addition, we highlight that the transcriptional inhibition of G1/S
cyclins and Sic1 by mitotic Clb/Cdk1 results in particularly strong
NFLs for stabilizing oscillations. Finally, through perturbation of
selected limit cycles, we identify crucial model parameters that
exert the strongest control on the frequency of the Clb/Cdk1
oscillations.
Given the evolutionary conservation of the cell cycle network

across eukaryotes, the mitotic cyclin/Cdk network can be used as a
core building block of multi-scale models that integrate regulatory
modules to address cellular physiology.
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RESULTS
Experimental rationale underlying the computational analyses
The cell cycle has a unique property as compared to other
biochemical networks. Its drivers, i.e. the cyclin subunits that
regulate the Cdk activity, have both specialized functions and
partially overlapping functions, through different specificity of
binding to the substrates that they recognize and—through their
partner Cdk—phosphorylate34. Budding yeast cells lacking Clb5 (S
phase cyclin) do not replicate at the proper time, but they do so
progressively after activation of Clb2 (G2/M phase cyclin), which
can partially substitute for the missing Clb5 activity; this indicates
that a partial overlap in the cyclin function helps to drive DNA
replication35. In these cells, the S phase is prolonged and the
overall cell cycle timing is slightly delayed36. Conversely, cells
lacking Clb2 (G2/M phase cyclin) exhibit defects in mitotic entry
and delay in mitotic exit37; moreover, modified Clb2 degradation
kinetics result in a compromised viability38. In these cells, Clb5 (S
phase cyclin) and/or Clb3 (S/G2 cyclin) cannot substitute for the
missing Clb2 activity, indicating the relevance of cyclin specificity
for the events that trigger cell division.
Differently from Clb5 and Clb2, cells lacking Clb3 or cells where

Clb3 degradation kinetics have been modulated are viable and
complete cell division at the same timing as a wild-type cell38. In
fact, Clb2 can replace Clb3 activity (Clb2 replaces Clb3 better than
it does with Clb5; Clb2, and Clb3 have more structural and
functional similarities than Clb2 and Clb5). Whereas Clb5 and Clb2
deletions affect dynamics of cell division timing as well as cell
viability, Clb3 deletion does not affect cell cycle timing nor cell
viability. Clb3 deletion is lethal only in the clb2Δ clb3Δ double
mutant37, and in the clb5Δ clb3Δ clb4Δ39 and clb2Δ clb3Δ
clb4Δ37,40–42 triple mutants, suggesting that Clb5 and Clb2,
respectively, are required for spindle formation in the absence
of Clb3 and Clb4.
Taking into account this experimental evidence, we envision a

scenario where (i) Clb5 and Clb2 serve a function in checkpoint
models (as currently incorporated in Tyson/Novák’s cell cycle
models20,21), whereas (ii) Clb3 serves a function in autonomous
oscillations required to sustain the cell’s viability. Specifically: (i) In
Tyson/Novák’s cell cycle models, Clb5 and Clb2 represent the
checkpoints that drive the cell cycle through the next cell cycle
phase, should their concentration reach a definite threshold. In the
cell, DNA damage/errors would activate the checkpoint affecting
Clb5 levels, thus slowing/halting DNA replication dynamics,
whereas troubles in cell division would activate the checkpoint
affecting Clb2 levels, thus delaying/impairing cell division. In
addition, the requirement of definite Clb5/Clb2 threshold con-
centrations may be seen as the result of a proper availability of
nutrients which, if lacking, would not allow the thresholds to be
reached, thus the cell cycle not to be completed. Conversely: (ii)
Clb3 has never been considered in any existing (checkpoint)
model of cell cycle regulation, possibly due to its not fully clear
and not critical role in cell division. In our view, Clb3 serves a
function in the cell’s autonomous oscillations. Clb3 is not involved
in the checkpoints, as its deletion is lethal only in the clb5Δ clb3Δ
clb4Δ39 and clb2Δ clb3Δ clb4Δ40–42 triple mutants, but not in the
clb5Δ clb3Δ and clb2Δ clb3Δ40 double mutants. Furthermore, we
have discovered, through a detailed computational and experi-
mental investigation, the role of Clb3 in the coordination of the
mitotic waves of cyclins, synchronized from the S through M
phases in a linear cascade (Clb5→ Clb3 → Clb2) through the Fkh2
transcription factor32. In order to shed light on this hypothesis, in
this study we have conducted a detailed computational analysis to
investigate the occurrence of sustained oscillations in a minimal
Clb/Cdk1 model and to identify recurring Clb-mediated principles
of design, i.e. network motifs, underlying autonomous oscillations.

The minimal cell cycle model and derivation of model designs
1A–3
Starting from our previously published minimal cell cycle model10

(Design 1A, Supplementary Information, Supplementary Fig. 1a),
we built a number of mathematical models in terms of ODEs. The
core design considers four species: (i) three representing the
complexes that Cdk1 forms with the three pairs of B-type cyclins,
Clb5,6, Clb3,4, and Clb1,2, and (ii) the inhibitor Sic1 that binds and
inhibits all three Clb/Cdk1 complexes. Each of the four species is
associated to cell cycle events during a specific phase of the cell
cycle (Fig. 1a). The model describes (i) the progressive activation of
the three Clb/Cdk1 complexes in a linear cascade, and (ii) the
complex formation between Sic1 and the Clb/Cdk1 complexes,
which are mutually inhibiting one another (Fig. 1b). The minimal
model considers the complexity of all documented interactions
among the Clb/Cdk1 complexes (Fig. 1c, solid lines, and
Supplementary Table 2) in addition to two hypothetical interac-
tions (Fig. 1c, dotted lines, and Supplementary Table 2). In
addition, the model describes the degradation of the Clb/Cdk1/
Sic1 complex, and the basal synthesis and degradation of each
species, as visualized in the interaction diagram (Fig. 1d).
The existing model10 is rooted in experimental evidence, and

the new models developed here were built considering: (i)
recently unraveled experimental evidence, (ii) hypotheses gener-
ated on existing experimental evidence, and (iii) simplification of a
number of reactions (Supplementary Table 2). This process
resulted in five sequential model designs: 1A, 1B, 1C, 2, and 3.
The essential differences between the five designs are summar-
ized in Fig. 1d and Supplementary Fig. 1. In Supplementary
Information, Section 1, we document the step-by-step derivation
of the five alternative network designs. Design 3 presents a special
case as it incorporates a quasi-steady-state approximation, which
assumes that formation (k+) and/or dissociation (k−) of the Clb/
Cdk1/Sic1 ternary complexes occur on a faster time-scale than the
other processes considered in the model (see Supplementary
Information, Section 1.6.2).
The main aim of this work is to identify limit cycles system-

atically across wide, distinct parameter regions and across multiple
minimal model designs, in order to identify network motifs
(presence of specific interactions and parameter values) that
support the occurrence of oscillations. As a preliminary analysis,
we investigated the ability of designs 1A–3 to generate: (i)
transient cyclin/Cdk oscillations and (ii) sustained oscillations in
the form of limit cycles. Finally, for each design, we performed a
sensitivity analysis of how the model parameters influence the
period of a single limit cycle. We observed that all five model
designs are able to generate limit cycles, and that the basal
synthesis and degradation parameters together with those
responsible for the linear Clb cascade (Clb5→ Clb3→ Clb2) hold
the strongest control over the length of the period of oscillation
(see Supplementary Information, Section 2).

Identification of conserved network motifs across oscillatory
phenotypes
For a system of the size of model designs 1A–3 (7 species and over
20 parameters), there is generally no way to obtain all possible
parameter sets that give rise to limit cycles, as an infinite number
of these exists. However, a relevant question, interpretable
biologically, is to address which network designs are able to
generate oscillatory behavior in the form of limit cycles. The SDS
methodology25 can be utilized to investigate such a capability of
definite network designs. Specifically, the methodology allows to
partition network designs into “phenotypes” that represent the
dominance of certain reactions over others, thus neglecting all
non-dominant ones. For a given set of parameters and
concentrations, i.e. states, one activatory term and one inhibitory
term in each differential equation are numerically larger than all
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others, i.e. dominant (see Methods section and Supplementary
Information, Section 4). The dominance of a reaction implies
boundary conditions, i.e. inequalities in the parameter and state
spaces, which, if feasible, partition these spaces into areas referred
to as “valid phenotypes”. Parameter sets that yield oscillations
occur within a valid phenotype and therefore link the dominance
of specific reactions to the occurrence of oscillations.
In order to analyze our models for the occurrence of limit cycle

oscillations, we implemented a modeling pipeline based on the
SDS methodology that incorporates a new approach to sample
phenotypes for finding limit cycles, applicable to any network
design. We implemented a parameter sampling procedure that
makes use of the boundaries of a phenotype and employs log-
uniform random sampling (see Fig. 2 and Methods section).
We set up model definitions in the Generalized Mass Action

(GMA) form (see Supplementary Information, Section 4) for all the
kinetic models representing five network designs considered in
this work. In addition, we used the model presented by Fasani and
Savageau43 as a test case to make sure that our implementation

could recover their previously reported results. By using our
pipeline (Fig. 2) we generated the SDS for each model variant, i.e.
the set of all phenotypes, and retrieved the set of valid
phenotypes (see Supplementary Information, Section 4). For our
models, the valid phenotypes represented 0.044–0.34% of all
theoretically possible phenotypes, demonstrating the importance
of the SDS methodology to rapidly scan through the parameter
space. This reduced the number of phenotypes for which the
stability was investigated to a manageable number of several
hundred to several thousand phenotypes (Table 1). After
identifying the valid phenotypes, these were sampled to retrieve
parameter sets yielding potential oscillations by using log-uniform
random sampling. As a criterion for oscillations that emerge from
a Hopf bifurcation, for each sampled parameter set we checked
for the presence of a pair of complex conjugate eigenvalues with
non-negative real part in the steady-state of a phenotype. If a
particular combination of phenotype and parameter set satisfied
this condition, and therefore showed potential for oscillations, the

d
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Fig. 1 Schematic views of the minimal cell cycle model for budding yeast and full interaction diagram for designs 1A, 1B, 1C, 2, and 3. a
The molecular players driving phase-specific cell cycle events. b Linear cascade of the three Clb/Cdk1 complexes, and mutual inhibition
between these and the Clb/Cdk1 inhibitor Sic1. c Interactions among the Clb/Cdk1 complexes. Solid lines indicate (7) proven interactions,
whereas dotted lines indicate (3) hypothetical interactions (see Supplementary Table 2). d Full interaction diagram for designs 1A, 1B, 1C, 2,
and 3 of the minimal cell cycle network. The scheme illustrates the core interactions in all model designs presented in this work, i.e. black and
red arrows for the basal and activatory regulations, respectively, and highlights the progressive changes to the core structure introduced in
designs 1A–3 (blue, red cross, orange, and green, respectively). Dotted arrows indicate the Cln(/Cdk1)- and Clb(/Cdk1)-mediated
phosphorylation of Sic1 in Clb/Cdk1/Sic1 ternary complexes, resulting in its degradation. The complex formation between Clb/Cdk1
complexes and Sic1 is indicated with the KA parameter, referring to the quasi-steady-state assumption introduced in Design 3 (see
Supplementary Information, Section 1.6.2), which should be taken to be the regular complex formation (k+ for formation, k− for dissociation)
for designs 1A–2. Model derivations are reported in Supplementary Information, Section 1, and details of the reactions and their experimental
evidence are reported in Supplementary Table 2.
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limit cycle behavior in the full kinetic model was tested using that
specific parameter set.
We observed that in Design 3, with 250 samples for each valid

phenotype, 664 phenotypes with a potential for oscillations were
identified, and 8 limit cycles across 7 of these were found.
Conversely, for Design 1A no positive complex conjugate
eigenvalues were found, supporting the existing point of view
that NFLs are required for sustained limit cycle oscillations15,16. Of
note, this design is able to exhibit transient oscillations and
sustained, limit cycle oscillations (see Supplementary Information,
Supplementary Figs. 3 and 4). A possible reason for the failure of
the SDS methodology to detect limit cycles may be the random
sampling procedure, i.e. for this design, the sampling may just not
have occurred in the area of the parameter space that allows for
oscillations to occur. This may be especially likely if the region in
the parameter space where such oscillation can occur is small.
Furthermore, since the SDS methodology works with sub-models,
which may have different stability properties than the full model,
the full network’s parameter set that generates oscillations may lie
in a phenotype whose stability does not meet the eigenvalue
requirement that we used in order to check the full model.
Designs 1B–2 exhibited limit cycles but with an incorrect order of
peaking of the four model species so we did not further consider

these. The results for the updated model Design 3 can be directly
compared to designs 1A and 1B, which are based on our published
minimal model10,32; we conclude that the updated model
outperforms its counterparts.
Each parameter set that yielded a limit cycle was stored, and the

time-dependent oscillatory behavior was plotted (the parameter
sets are available in the Supplementary Code Repository). For each
phenotype for which a limit cycle was found, the terms in the
differential equations that were dominant for that phenotype
were identified. Inspection of these dominant processes allowed
for counting the existence of specific parameters within these
phenotypes (Table 2). In Design 3, αyy (Clb3 PFL, responsible for
Clb3/Cdk1 activation) and αyz (Clb2/Cdk1 activation by Clb3/Cdk1)
are the activatory parameters observed most frequently in
phenotypes that yielded limit cycles. This finding suggests that
the dominance of these two terms in the differential equations
increases the ability to generate sustained oscillations, perhaps by
enlarging the region within phenotypes of the design space
where oscillations occur. The result supports the relevance of the
linear CLB cascade through the Fkh2 transcription factor that we
have recently discovered32—formed by the two regulatory
activations Clb5→ Clb3 (αxy) and Clb3→ Clb2 (αyz)—over the
Clb5→ Clb2 regulation (αxz) described earlier33. Altogether, these

Model definitions in  
SciPy and GMA form 

Set up the 
System Design Space 

For all  
valid phenotypes

Identify all valid
phenotypes 

Repeat 250 times

Check for complex conjugate, non-negative
real part eigenvalues at the steady-state

Determine 1D phenotype 
boundaries 

Sample the 1D parameter ranges  
through log-uniform sampling 

Valid random point in the  
parameter and state space of the phenotype

Determine steady-state as a valid  
point in the state space 

Check for limit cycle
and wave properties 

in full model

Discard sample

Yes No

Fig. 2 Computational pipeline implemented using the Systems Design Space Toolbox to identify oscillatory phenotypes in high-
dimensional parameter spaces, for any model, using targeted parameter sampling. The procedure starts from a previously defined set of
model equations in the format used by SciPy and the Systems Design Space Toolbox. All valid phenotypes with consistent boundary
conditions in each model were identified. Each such valid phenotype was sampled log-uniformly 250 times. For each random sample, the
parameter values were checked to lie within the parameter region defined by the phenotype and the steady-state was calculated. The
potential for oscillation was identified by looking for the presence of two complex conjugate eigenvalues with non-negative real part. If this
condition was met, the full model was analyzed for the presence of a limit cycle (see Methods section).

Table 1. Number of total phenotypes, valid phenotypes, phenotypes with a potential for oscillations (presence of two non-zero eigenvalues), distinct
phenotypes for which limit cycles were found, and limit cycles retrieved for model Design 3 through Design 9.

Design # Total phenotypes Valid phenotypes Potential for oscillations Phenotypes with limit cycles Limit cycles retrieved

3 995328 3355 664 7 8

4 1990656 6689 1158 66 204

5 1990656 6950 1523 16 23

6 1990656 6844 1508 20 31

7 1990656 6692 1239 19 24

8 1990656 6750 974 9 9

9 1990656 6977 677 13 21
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findings point to the relevance of Clb3 for generating sustained
Clb/Cdk1 oscillations, through the dominance (i) of the Clb3 PFL
and (ii) of the linear cascade (Clb5→ Clb3→ Clb2).
With respect to the inhibitory regulations, we observed that the

Clb3 NFL (γyy) and the Clb2 NFL (γzz) terms are rarely dominant in
phenotypes exhibiting limit cycles (Table 2). Conversely, the
parameters referring to the APC-mediated inhibition of Clb5 and
Clb3 by Clb2 (γzx and γzy, respectively), and to the degradation
rates of Sic1 and Clbs from the Clb/Cdk1/Sic1 ternary complex (δ
and ε, respectively) were observed more frequently with respect
to the generation of sustained cyclin/Cdk1 oscillations.

Alternative network designs of the minimal cell cycle model
To further analyze the oscillatory behavior of our minimal cell
cycle model, we extended Design 3 to test six new network
designs that include further known or hypothetical inhibitory
regulations. By doing this, we aim to understand whether and how
these regulations might enable the cyclin/Cdk network to
generate limit cycles. The new designs are based on Design 3,
and are referred to as Design 4 through Design 9 (Fig. 3). Each new
design reflects either a single or several related inhibitory
regulations. Design 4, Design 5, and Design 6 describe known
inhibitory regulations mediated by Clb/Cdk1 activities (Fig. 3a),
whereas Design 7, Design 8, and Design 9 describe hypothetical
inhibitory regulations mediated by Sic1 (Fig. 3b). In the following,
each design is described succinctly. Both detailed molecular
mechanisms and equations supporting the designs are reported in
Supplementary Information, Section 3.
Design 4 essentially adds a long NFL, which is known to have a

positive effect on the oscillatory behavior. It incorporates the
inhibition of Clb5/Cdk1 by Clb2/Cdk1 through the MBF transcrip-
tion factor, formed by Mbp1 and Swi6. Clb2 has been shown to
interact physically with Swi4, and to repress transcription of the G1
cyclins44. This inhibition translates to an effective inhibition of the
Clb5/Cdk1 activity, due to the lack of the PFL between the G1
phase Cln2/Cdk1 complex and SBF/MBF45 as well as due to the
lifted inhibition of Sic1 by Cln1,2/Cdk1 (ref. 46).
The designs 5 through 9 essentially add PFLs (or double NFLs)

which could potentially provide stable states and increase
robustness of the oscillatory behavior. Design 5 and Design 6
incorporate the inhibition of Clb/Cdk1 on SIC1 transcription
through the SWI5 transcription factor. Specifically, Design 5
describes the inhibition of SIC1 transcription mediated by the
Clb2/Cdk1 activity47, reflecting the likely scenario where the most
abundant Cdk1 activity is due to Clb2/Cdk1. Design 6 describes the
same mechanism mediated by the three Clb/Cdk1 complexes:
Clb2/Cdk1, Clb3/Cdk1, and Clb5/Cdk1.

Design 7 and Design 8 incorporate the hypothetical inhibition of
Sic1 on mitotic CLB transcription to rationalize a recent observa-
tion that Sic1 oscillations rescue viability of cells with low levels of
mitotic Clb cyclins48. Specifically, Design 7 describes the inhibition
of Clb2 and Clb3 synthesis—which we have recently shown to be
regulated by a similar transcriptional mechanism32—by Sic1.
Design 8 describes the hypothetical inhibition of Clb5, Clb3, and
Clb2 syntheses by Sic1. Finally, Design 9 incorporates the
hypothetical inhibition of Sic1 synthesis by a Sic1-mediated NFL
through SWI5. This design adds a short NFL which should not
contribute the oscillation if there is no time-delay.

Ability of known and hypothetical network designs to generate
sustained Clb/Cdk1 oscillations
To retrieve limit cycles for the new network designs 4–9, we again
employed the pipeline described in Fig. 2. Each design yielded
several hundred phenotypes that corresponded to parameter
space regions with two non-negative complex conjugate eigen-
values, and all designs yielded a set of limit cycles across multiple
phenotypes (Table 1). Specifically, all designs yielded a higher
number of limit cycles and more distinct phenotypes with limit
cycles than Design 3 did. This points to a stronger tendency for
these designs to oscillate due to their new inhibitory regulations.
Interestingly, Design 4 outperformed all other designs in terms of
the number of limit cycles retrieved, followed by Design 6, Design
7, and Design 5. The computational results obtained for Design 4
and Design 5 indicate a role in generating and stabilizing sustained
oscillations for the two inhibitory regulations experimentally
observed: (i) Clb2/Cdk1 on Clb5/Cdk1, indirectly, through Swi4
(ref. 44), and (ii) Clb2/Cdk1 on Sic1, directly, through Swi5 (ref. 47).
Among the hypothetical designs, Design 6 is an extension of

Design 5, which is experimentally supported. Design 6 performs
better, suggesting that it should be beneficial for a cell to have all
Clb/Cdk1 activities inhibiting SIC1 transcription. This finding is a
testable prediction. Among the hypothetical designs that are not
yet supported by experimental evidence, Design 7, which
describes the inhibition of CLB2 and CLB3 syntheses by Sic1,
exhibits the highest number of parameter sets in which limit
cycles occur with 24 sampled limit cycles across 19 distinct
phenotypes. This finding suggests the possible relevance of
transcriptional inhibition mediated by Sic1 to guarantee a self-
sustaining cell cycle.
As we exemplified for Design 3, we quantified the occurrence of

parameters in the dominant terms (processes) for designs 4–9,
identifying phenotypes that (i) are valid, (ii) have a potential for
oscillations, and (iii) yield autonomous limit cycles (Table 1,
Supplementary Code Repository). As we showed for Design 3,

Table 2. Counts of the occurrence of parameters in dominant terms of phenotypes that yielded limit cycles for model Design 3 through Design 9.

Design # αxy αyy αxz αyz αzz γyx γzx γyy γzy γzz K δ ε βx βy βz βs vy vz

3 0 *6 0 *6 1 1 #5 1 4 0 –
‡7 3 1 0 4 0 1 0

4 *41 23 1 17 *48 12 20 12 18 4 †54 ‡46 ‡63 14 11 5 0 2 0

5 3 *12 2 *10 4 0 #11 0 #13 0 8 ‡14 ‡12 5 1 4 0 1 0

6 3 *17 0 *13 7 3 #13 2 #12 1 10 ‡16 ‡15 3 2 4 2 0 0

7 6 *12 2 9 7 3 #14 3 #12 0 †16 ‡18 ‡13 2 1 6 0 1 1

8 2 *6 3 3 2 2 #6 0 #6 2 2 ‡9 ‡6 1 0 3 0 1 1

9 2 *11 1 *9 3 2 #11 1 #10 1 1 ‡12 7 0 1 5 0 0 0

The counts listed are subsets of the numbers in the column “Phenotypes with limit cycles” in Table 1. Parameters that are present in all phenotypes, due to the
model design, are not shown (vs, vx, KA). The generic K parameter modulates the strength of the unique new inhibitions in designs 4–9. For example, in Design
4, K represents the parameter Kzx, which refers to the transcriptional inhibition of Clb2/Cdk1 (z) on Clb5/Cdk1 (x). Parameters that are part of terms that were
dominant in more than 60% of all phenotypes that yielded limit cycles per design (Table 1) are marked with symbols in groups: activatory (*) and inhibitory (#)
interactions among the Clb/Cdk1 complexes, new inhibitory interactions in designs 4–9 (†), and basal synthesis and degradation reactions (‡).
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among the phenotypes that yield limit cycles, in designs 5–9 αyy
(Clb3 PFL) is the parameter observed most frequently among the
activatory regulations, followed by αyz (Clb2/Cdk1 activation by
Clb3/Cdk1) (Table 2). Intriguingly, when adding the inhibition of
Clb5/Cdk1 by Clb2/Cdk1 in Design 4, the Clb2 PFL (αzz) becomes
the most dominant design. This likely reflects the crucial role of
Clb2/Cdk1 in the modulation of CLB5 synthesis, thus reinforcing
the importance of PFLs in the occurrence of sustained oscillations.
Furthermore, in all designs except for Design 3 and Design 8,

both steps in the linear Clb cascade32, αxy (Clb5→ Clb3) and αyz
(Clb3→ Clb2), are more frequent than αxz (Clb5→ Clb2), and in
designs 5–9, αyz is equally or more frequent than αzz (Clb2 PFL). In
fact, in all designs except for Design 4, the Clb3→ Clb2 activation
is the second dominant activatory regulation. Furthermore, once
again, γzx (the APC-mediated inhibition of Clb5 by Clb2/Cdk1) and
γzy (the APC-mediated inhibition of Clb3 by Clb2/Cdk1) are the
parameters observed most frequently among the inhibitory
regulations. The degradation rate of Sic1 from the Clb/Cdk1/Sic1
ternary complex (δ) was present in dominant terms of the majority
of limit cycles for designs 3–9. To a lesser extent, the same holds
true for the degradation rate of the Clbs from those complexes (ε).
Finally, the two new interactions in Design 4 and Design 7
(inhibition of Clb5 synthesis by Clb2 and inhibition of Clb2 and
Clb3 synthesis by Sic1 respectively) stand out in their contribution
to the high number of limit cycles observed for these designs. For
these two model designs the new inhibitory interactions were
dominant in nearly all identified limit cycles.

We additionally calculated the Pearson correlation coefficients
between all parameter combinations across Designs 3–9 (Supple-
mentary Information, Section 6, Supplementary Fig. 19 and
Supplementary Table 3). In line with the observations above, the
parameters related to the Clb3 PFL and the APC-mediated
inhibition of Clb3 by Clb2/Cdk1 are highly positively correlated
in six out of the seven model designs (see Supplementary Table 3).
This is in line with the observation that both interactions occur as
often dominant activatory and inhibitory terms, respectively (see
Table 2). Intriguingly, even in Design 4, for which we observed a
shift from the Clb3 PFL to the Clb2 PFL as the most often
dominant activatory term in the limit cycles, this correlation
remains high. This indicates that, even though the Clb3 PFL is
more rarely dominant in this design, its strength still needs to be
balanced by a Clb2/Cdk1-mediated inhibition.
Altogether, our findings highlight that the Clb3 and Clb2 PFLs,

together with the linear cascade (Clb5→ Clb3→ Clb2) and the
APC-mediated inhibitions driven by Clb2 are principles of design
that may underlie a self-sustaining cell cycle network in
budding yeast.

Limit cycles belong to distinct phenotypic regions spread across
the parameter space and showcase a range of oscillation
properties
Our analysis for designs 1–9 has retrieved hundreds of parameter
sets that generate limit cycles (Table 1). A critical question to be
addressed is whether these limit cycles belong to different,
distinct regions in the parameter space. Part of this question is
addressed by the fact that, for each design, we have identified
limit cycles across multiple phenotypes; this implies that different
interactions and regulations are dominant across (some of) the
limit cycles, and that they belong to distinct parameter space
regions. However, design space phenotypes may overlap in the
parameter space. A key concept here is that of the robustness
region, i.e. the parameter space region around a limit cycle point
within which parameters can be smoothly altered without
interrupting the limit cycle behavior49. Generally, it is challenging
to obtain a good approximation to a robustness region around a
single point let alone compare multiple such regions for overlap.
To explore whether the identified limit cycles belong to non-

overlapping robustness regions, we analyzed the spread of the
parameter values through boxplots and by Principal Component
Analysis (PCA) projection. For all designs, most parameter values
cover multiple orders of magnitude (see Supplementary Informa-
tion, Section 7 and Supplementary Fig. 20). Interestingly, some
parameters are consistently narrow in range across all designs: KA,
vs, and vx (referring to the complex formation between Clb/Cdk1
complexes and Sic1, to the basal synthesis of Sic1 and to the basal
synthesis of Clb5, respectively), indicating that they need to be
tightly controlled in order to generate sustained oscillations.
Conversely, αyy (Clb3 PFL) is narrow in range in all designs except
for Design 4, and vice versa for αzz (Clb2 PFL). This finding supports
the observations of the flipped dominance of these parameters
across the designs shown in Table 2. Similarly, in each design,
either δ or ε show a narrow range. Interestingly, αyz (Clb3→ Clb2),
second step in the linear cascade (Clb5→ Clb3→ Clb2), shows a
higher median value than the first step in all designs except for
Design 4, in agreement with its previously observed dominance.
Subsequently, we performed PCA (see Methods section) on the

limit cycle parameter sets for designs 3–9 to visualize how the
parameter values are spread throughout the 22-dimensional
parameter space (Fig. 4). The limit cycles are spread across the
two main principal components in the parameter space. For
Design 4, many points appear to clump together; however, the
scale on the axes is larger for this design than for the others, and
many more limit cycles are found for this design which increase
the overlap. This result is strengthened by the fact that for all

a

b

Sic1

Clb5

Clb3

Clb2

Sic1

Clb5

Clb3

Clb2

Design 5, 6Design 4 Design 6

Design 7, 8Design 7 Design 9

Fig. 3 Schematic view of known and hypothetical inhibitory
regulations added to Design 3 of the minimal cell cycle model. a
Design 4, Design 5, and Design 6 describe known inhibitory
regulations mediated by Clb/Cdk1 activities. b Design 7, Design 8,
and Design 9 describe hypothetical inhibitory regulations mediated
by Sic1. Colored lines indicate new regulations, with each color
identifying a particular network design. Dashed lines indicate
regulations occurring in two different designs. In the latter, the
two designs related to each such interaction are shown with the
same color. Black lines indicate the activatory and inhibitory
regulations occurring in the minimal cell cycle model. See text
and Supplementary Information, Section 3 for details about the
specific molecular mechanisms.
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designs the first two principal components never explain more
than 62% of the variance in the data, indicating that there is also
significant variance in the data along other orthogonal directions
in the parameter space. For all designs in Fig. 4, limit cycles are
separated both within and between phenotypes, indicating that,
even within a single phenotype, limit cycles are found that are
spread across different areas of the parameter space. The results
illustrate the complex distribution of the parameter sets that
support phenotypes that exhibit limit cycle oscillations. A similar
result was obtained by aggregating the limit cycles across designs
4–9 (bottom-right panel in Fig. 4). The aggregated results for
designs 4–9 highlight that there are different areas of the
parameter space that produce oscillations for different network
designs.
Our analysis does not prove that the limit cycles do not belong

to one or a few continuous robustness regions (i.e. could
potentially be found by continuation techniques), but indicates
that the combined robustness region would have to cover
multiple orders of magnitude in most dimensions. Given that
the vast majority of our parameter samples did not lead to limit
cycles, such a vast robustness region may seem unlikely.
Altogether, Fig. 4 and Supplementary Fig. 20 suggest that either
some of our limit cycles belong to different robustness regions or
the robustness region must take a highly complex and large
N-dimensional shape.
We further quantified the differences in oscillation properties

between the limit cycles by looking at the period of the oscillation

and at the minimal percentage of the oscillation amplitude with
respect to the maximal concentration across species (see
Supplementary Information, Section 8). In Supplementary Figs.
21 and 22 boxplots of the period and amplitude (in terms of the
minimum/maximum ratio), respectively, for designs 3–9 are
shown. It can be observed that the limit cycles display a wide
range in both properties; the wide range of parameter values
covered between the limit cycles translates to differential
oscillation properties.
As an illustrative example of the results that we obtained, we

show a robustness analysis of a limit cycle of phenotype number
1906532 for Design 4 (Fig. 5). We highlighted this limit cycle in the
PCA plot for Design 4 shown in Fig. 4; this limit cycle sits relatively
close to most limit cycles found for Design 4. In Fig. 5a, b, a 2D slice
of the parameter space across the Kzx–γyy plane (two dominant
inhibitory regulations in this phenotype) is shown, where the
phenotype number 1906532 (purple) borders with several other
phenotypes (Fig. 5a) and the stability in terms of the number of
non-negative eigenvalues within these phenotypes may be
observed (Fig. 5b). The black dot in Fig. 5a, b indicates a limit
cycle that we identified—belonging to phenotype 1906532—
which sits in an area where oscillations can be expected based on
the eigenvalues. Due to the presence of two non-negative
eigenvalues, the orange area in Fig. 5b is suggested to support
oscillatory behavior. Consistent with the stability indications, limit
cycles were not retrieved for most of the phenotypes in Fig. 5a
based on our sampling (only phenotype 1574756 and 1906532)

Fig. 4 Projection of limit cycle parameter sets onto the first two principal component axes, for designs 3–9 separated and for designs 4–9
combined (bottom-right). Each dot represents a parameter set yielding a limit cycle. Parameter values were normalized to have a mean of
zero and a standard deviation of 1 prior to principal component calculations, in order to deal with parameters spanning different orders of
magnitudes. For the single panels, the colors indicate the unique phenotype each parameter sets belongs to. For the combined panel, the
colors indicate the model design. For the purposes of this analysis, the unique inhibitory parameters in designs 4–9 were treated as the same
parameter. The percentage of variance in the data explained by each principal component is listed on the axes. Values along the axes should
be compared to the [0, 1] unit interval since the principal components have a length of 1 and are linear combinations of the normalized
parameters.
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which fall in the orange area. The overlapping regions from Fig. 5a
where multiple phenotypes are simultaneously valid in the same
region of the design space are shown to support multi-stability in
Fig. 5b. We observed two areas where multi-stability may occur,
indicated by the presence of 0 and 1 positive eigenvalues or,
alternatively, 1 and 2 positive eigenvalues. In Fig. 5c, properties of
the limit cycle dynamics can be observed: (i) a period of about
27min, corresponding to a frequency of 0.037 min−1; (ii) a similar
(within 10-fold) order of magnitude of the amplitudes of the
concentration of the four species considered (Sic1, Clb5, Clb3, and
Clb2), consistent with previous observations50,51; (iii) the correct
temporal order of peaks of the four species considered: Sic1 in the
G1 phase, Clb5 in the S phase, Clb3 in the G2 phase, and Clb2 in
the M phase10; and (iv) the amplitude of the oscillations covering

most of the concentration range of the four species, i.e. their
concentration sharply decreases and, in the case of total Clb3 and
Clb2 becomes equal to zero when starting a new, successive cell
cycle, as shown experimentally.
In Fig. 5d, a 1D bifurcation diagram is shown for the parameter

Kzx, which refers to the transcriptional inhibition of Clb5/Cdk1 (x)
by Clb2/Cdk1 (z) that is unique to Design 4. We observed that
there is a range of Kzx values (in blue color) where sustained
oscillations occur in the full model. The amplitude changes with
the bifurcation parameter (indicated by the vertical size of the
violet area). We observe a general agreement between the region
in Fig. 5b, where the phenotypes support two positive eigenva-
lues, and the “robustness region”49 of the limit cycle in Fig. 5d;
however, the robustness region of the limit cycle is smaller than
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Fig. 5 Robustness of a limit cycle for phenotype number 1906532 in Design 4. Black dot in a and b, time course in c, dotted line in d, and
red dot in e and f represent the same limit cycle and parameter set. a 2D slice Kzx–γyy of the design space visualized in regions corresponding
to different phenotypes. White color represents absence of phenotypes, whereas other colors indicate specific phenotypes, or combinations
of overlapping phenotypes. Some regions relate to multiple phenotypes, indicating that these phenotypes overlap in this 2D projection of the
parameter space. b The same 2D phase plane as in a, visualizing the number of positive eigenvalues in the steady-state of the phenotype.
Black color represents absence of phenotypes, whereas the orange area supports oscillatory behavior. c Sustained oscillation time course of
the limit cycle. d 1D bifurcation diagram plotting the oscillation amplitude (minimum and maximum of the oscillation) in the full model of the
limit cycle for Clb5 (x on the y-axis and in the equations) while varying the Kzx parameter. Blue line represents the range of Kzx values yielding
stable steady-state behavior, i.e. no oscillations, whereas the blue area represents parameters values yielding oscillations, while keeping fixed
all other parameter values. Yellow dashed line indicates an unstable steady-state with two non-negative eigenvalues in the phenotype. Gray
dotted line indicates an unstable steady-state in the phenotype that has one non-negative eigenvalue. Solid gray line indicates a stable
steady-state; as there is more than one line, multi-stability occurs. e 2D robustness region heatmap of the amplitude of oscillations (0 and
white in case of a steady-state) within a 2D slice of the parameter space. 1,000 random log-uniform samples of the parameters αyy and αzz were
retrieved while keeping all other model parameters fixed. For each sample, the amplitude of oscillations in Clb5 is represented by the scale of
green color. The radial basis interpolation algorithm (RBF) has been applied to infer the color for points in the plot that were not explicitly
sampled. f Similar 2D robustness region heatmap as in e for αzz and γyy.
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predicted by the eigenvalues of the phenotypic subsystem (yellow
line). In Fig. 5e, a 2D parameter scan for the Clb3 PFL (αyy) and the
Clb2 PFL (αzz) is shown in the form of what we consider as a
“robustness region”. Figure 5f shows a similar robustness region
for the Clb2 PFL (αzz) and the Clb3 NFL (γyy). These regions
visualize how far the chosen parameters may be changed around
the limit cycle such that the qualitative behavior does not change,
and are represented as heatmaps, where the color scale indicates
the amplitude of oscillations. In this way, it is possible to
investigate how mutations or environmental perturbations that
lead to changes in model parameters can change or break the
oscillatory behavior. This analysis highlights the complexity of
combinations of parameters for which sustained oscillations may
occur, and that, around the limit cycle identified by our pipeline
(shown as a red dot), there is a region of the parameter space
where oscillations are robust to change in these two parameters
(albeit with a varying amplitude). This analysis highlights that this
limit cycle is particularly sensitive to changes in the Clb2 PFL.
The analysis above can be used to identify phenotypes that are

functional or dysfunctional based on specific features, e.g. in the
tendency of a network design to oscillate. For instance, we can
identify functional, healthy phenotypes that have a strong
tendency to oscillate (Fig. 5a, phenotype in violet color), as
compared to dysfunctional phenotypes, which exhibit no oscilla-
tions (Fig. 5a, b, all phenotypes except for 1906532 and 1574756)
or a reduced tendency to oscillate in only a small area of the
parameter space, reflecting a reduced robustness of the
limit cycle.

DISCUSSION
In budding yeast, cell cycle networks are modeled through
checkpoint mechanisms, where the starting point of oscillations is
reset upon reaching specific concentration thresholds of certain
network components20,21. Although oscillations in the cell cycle
network should not be surprising, given the existence of network
motifs (PFLs, NFLs, and their combination) that produce oscilla-
tions52, it is challenging to investigate whether minimal cell cycle
models could generate such autonomous (limit cycle) oscillations.
This challenge has been met for some organisms8,15, but not for
budding yeast.
In this work we showed, to our knowledge for the first time, that

some designs of the cell cycle network of budding yeast are suited
to support truly autonomous limit cycle oscillations, independent
of checkpoint mechanisms, for a wide range of parameter sets.
Specifically, we studied whether known or hypothetical designs
may modulate the tendency to generate or stabilize sustained
oscillations. We considered a minimal model of the network
governing the activation of the mitotic cyclin/Cdk1 (Clb/Cdk1)
complexes in budding yeast10, and analyzed 11 alternative
network designs for their ability to yield limit cycles (Supplemen-
tary Information, Sections 1 and 3). The model under investigation
describes the sequence of events from the G1 through the M
phases of the cell cycle and back to G1 again, assuming that to
each phase is assigned one major functional component: Sic1,
stoichiometric inhibitor of the Clb/Cdk1 complexes53, to the G1
phase; Clb5/Cdk1, which promotes DNA replication dynamics54, to
the S phase; Clb3/Cdk1, which is involved in the spindle
assembly55, to the G2 phase; and Clb2/Cdk1, which promotes
spindle formation and cell division56,57, to the M phase. In seven of
these designs, from Design 3 through Design 9, a quasi-steady-
state approximation was introduced, which assumes an equili-
brium between the Clb/Cdk1/Sic1 ternary complex and its free
components, Clb/Cdk1 and Sic1. This assumption is new in cell
cycle models.
Our modeling effort, unlike existing cell cycle models that have

been investigated in terms of their potential to show oscilla-
tions8,20,21, supports the implicit hypothesis that there is a

functional reason for the cell cycle itself being an autonomous
limit cycle oscillator. Aside from the uniqueness of our work in
terms of the methodology that we have employed, we make a
case for autonomous oscillations. The two opposing hypotheses of
checkpoint models (i.e. the cell cycle system, by itself, should not
favor oscillations, as these would disappear upon activation of
checkpoints due to a cell’s response to cellular damage, or to a not
favorable response to environmental cues) versus autonomous
oscillations (i.e. the cell cycle system, by itself, should tend to
exhibit self-sustained oscillations, independently from stimuli from
the environment) are rather hard to prove or disprove. This is
because oscillations do exist in living cells that may be due to cell
cycle regulation alone, or to its interplay with the rest of the cell
such as external factors, metabolic cues, etc. The fact that
autonomously oscillating cell cycle models exist for mammalian
cells8, does not provide any strong support for either of the two
hypotheses, because cell cycle models, overall, need to oscillate,
and may have been designed by evolution to do so. In the
autonomous limit cycle models, limit cycle oscillations are
identified by the presence of two complex conjugate eigenvalues
with positive real part. In the checkpoint models, this property
may or may not be present because—at specific points in the
model dynamics—either the concentrations20,21 or both the
concentration and the network wiring can be changed depending
on the model under examination. The resetting of the position in
the state space can force the model dynamics into a repetitive
pattern that would not occur (in the same way) without the
checkpoint(s).
The cell cycle models for budding yeast are currently

incomplete: they require the help of the modeler or the computer
program to break and then restart the model at the end/
beginning of every cycle. Our model is a limit cycle model, which
cycles by itself without any periodic resetting. We developed a
new methodology, based on work by Savageau and colleagues, to
the point that we could scan the parameter space for many
possible limit cycle models, by adding a search for complex
conjugate eigenvalues with positive real part expected around
Hopf bifurcations. This produced a type of model that then
enabled us to determine which parameters control the occurrence
and period of the cell cycling of yeast.
Our cell cycle model structure was not designed to yield

oscillations in general, but we found that it can yield oscillations.
Specifically, our work highlights that the underlying mechanisms
of these oscillations in our models are the Clb3-centered
regulations—never considered in any available checkpoint model
of cell cycle regulation in budding yeast—which we have shown
to exist in budding yeast cells32. The prediction that Clb3-centered
regulations are the highest represented network motifs that lead
to self-sustained, autonomous oscillations, provides a more subtle
proof, and evidence reconciling the checkpoint and autonomous
oscillation views. Specifically, our results suggest that autonomous
oscillations driven by Clb3/Cdk1 may occur when this complex is
coupled and coordinated to the other S and M phase kinase
complexes, Clb5/Cdk1 and Clb2/Cdk1. Whereas Clb5(/Cdk1) and
Clb2(/Cdk1) have been described to be involved in the checkpoint
mechanisms (Tyson and Novák’s types of models), we propose
that Clb3(/Cdk1) drives autonomous cell cycle oscillations to
maintain cell proliferation. Clb3 being tightly coordinated together
with Clb5 and Clb2, we envision that Clb3-mediated oscillations
are maintained unless an activation of checkpoints terminates the
autonomous oscillations.
Our findings do not rule out checkpoint mechanisms, but add an

aspect that does not appear in pure checkpoint mechanisms, i.e.
designs yielding autonomous oscillations. If we assume that only
checkpoint mechanisms exist, then there would be no reason to
expect such designs to occur in reality. However, the fact that they
do occur supports the hypothesis that generating oscillations may
provide an evolutionary advantage. Therefore, we hypothesize that
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“health” requires the capacity to oscillate autonomously—investi-
gated in detail in this study—and the capacity to interrupt the
oscillation due to checkpoint activation and/or unfavorable
environmental cues—not investigated in this study and subject
of a future modeling project.
It has been demonstrated12 that including stochastic effects in

checkpoint-based cell cycle models, using Langevin-type equa-
tions, can lead to qualitative changes in model dynamics and
noise-induced oscillations. In this way, the dichotomy between
checkpoint models and limit cycle oscillators is partially overcome
by stochasticity, since checkpoints may be overcome through
random fluctuations. Noise-induced oscillations also imply that
inclusion of stochastic effects (in cell cycle models) may reshape
and enlarge the regions in the parameter space that support
oscillatory behavior. Experimental work regarding the role of noise
in cell cycle regulation has been shown. Baumann and collea-
gues58 showed that stochastic telophase arrest of budding yeast
mutants cannot be captured by a deterministic model, but can
partially be captured by a stochastic model. Similarly, by using a
stochastic model of the G1/S transition, we showed that entrance
into the S phase is dependent on tight control of SIC1 mRNA
transcription and degradation59. Moreover, Peccoud, Tyson and
colleagues measured experimentally the size of fluctuations in
mRNA levels of 16 proteins that are important in the cell cycle by
using time-lapse fluorescence microscopy60 and smRNA FISH61,62

and improved their cell cycle model to match the observations.
Further development to incorporate the role of noise in cell cycle
models in relation to sustained oscillations calls for software and
methods supporting bifurcation analysis of stochastic differential
equation models, also within the context of the SDS methodology
that we have used in this study or extensions thereof.
To study the dynamic effects of the designs over a wide range

of parameter values, we applied the SDS methodology to analyze
the phenotypes that the 11 network designs partitioned the
parameters and state space into. These phenotypes can be
associated to areas of the parameter space in which sustained
oscillations in the form of limit cycles can occur. The ability to
enumerate the phenotypic repertoire of each of the designs, and
to explore the behavior of each phenotype in a model, allows for
desired properties to be readily identified27. This, in turn, helps to
reduce the computational effort by focusing the search of limit
cycles on specific regions in the parameter space. The SDS
methodology is therefore useful when studying natural systems
and when engineering synthetic networks intended to be
endowed with particular characteristics63.
After applying our pipeline to identify oscillatory phenotypes

(Fig. 2), we retrieved limit cycles for the network designs 3–9 but
not for the designs 1A–2. The latter lack the quasi-steady-state
approximation, which is instead implemented in the former. The
lack of observed oscillations in Design 1A provides an interesting
case that is in line with the prevalent view that NFLs are required
for sustained oscillations15,16. Remarkably, the Clb3 PFL is
recurrent in all network designs that yielded sustained oscillations
except for Design 4, where the Clb2 PFL takes over. Strikingly, PFLs
have been shown to promote oscillations and switch-like
responses that allow unidirectionality of cell cycle progression,
by enhancing amplitude and robustness of cyclin/Cdk oscilla-
tions5,13,14. Our finding that PFLs are important for obtaining
sustained oscillations in the cell cycle is in agreement with these
previous studies. In recent work, Novák and colleagues64 high-
lighted the importance of the PFL between SBF and Cln1,2 for the
cell size checkpoint in G1 phase by using checkpoint models.
Similarly, they highlighted the importance of two antagonistic
PFLs of Cdk1:CycB and PP2A:B55 for interphase–M phase
transitions in the mammalian cell cycle, by using a non-
checkpoint model that exhibits bistability and hysteresis65.
Contrarily to these two studies, our work focused on autonomous
oscillations rather than on multiple different steady-state

attractors. A new insight from our work is that it appears that
our models do not require both the Clb3 and Clb2 PFLs but,
depending on the absence or presence of the inhibition of Clb5/
Cdk1 by Clb2/Cdk1 (designs 3, 5–9 vs. Design 4), one PFL has a
more stabilizing effect on the oscillations than the other. The
general result that we retrieve concerning the NFLs and PFLs is in
agreement with the literature. However, the specific (combina-
tions of) PFLs and NFLs that we found in oscillating phenotypes
and parameter sets (see Table 2) were not predictable a priori.
Furthermore, the regulatory activation Clb3→ Clb2 (αyz), which

forms the linear CLB cascade32 together with Clb5→ Clb3 (αxy), is
observed more frequently than Clb5→ Clb2 (αxz). Therefore, our
analyses point to the possible relevance of Clb3-centered
regulations for the generation of sustained Clb/Cdk1 oscillations
in budding yeast. Importantly, our results for Design 4 and Design 5
support the experimental evidence that the inhibitory regulations,
Clb2/Cdk1 on Clb5 synthesis in Design 4 and Clb2/Cdk1 on the
synthesis of the Clb/Cdk1 inhibitor Sic1 in Design 5, play a crucial
role in cell cycle regulation.
Among the hypothetical network designs, Design 7 is of

particular interest because it rationalizes a recent experimental
observation for which the molecular mechanisms remain at the
moment obscure. This design describes the inhibition of CLB2 and
CLB3 syntheses by Sic1, as an attempt to describe the
experimental evidence that Sic1 oscillations rescue viability of
cells with low levels of mitotic Clb cyclins48. Our findings indicate
that including this inhibitory regulation resulted in a higher
number of limit cycles as compared to other hypothetical network
designs. This result suggests that Sic1 inhibition on the synthesis
of CLB2 and CLB3 may be relevant to guarantee a self-sustained
cell cycle. We speculate that this inhibitory regulation might occur
through a physical interaction of Sic1 on transcription factors that
drive synthesis of these mitotic cyclins, such as Fkh2, which we
have described to be the regulator driving both CLB2 and CLB3
transcription32. The mammalian counterpart of Sic1 (ref. 66), the
cyclin/Cdk inhibitor p27Kip1, has indeed been shown to behave as
a transcriptional repressor, by binding to and inhibiting a number
of gene promoters through E2F4/p130 complexes67. The specific
role of p27Kip1 as transcriptional repressor is to recruit G1 cyclin/
Cdk complexes needed for p130 phosphorylation in the early-mid
G1 phase68. This regulation of a cyclin/Cdk inhibitor at gene
promoters is unknown in budding yeast, and a direct involvement
of Sic1 as transcriptional repressor, potentially through Fkh2, calls
for a detailed experimental investigation, which we are currently
conducting in our laboratory.
Importantly, we addressed that the limit cycles we identified

belong to multiple different phenotypic regions, in the SDS sense
(which sometimes partially overlap), and that the parameter
values cover multiple orders of magnitude and are spread across a
PCA projection, whose variance is spread across many principal
components. Our analysis suggests that it is improbable that all
limit cycles found for each particular model design belong to the
same robustness region. However, it is currently not possible to
prove that their robustness regions do not overlap. In order to
answer this question, it would be useful to explore whether
methods that approximate single robustness regions49 can be
applied to multiple limit cycles to prove their separation in the
parameter space.
Our work shows how the SDS methodology can aid in the

identification of qualitatively distinct behavior of complex
systems, resulting in phenotypes that are characterized by a
tendency to generate oscillations within a definite network design.
In this respect, phenotypes that exhibit oscillations can be
considered functional phenotypes of a cell, which exhibit
oscillations or a high number of oscillations as compared to
dysfunctional phenotypes, which can exhibit no or low amount of
oscillations. This approach may represent an interesting avenue of
further research, to embed the missing details of the minimal cell
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cycle network considered in this work into existing checkpoint
models. Functional and dysfunctional cellular states may be
viewed as (different) stable attractors, i.e. some alteration has
been introduced in the functional biochemical network that gives
rise to a different attractor that is dysfunctional69. The cell cycle
network incorporates designs that are particularly suited to
support sustained oscillations, suggesting that this biochemical
process may have evolved to generate or stabilize autonomous
oscillations, at least under some conditions.
We envision that populations of cells consist of subpopulations

expressing different phenotypes, and that individual cells are able
to dynamically shift their network configurations so as to
effectively alter their phenotype. This would allow evolutionarily
selectable differences between subpopulations to emerge. Point
mutations and shifts in gene expression, e.g. up- and down-
regulation of inhibitors, provide valid mechanisms by which the
functioning of any network interaction could be altered. Such
alterations can impact the strength of, or entirely block, a network
interaction, e.g. a PFL. For example, in our cell cycle networks,
binding or phosphorylation affinity of the Clb/Cdk1 complexes
could be altered. Consequently, cells may theoretically be able to
dynamically shift network configurations, as we have proposed for
metabolic networks70,71, causing switches in phenotype. Our
results indicate that, if these changes occur within the core cell
cycle regulatory network, an impact on the ability of the network
to exhibit oscillations can be observed. Therefore, differences in
the affinity of Clb/Cdk1 complexes to bind and phosphorylate Fkh
transcription factors and, vice versa, in the affinity of Fkh to the
CLB promoters may be expected.
Given the evolutionary conservation of the cell cycle network

across eukaryotes, our approach may be translated to human cell
cycle models, in which components are often mutated in
disease72. In the mammalian cell cycle there does not exist a
one-to-one relationship between the robustness and maintained
frequency of the cell cycle of individual cells on the one hand, and
the “health” of the whole organism on the other hand. For human
cells, the whole organism may not be “healthy” when each cell
would cycle robustly, or with a higher frequency. Here our
approach reverses: in the context of cancer, our analysis could
highlight network design principles that would be good (healthy)
for the particular disease state (the cancer). Regardless, applied to
the whole organism or to populations of cells within the organism
that may become deregulated, as in cancer, it is of interest to
identify network properties that result in changes in the
robustness and frequency of oscillations. Thus, our pipeline can
be used to point to precise molecular strategies of intervention to
restore molecular designs that may be disrupted in disease.

METHODS
All Python and MATLAB code, Jupyter Notebooks and COPASI files are
available as part of a Github repository (https://github.com/barberislab/
Autonomous_Minimal_Cell_Cycle_Oscillator).

Simulation of ODE models
Time course analyses were conducted in MATLAB 2017a by using the
ode15s solver or in Python 2.7 by using the scientific python (SciPy) version
1.1.0, Numeric Python (NumPy) v1.14.1, Design Space Toolbox Python
module v0.3.0a4, and the related C toolbox v0.3.0a6. In the Python scripts,
a sequence of integrators was set up in case that one of the methods
would fail to integrate accurately. The sequence implemented was the
following: lsoda, bdf, and dopri. The Python and MATLAB code used to
generate all our analyses are provided in the Supplementary Code
Repository.

Finding oscillatory phenotypes by using the Systems Design Space
Toolbox
The Design Space Toolbox V2 for Python 2.7 (ref. 31) was used to apply the
SDS methodology to the 11 network designs considered in this work. The
functionality of the toolbox was first tested by reproducing previously
published results by Savageau and colleagues27. Subsequently, their
pipeline to analyze the phenotypic repertoire for oscillatory phenotypes
was implemented in Python. The uniqueness of our implementation is
two-fold: (i) the generalization of this pipeline, to be applicable to any
predefined kinetic model in terms of a set of equations in SciPy notation;
(ii) the approach of Savageau and colleagues was improved to include
extensive parameter sampling within the boundaries of phenotypes
characterized by potential oscillations (oscillatory phenotypes), i.e. areas in
the parameter space with two non-negative eigenvalues. Our computa-
tional pipeline is shown in Fig. 2. The pipeline consists of a Python script
containing model definitions, a set of newly written Python functions that
are wrapped around the Design Space Toolbox V2, and several Jupyter
notebooks73 that analyze a model and properties of any given limit cycle,
respectively. All files are available in the Supplementary Code Repository.
The main Jupyter notebook reads the model to be analyzed (defined in
GMA form), and then proceeds to (i) set up the design space for the model,
(ii) identify all valid phenotypes, (iii) identify the stability of each valid
phenotype indicated by the presence of two complex conjugate
eigenvalues with non-negative real part, by sampling each valid
phenotype for a user defined number of times (in this study 250
parameter samples were collected), and (iv) retrieve limit cycle behavior by
integrating the full kinetic model in the GMA form (Supplementary
Information, Section 4) for the sampled parameter set. The other Jupyter
notebooks allow users (i) to analyze properties of a limit cycle, specifically
to draw: 1D bifurcation diagrams, phenotype phase planes, stability
diagrams, and robustness regions for a user defined set of limit cycles and
bifurcation parameters; (ii) to reproduce the results from Tables 1 and 2;
and (iii) to reproduce the boxplots of the period, amplitude, parameter
values and the PCA plots.

Sampling of the parameter space to identify oscillatory
phenotypes and limit cycles
The phenotypes characterized by a network design may theoretically
exhibit oscillatory as well as steady-state behaviors for a range of
parameter values. To determine the steady state(s) of a phenotype, a
representative point within the phenotypic region of the parameter space
must be found. The Design Space Toolbox can determine valid parameter
sets for a given phenotype. The log-linear boundaries associated with the
boundary conditions for the system (referred to as an S-system)
representing a particular phenotype define a continuous subspace of
parameter values. Within this space, the terms in the S-system dominate
the neglected terms and describe the dominant behavior (Supplementary
Information, Section 4). These boundaries enable linear programming
problems to be solved to identify a set of parameter values at a vertex of
the phenotypic region.
We implemented a sampling approach in two steps. Since steady-state

stability may change within a phenotype when model parameters are
altered, sampling just once may not give an accurate view of a
phenotype’s stability. We sampled parameter sets for each valid
phenotype of a particular network design 250 times. For each sample of
the parameter values, we first used the functionality of the Systems Design
Space Toolbox to determine the steady-state and the presence of non-
negative real part complex conjugate eigenvalues of the steady-state for
the combination of a given phenotype and parameter set. Second, for valid
phenotypes satisfying the necessary condition for sustained oscillations,
i.e. two complex conjugate non-negative eigenvalues at the fixed point, we
determined the dynamics in the full model in the GMA form, using the
previously calculated steady-state as the initial condition, and checked for
the presence of a limit cycle. Different initial conditions may give rise to
different attractors and, hence, iterating this procedure for multiple initial
conditions may result in the identification of more limit cycle attractors.
However, in this work, we did not take this approach.
To sample a valid parameter set for a given phenotype, we first used the

valid_parameter_set function in the Design Space Toolbox to obtain a valid
parameter set for the phenotype. We then rearranged the parameters in
the model by shuffling them into a random in order so as to avoid biased
sampling due to the fact that the sample for each parameter may alter the
phenotypic boundaries for the following parameters. Subsequently, for
each parameter in the randomized order, we (i) determined the
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phenotypic tolerance: 1D boundaries of the phenotype when keeping all
other parameters the same (utilizing the vertices_1D_slice function in the
Systems Design Space Toolbox), and (ii) log-uniformly sampled the range
of numbers between these boundaries. This sequence of steps ensures
that we retrieve a set of unique parameter sets that are specific for a given
phenotype, and random. We opted for log-uniform random sampling due
to inherent problems that we observed with uniform random sampling. In
uniform random sampling in 1D, ranges with the same length have the
same probability of being sampled. When a phenotype has, for example, a
range of [0, 100], 99% of the samples will fall in the [1, 100] interval and
10% will fall in the [90 to 100] interval. This has the consequence that
parameter sets with relatively low parameter values are exceedingly rare,
especially when sampling multiple parameters simultaneously as is
commonly the case with biochemical models. This problem is further
aggravated by the fact that the effects of parameters in the model are
multiplicative, rather than additive. As do Metabolic Control Analysis (MCA)
and Biochemical Systems Theory (BST), we think that equal relative
changes are equally important; hence, we concluded that log-uniform
sampling was appropriate for this work. In all model designs, parameters
were limited to the range [10−9, 1000].
To check whether sampled parameter sets yield limit cycles, and not just

damped oscillations, we integrated the system of ODEs for the full model
in the GMA form (Supplementary Information, Section 4) in a series of
subsequent time windows. After each successive time window we first
checked whether the integration of the ODEs proceeded successfully
without error. Second, we used the last time window to check the
properties of the time course for each of the model species (Sic1, Clb5,
Clb3, Clb2) by identifying all maxima that: (i) were within 5% of the global
maxima in the current time window. When five such ordered maxima for
each species occurred in the time course, we considered the time course to
exhibit sustained oscillations. A limit cycle trajectory exhibits multiple,
successive peaks in a repeating pattern and would therefore satisfy the
aforementioned criteria. The five ordered maxima of each species may
represent a yeast cell dividing at least five times. To accept the time course
as a limit cycle, we additionally required that: (i) all species have an
oscillation amplitude of at least 10% of their global maximum, (ii) the ratio
between the global maxima across all species is less than 100-fold
(experimentally, there is less than a three-fold difference in the
concentration of the four species considered in the model50,51), and (iii)
the identified maxima in step (ii) are not only found in the beginning of the
time course, since this would otherwise indicate a damped oscillation. The
main results presented in Table 2 did not change when we required an
oscillation amplitude of at least 50%. After each successive time
integration window, we checked that the conditions above were met. If
the limit cycle conditions were satisfied, the integration was stopped.
Finally, as last criteria, we required the identified limit cycle oscillation to
exhibit the correct cell cycle order (Sic1, Clb5, Clb3, Clb2). Conversely, if the
conditions were not satisfied, the integration was continued unless a
steady-state had been reached. We defined a steady-state as when none of
the concentrations changed more than 1% of their global maxima in the
last time window. If the time course did not exhibit a limit cycle or a
steady-state within 10,000min, the integration was stopped and we
concluded that the time course did not exhibit oscillations. In our hands,
these two tests are sufficient to identify limit cycles. In rare cases, this
approach may erroneously detect a limit cycle although there is in fact a
slowly decaying, damped oscillation or slowly increasing oscillations;
however, such cases should become clearer from inspection of the time
course.

Principal Component Analysis
PCA projects a set of N-dimensional vectors along a new coordinate axis
specified by orthogonal and uncorrelated vectors which are ranked
according to how much of the variance in the data they explain. These
“principal components” are linear combinations of the original parameters
and are of unit length. Each principal component is associated with a
percentage of the variance in the original dataset that it explains. As a
result we can visualize features (parameter values in this case) in two-
dimensional space in such a way that parameter sets that are “close
together” (i.e. not showing much variation) will appear together on the
PCA plot.
Observations that are far apart in the PCA plot are separated in the

original space along the directions specified by the principal components if
there was significant deviation within the original dataset to begin with.
However, parameter sets that are far apart in the original data may

sometimes cluster closely together on the PCA plots if the first principal
components do not explain a lot of the variance in the dataset.
We first normalized the parameter sets by dividing by the standard

deviation and subtracting the mean so that each parameter has a mean of
0 and a variance of 1 across the different limit cycle parameter sets before
applying the PCA algorithm. This helps avoid bias from the multiple orders
of magnitude covered in the parameter values.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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