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Abstract

Predicting the phenotypes resulting from molecular perturbations is one of the key chal-

lenges in genetics. Both forward and reverse genetic screen are employed to identify the

molecular mechanisms underlying phenotypes and disease, and these resulted in a large

number of genotype–phenotype association being available for humans and model organ-

isms. Combined with recent advances in machine learning, it may now be possible to predict

human phenotypes resulting from particular molecular aberrations. We developed Deep-

Pheno, a neural network based hierarchical multi-class multi-label classification method for

predicting the phenotypes resulting from loss-of-function in single genes. DeepPheno uses

the functional annotations with gene products to predict the phenotypes resulting from a

loss-of-function; additionally, we employ a two-step procedure in which we predict these

functions first and then predict phenotypes. Prediction of phenotypes is ontology-based and

we propose a novel ontology-based classifier suitable for very large hierarchical classifica-

tion tasks. These methods allow us to predict phenotypes associated with any known pro-

tein-coding gene. We evaluate our approach using evaluation metrics established by the

CAFA challenge and compare with top performing CAFA2 methods as well as several state

of the art phenotype prediction approaches, demonstrating the improvement of DeepPheno

over established methods. Furthermore, we show that predictions generated by DeepPheno

are applicable to predicting gene–disease associations based on comparing phenotypes,

and that a large number of new predictions made by DeepPheno have recently been added

as phenotype databases.

Author summary

Gene–phenotype associations can help to understand the underlying mechanisms of

many genetic diseases. However, experimental identification, often involving animal

models, is time consuming and expensive. Computational methods that predict gene–

phenotype associations can be used instead. We developed DeepPheno, a novel approach

for predicting the phenotypes resulting from a loss of function of a single gene. We use

gene functions and gene expression as information to prediction phenotypes. Our method
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uses a neural network classifier that is able to account for hierarchical dependencies

between phenotypes. We extensively evaluate our method and compare it with related

approaches, and we show that DeepPheno results in better performance in several evalua-

tions. Furthermore, we found that many of the new predictions made by our method have

been added to phenotype association databases released one year later. Overall, Deep-

Pheno simulates some aspects of human physiology and how molecular and physiological

alterations lead to abnormal phenotypes.

This is a PLOS Computational Biology Methods paper.

Introduction

Many human diseases have a genetic basis and are caused by abnormalities in the genome.

Due to their high heterogeneity, many disorders are still undiagnosed and despite significant

research their genetic basis has not yet been established [1]. Understanding how disease phe-

notypes evolve from an organism’s genotype is a significant challenge.

Reverse genetic screens can be used to investigate the causality of perturbing molecular

mechanisms on a genetic level and observing the resulting phenotypes [2]. For example, the

International Mouse Phenotyping Consortium (IMPC) [3] aims to associate phenotypes with

loss of function mutations using gene knockout experiments, and similar knockout experi-

ments have been performed in several model organisms [4]. Further genotype–phenotype

associations for the laboratory mouse and other model organisms are also systematically

extracted from literature and recorded in model organism databases [5–8].

The similarity between observed phenotypes can be used to infer similarity between molec-

ular mechanisms [9]. In humans, the Human Phenotype Ontology (HPO) provides a con-

trolled vocabulary for characterizing phenotypes [10]. A wide range of genotype–phenotype

associations have been created based on the HPO. Further information about genotype–phe-

notype associations is collected in databases such as Online Mendelian Inheritance in Man

(OMIM) [11], Orphanet [12], ClinVar [13], and DECIPHER [14].

With the number of genotype–phenotype associations available now, it may be possible to

predict the phenotypic consequences resulting from some changes on the level of the genotype

using machine learning. Several methods have been developed to automatically predict or gen-

erate genotype–phenotype associations. To predict phenotype associations, these methods use

different sources such as literature [15–17], functional annotations [15, 18, 19], protein–pro-

tein interactions (PPIs) [15, 20–22], expression profiles [23, 24], genetic variations [15, 25], or

their combinations [15]. The general idea behind most of these methods is to find genetic simi-

larities, or interactions, and transfer phenotypes between genes based on the assumption that

similar or interacting genes are involved in similar or related phenotypes [26].

Phenotypes arise from complex biological processes which include genetic interactions,

protein–protein interactions, physiological interactions, and interactions of an organism with

environmental factors as well as lifestyle and response to chemicals such as drugs. A large

number of these interactions can be described using the Gene Ontology (GO) [27], and GO

annotations are available for a large number of proteins from thousands of species [28]. Fur-

ther, in recent years, significant progress has been made in predicting the functions of unchar-

acterized proteins [29, 30].
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We developed a hierarchical classification approach of predicting gene–phenotype associa-

tions from function annotations of gene products. Similarly to the HPO2GO [19] method, we

use the GO function annotations as our main feature and predict HPO classes. We propagate

both functional and phenotype annotations using the hierarchical structure (taxonomy) of GO

and HPO and train a deep neural network model which learns to map sets of GO annotations

to sets of HPO annotations. One limitation of predicting phenotypes from functions is that

not all genes have experimental functional annotations. We overcome this limitation by using

the function prediction method DeepGOPlus [31] which has been trained on a large number

of proteins and can generate accurate functional annotations using only protein sequence. As

DeepGOPlus is trained on a large number of proteins, including close and distant homologs of

many human proteins, we hypothesize that it can also provide information about the physio-

logical processes to which proteins contribute.

Phenotype prediction is a massively multi-class and multi-label problem, with an ontology

as classification target. In DeepPheno, we implemented a novel hierarchical classification layer

which encodes almost 4,000 HPO classes and their hierarchical dependencies in a single pre-

diction model which we use during training and prediction. The novel classification layer is a

more scalable and faster version of the hierarchical classification layer used in DeepGO [32],

and allows us to encode a large number of taxonomic dependencies. Although it uses simple

matrix multiplication and max-pooling operations to enforce hierarchical dependencies, to

our knowledge, it is a first time that these kind of operations are being used to encode ontology

structure while training and optimizing a neural network using backpropagation.

We evaluate DeepPheno using the latest phenotype annotations available from the HPO

database [10] and using the evaluation dataset from the Computational Assessment of Func-

tion Annotation (CAFA) challenge [29], and we compare our results with the top performing

methods in CAFA 2 [33] and phenotype prediction method such as HPO2GO [19], HTD/TPR

[34] and PHENOstruct [15]. We demonstrate a significant improvements over the state of the

art in each evaluation.

To further validate the usefulness of our phenotype predictions in computational biology,

we test whether we can predict gene-disease associations from the predicted phenotype anno-

tations. We compute semantic (phenotypic) similarity between gene–phenotype annotations

and disease–phenotype annotations, and our results show that the phenotype annotations gen-

erated by DeepPheno are predictive of gene–disease associations; consequently, DeepPheno

expand the scope of phenotype-based prediction methods, such as for gene–disease associa-

tions [35, 36] or used in variant prioritization [37–39], to all genes for which functions are

known or can be predicted. We further analyzed the predictions generated by our method and

found that, in average, more than 60% of the predicted genes for a phenotype interact with

genes that are already associated with the phenotype, suggesting that some of our false positive

predictions might actually be truly associated within a phenotype module. Finally, we show

that many of the predictions made by DeepPheno in the past have recently been added to phe-

notype databases based on experimental or clinical evidence.

Results

DeepPheno predicts phenotypes associated with single gene loss of

function

We developed a set of neural network model that predict phenotypes associated with genes.

The models are trained using functions associated with gene products as input and loss-of-

function phenotypes as output and relate aberrations in function to abnormal phenotypes that

arise from these aberrations.
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We evaluate our method on the phenotype annotations from the HPO database [10]

released in June 2019. We randomly split the dataset into training, validation and testing sets;

we split the data by genes so that if a gene is included in one of the three sets, the gene is pres-

ent with all its annotations. We tune all parameters of our models using the validation set and

report evaluation results on the unseen testing set. We train five neural network models using

the same phenotype annotations and same training/testing split, but with different functional

annotations as features. The first model is called DeepPhenoGO and it uses only experimental

function annotations. The second model is called DeepPhenoIEA and is trained on all annota-

tions from UniProtKB/SwissProt including predicted ones (i.e., including annotations with an

evidence code indicated the annotation was electronically inferred). The predicted annotations

are usually based on sequence or structural similarity and multiple sequence alignments. The

third model is called DeepPhenoDG. We train DeepPhenoDG on functions predicted by the

DeepGOPlus [31] method. The fourth model is called DeepPhenoAG which is trained on

combined function annotations from UniProtKB/Swissprot and DeepGOPlus. Finally, the

DeepPheno model was trained on all functional annotations and gene expression features (i.e.,

the anatomical locations at which genes are expressed). Phenotypes are structured based on

the HPO, and we evaluate “flat” versions of each model that do not consider the ontology

structure to determine the contribution of the hierarchical classification layers in DeepPheno.

For flat predictions, we fix hierarchical dependencies by propagating all positive predictions

using the true path rule [27] using the structure of the HPO ontology. In other words, we add

all superclasses up to the root class to the predictions for each positively predicted class.

We first compare our results with phenotype annotations generated by the “naive” method

(see Materials and methods for details). The naive method predicts the most frequently anno-

tated phenotype classes in the training set for all genes in the testing set. It achieves an Fmax of

0.378 which is close to our results and higher than the state-of-the-art methods in the CAFA2

challenge. Despite such performance, naive annotations do not have any practical use as they

are identical for every gene. Our neural network model achieves an Fmax of 0.437 when we

train it with only experimental GO annotations and, as expected, it improves to 0.451 when we

add predicted annotations in UniProtKB. We expected results to improve because experimen-

tal GO annotations are not complete and the electronically inferred function annotations can

add missing information. The model trained with all annotations including DeepGOPlus,

achieves the same Fmax of 0.451, but results in the best performance among all models in our

Smin (which also considers the specificity of the predicted phenotype classes, see Materials and

methods) and AUPR evaluation. DeepPhenoDG model which is trained with only DeepGO-

Plus annotations achieves Fmax of 0.444 which is slightly lower than the best result, but is

higher than the model trained with experimental GO annotations. Adding gene expression

features to functional annotations improve the model’s performance further achieving highest

Fmax of 0.457. In each case, the hierarchical classifiers improves the performance achieved by

the flat classifier and true path rule propagation. In addition, we trained a Random Forest

regression model DeepPhenoRF with all features used in DeepPheno. It resulted in a similar

performance as DeepPheno in terms of Fmax and slightly better performance in recall and the

Smin evaluation. In all other evaluations our neural network based model resulted in better per-

formance. Table 1 summarizes our results.

The results show that the DeepPheno model achieves the best performance when using

both experimental and electronically inferred GO annotations and gene expression values, and

achieves comparative performance by using only DeepGOPlus annotations which can be pre-

dicted from protein amino acid sequence information alone. We also show that the Random

Forest model can achieve similar performance using DeepGOPlus annotations and expression

values.

PLOS COMPUTATIONAL BIOLOGY DeepPheno

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008453 November 18, 2020 4 / 22

https://doi.org/10.1371/journal.pcbi.1008453


In addition, we report the 5-fold cross-validation evaluation performance for the 100 best-

performing individual phenotype classes in S1 Table. We found that DeepPheno results in a

good performance for several specific phenotypes. For example, the phenotype class Elevated
levels of phytanic acid (HP:0010571) has Fmax of 0.960 or the class Brushfield spots
(HP:0001088) has Fmax of 0.892. Both classes are specific classes and leaf nodes in the HPO.

Furthermore, we computed the performance of HPO branches represented by a class and its

subclasses that are predicted by DeepPheno. S2 Table shows the performance of the top 100

branches with at least 5 classes. Noticably, DeepPheno results in Fmax of 0.77 for Mode of Inher-
itance (HP:0000005) branch of HPO. Moreover, we used the information content measure

(see Materials and methods) as a class specificity based on annotations and plotted the perfor-

mance of each phenotype by class specificity. S1 Fig shows that there is no significant correla-

tion between class specificity and performance.

To compare our method with other methods, we trained and tested our model using the

CAFA2 challenge data, i.e., using the training and testing data as well as the ontologies pro-

vided in CAFA2 (see Materials and methods). We further evaluated annotations for CAFA2

targets provided by the HPO2GO method [19]. The top performing methods in CAFA2

achieve an Fmax of around 0.36 [33]. Our DeepPhenoGO model trained using only experimen-

tal GO annotations achieve Fmax of 0.379. Models which use predicted annotations improve

Fmax score and we achieve the best Fmax of 0.398 with the DeepPhenoAG model trained with

all GO annotations from UniProtKB/SwissProt and predicted by DeepGOPlus. To make a fair

comparison we excluded gene expression features since they were not available at the CAFA2

challenge time. Fig 1 shows the comparison with CAFA2 top performing methods and

HPO2GO, and Table 2 shows the performance results of DeepPheno on the CAFA2 bench-

mark set.

The PHENOstruct [15] and HTD/TPR [34] methods report the 5-fold cross-validation

evaluation results on HPO annotations released on January 2014 (which is the CAFA2 chal-

lenge training data). We followed their experimental setup and evaluated our methods with

5-fold cross-validation. To tune and select the best prediction models, we used 10% of training

data as validation set in each fold. Table 3 compares our results with the reported results [34]

where authors separately evaluate predictions for three subontologies of HPO. On the Organ
(Phenotypic) abnormality (HP:0000118) subontology, our method performs with Fmax of

0.42 which is the same for PHENOstruct and the second best result after TPR with SVM. On

the Mode of Inheritance (HP:0000005) subontology, our method achieves Fmax of 0.72

Table 1. The comparison of 5-fold cross-validation evaluation performance on the June 2019 dataset and all HPO classes.

Method Fmax Precision Recall Smin AUPR AUROC

Naive 0.378 ± 0.005 0.355 ± 0.004 0.406 ± 0.007 123.546 ± 3.002 0.306 ± 0.006 0.500 ± 0.000

DeepPhenoGOFlat 0.431 ± 0.004 0.415 ± 0.007 0.450 ± 0.010 117.102 ± 2.627 0.412 ± 0.008 0.709 ± 0.017

DeepPhenoGO 0.437 ± 0.005 0.411 ± 0.007 0.467 ± 0.014 116.469 ± 2.440 0.421 ± 0.006 0.727 ± 0.010

DeepPhenoIEAFlat 0.448 ± 0.004 0.427 ± 0.006 0.471 ± 0.006 115.225 ± 2.773 0.434 ± 0.006 0.758 ± 0.004

DeepPhenoIEA 0.451 ± 0.004 0.434 ± 0.009 0.469 ± 0.008 115.294 ± 2.708 0.436 ± 0.006 0.761 ± 0.003

DeepPhenoDGFlat 0.442 ± 0.005 0.426 ± 0.006 0.459 ± 0.012 115.795 ± 2.395 0.427 ± 0.005 0.758 ± 0.004

DeepPhenoDG 0.444 ± 0.007 0.426 ± 0.013 0.463 ± 0.007 115.412 ± 2.296 0.431 ± 0.010 0.760 ± 0.005

DeepPhenoAGFlat 0.444 ± 0.006 0.422 ± 0.010 0.468 ± 0.006 115.802 ± 3.154 0.429 ± 0.008 0.752 ± 0.009

DeepPhenoAG 0.451 ± 0.004 0.428 ± 0.006 0.477 ± 0.009 114.894 ± 3.043 0.438 ± 0.005 0.764 ± 0.002

DeepPhenoFlat 0.451 ± 0.006 0.434 ± 0.015 0.471 ± 0.006 114.765 ± 2.558 0.437 ± 0.008 0.763 ± 0.010

DeepPheno 0.457 ± 0.007 0.445 ± 0.010 0.470 ± 0.009 114.045 ± 2.821 0.445 ± 0.009 0.766 ± 0.010

DeepPhenoRF 0.456 ± 0.007 0.437 ± 0.014 0.477 ± 0.015 112.152 ± 2.114 0.431 ± 0.008 0.733 ± 0.006

https://doi.org/10.1371/journal.pcbi.1008453.t001
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which is slightly lower than PHENOstruct. Finally, our method outperforms all other methods

in evaluation on the Onset (Clinical modifier) subontology (HP:0000004) with Fmax of 0.53.

It is important to note that other methods rely on multiple sources of information such as

PPIs, GO functions and text mining features, while DeepPheno uses only GO functions as

features.

Gene–disease associations using predicted phenotypes

Phenotype annotations have many applications, including prediction of candidate genes that

are causally involved in diseases [36, 40–42]. For example, we can compare the similarity

between gene–phenotype associations and disease phenotypes and prioritize candidate dis-

eases for diagnosis [41], or prioritize genetic variants that are causative for a disease [37, 38].

These methods can suggest candidate genes for rare diseases and improve identification of

causative variants in a clinical setting [41]. Here, our aim is to test whether the predicted phe-

notype annotations generated by DeepPheno are applicable for gene–disease association

predictions.

Fig 1. Comparison of DeepPheno with CAFA2 top 10 methods and HPO2GO.

https://doi.org/10.1371/journal.pcbi.1008453.g001

Table 2. The comparison of performance on the CAFA2 challenge benchmark dataset.

Method Fmax Precision Recall Smin AUPR AUROC

Naive 0.358 0.335 0.384 81.040 0.267 0.500

DeepPhenoGO 0.379 0.329 0.446 82.139 0.318 0.597

DeepPhenoIEA 0.396 0.379 0.415 79.461 0.348 0.645

DeepPhenoDG 0.392 0.388 0.397 81.369 0.339 0.621

DeepPhenoRF 0.391 0.378 0.405 80.545 0.338 0.619

DeepPhenoAG 0.398 0.340 0.482 79.616 0.350 0.648

https://doi.org/10.1371/journal.pcbi.1008453.t002
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One of the widely used methods for comparing ontology class annotations is semantic simi-

larity [43]. We compute semantic similarity scores between gene–phenotype annotations and

disease–phenotype annotations and use it to rank genes for each disease. Such an approach

can be used to predict gene–disease associations based on phenotypes [36, 40] and allows us to

determine how our predicted annotations can contribute to such an application.

As expected, phenotype annotations generated by the naive approach are not predictive of

gene–disease associations and resulted in a performance with AUROC of 0.50. On the other

Table 3. The comparison of 5-fold cross validation performance on the CAFA2 challenge training dataset.

Method AUROC Fmax Precision Recall

Organ sub-ontology

TPR-W-RANKS 0.89 0.40 0.34 0.48

TPR-W-SVM 0.77 0.44 0.38 0.51

HTD-RANKS 0.88 0.37 0.30 0.49

HTD-SVM 0.75 0.43 0.37 0.49

PHENOstruct 0.73 0.42 0.35 0.56

Clus-HMC-Ens 0.65 0.41 0.39 0.43

PhenoPPIOrth 0.52 0.20 0.27 0.15

SSVM!Dis!HPO 0.49 0.23 0.16 0.41

RANKS 0.87 0.30 0.23 0.43

SVM 0.74 0.42 0.36 0.50

DeepPhenoAGFlat 0.74 0.42 0.39 0.45

DeepPhenoAG 0.74 0.42 0.40 0.45

Inheritance sub-ontology

TPR-W-RANKS 0.91 0.57 0.45 0.80

TPR-W-SVMs 0.82 0.69 0.59 0.82

HTD-RANKS 0.90 0.57 0.44 0.81

HTD-SVMs 0.81 0.69 0.59 0.82

PHENOstruct 0.74 0.74 0.68 0.81

Clus-HMC-Ens 0.73 0.73 0.64 0.84

PhenoPPIOrth 0.55 0.12 0.16 0.10

SSVM!Dis!HPO 0.46 0.11 0.07 0.25

RANKS 0.90 0.56 0.43 0.81

SVMs 0.82 0.69 0.59 0.82

DeepPhenoAGFlat 0.67 0.72 0.65 0.80

DeepPhenoAG 0.68 0.72 0.64 0.81

Onset sub-ontology

TPR-RANKS 0.86 0.44 0.33 0.70

TPR-SVMs 0.75 0.48 0.38 0.66

HTD-RANKS 0.86 0.42 0.30 0.69

HTD-SVMs 0.74 0.46 0.37 0.67

PHENOstruct 0.64 0.39 0.31 0.52

Clus-HMC-Ens 0.58 0.35 0.27 0.48

PhenoPPIOrth 0.53 0.25 0.25 0.24

SSVM!Dis!HPO HPO 0.49 0.07 0.06 0.10

RANKS 0.83 0.41 0.30 0.67

SVMs 0.74 0.47 0.37 0.63

DeepPhenoAGFlat 0.64 0.52 0.46 0.62

DeepPhenoAG 0.66 0.53 0.47 0.60

https://doi.org/10.1371/journal.pcbi.1008453.t003
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hand, similarity scores from existing annotations from HPO performed nearly perfectly with a

AUROC of 0.98. The reason for this nearly perfect prediction is that most of the OMIM dis-

eases are associated with only one gene and share almost same phenotype annotations as their

associated genes because of how the gene–phenotype associations have been generated [10].

Predicting gene–disease associations using the DeepPhenoDG models that rely on electroni-

cally inferred GO function annotations resulted in an AUROC of 0.72, which is slightly higher

than predicting gene–disease associations using the model trained with experimental GO

annotations which resulted in AUROC of 0.70. The best performance in AUROC of 0.75

among methods which use predicted phenotypes were achieved by our DeepPhenoAG and

DeepPheno models. Table 4 summarizes the results. Overall, this evaluation shows that our

model is predicting phenotype associations which provide a signal for predicting gene–disease

associations and can be considered as features for this task.

Evaluation of false positives

In our experiments, we consider the absence of knowledge about an association as a negative

association. When we predict such an association, we consider this a false positive prediction.

However, current gene–phenotype associations in databases are not complete and some of the

false positive predictions generated by our method may actually be a correct association. To

test this hypothesis, we evaluate our false positive predictions in three different ways. First, we

check if our false positive annotations become true annotations in later releases of the HPO

annotations database. Second, we evaluate if our predicted genes are interacting with a pheno-

type-associated gene using the underlying assumption that phenotypes are determined by net-

work modules of interacting genes and gene products [44–46]. Finally, we investigate if some

of our false positive predictions were reported in GWAS studies.

To evaluate our false positives, we used the phenotype annotations released by the HPO

database in August 2020 and tested our model which was trained and tested on the 80/20%

random split on a dataset from June 2019. We found that the proteins in the test set obtained

3, 207 new annotations in August 2020 and 898 (28%) of DeepPheno predictions that were

counted as false in the June 2019 dataset appear in the August 2020 dataset. For example,

NADH dehydrogenase, alpha 1 (NDUFA1) from the testing set of June 2019 has 13 phenotype

annotations. In the August 2020 dataset, this gene collected 35 new annotations and 27 of

them were predicted by our model. For example, DeepPheno predicted Lactic acidosis
(HP:0003128) as a new phenotype associated with NDUFA1 as well as several related

phenotypes such as Decreased liver function (HP:0001410) and Generalized hypotonia
(HP:0001290), as well as phenotypes such as Microcephaly (HP:0000252) and Optic atro-
phy (HP:0000648); all these phenotypes were added as new annotations of NDUFA1 by

August 2020. The predictions of DeepPheno were based on the GO function annotations for

Table 4. The comparison of 5-fold evaluation performance on gene–disease association prediction for the June 2019 dataset test genes.

Method Hits@10 (%) Hits@100 (%) Mean Rank AUROC

Naive 1 9 522.72 0.50

DeepPhenoGO 10 35 307.36 0.70

DeepPhenoIEA 13 41 263.13 0.74

DeepPhenoDG 11 38 284.92 0.72

DeepPhenoAG 12 41 260.80 0.75

DeepPheno 12 41 260.05 0.75

RealHPO 90 96 22.03 0.98

https://doi.org/10.1371/journal.pcbi.1008453.t004
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NDUFA1 as well as DeepGOPlus-predicted GO functions; the predicted functions include

among others NADH dehydrogenase (ubiquinone) activity (GO:0008137) and NADH dehy-
drogenase complex assembly (GO:0010257) which are newly predicted by DeepGOPlus and

not included in the experimental function annotations of NDUFA1. The NAD+/NADH ratio

controls the activity of pyruvate dehydrogenase [47–49], and pyruvate dehydrogenase defi-

ciency is one of the main causes of lactic acidosis [50, 51] as well as microcephaly and blind-

ness [52]. The predictions made by DeepPheno indicate that our model was able to relate a

decrease in metabolic function of NADH dehydrogenase to the downstream effects of NADH

on pyruvate dehydrogenase, and then predict the phenotypes associated with it. One further

indication for this mechanism is the prediction of DeepPheno of Decreased activity of the pyru-
vate dehydrogenase complex (HP:0002928) which had not been added as an annotation of

NDUFA1 in August 2020 and is still a false positive prediction by DeepPheno; however, this

prediction indicates a mechanism for the majority of the phenotypes that were added by

August 2020.

Similarly, the gene ceramide galactosyltransferase (GALC) had 27 phenotype annotations

and obtained 125 new annotations in the HPO database of which 26 were predicted by Deep-

Pheno. GALC is involved in Krabbe disease [53], a lysosomal storage disease with significant

nervous system involvement [54] exhibiting a range of heterogeneous phenotypes, severity,

and onset [55, 56]. While several major phenotypes of Krabbe disease (e.g., seizures, muscle

weakness, blindness and optic atrophy, and hydrocephalus) were present in the 2019 dataset,

broader and more specific phenotypes reflecting the phenotypic heterogeneity of Krabbe dis-

ease were added in 2020. Phenotypes correctly predicted by DeepPheno include Ataxia
(HP:0001251) or Dysarthria (HP:0001260), which are specific neurological phenotypes

also associated with Krabbe disease. These phenotypes are predicted from the asserted and

predicted GO functions of GALC which include galactosylceramide catabolic process
(GO:0006683), myelination (GO:0042552), and the cellular component lysosome
(GO:0005764). Similarly to predictions for the NDUGA1 gene, DeepPheno was able to iden-

tify the downstream effects of reduced galactosylceramide activity and correctly predict the

phenotypes arising from them.

As further evaluation, we generated DeepPheno predictions for 18,860 genes with corre-

sponding protein entries in Swissprot/UniProtKB. For every specific phenotype, we compared

false positive genes and genes that are interacting with the phenotype-associated gene using

the STRING database [57]. We then computed the percentage of overlap. We found that on

average, 48% of our false positives interact with a phenotype-associated gene and may contrib-

ute to a phenotype-module within the interaction network. We tested whether this finding is

significant by performing a random simulation experiment. For every phenotype, we gener-

ated the same number of random gene associations as our predictions and computed the aver-

age overlap of false positives and interacting genes. We repeated this procedure 1,000 times

and tested the significance of having an average of 48% overlap. We found that random predic-

tions give an average of 24% overlap and the probability of observing 48% overlap under a ran-

dom assignment of genes to phenotypes is 0.02, demonstrating that the genes we predict for a

phenotype are significantly more likely to directly interact with a known phenotype-associated

gene.

In addition, we investigated in some cases whether the false positive gene–phenotype asso-

ciations were reported to be significant in GWAS studies. We used the GWAS Catalog [58] to

determine if some of our false predictions were reported in GWAS studies, and tested the phe-

notypes Type II Diabetes mellitus (HP:0005978) and Hypothyroidism (HP:0000821)

since they are specific phenotypes in HPO and are very well studied with many GWAS
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analyses. Type II Diabetes is associated with 136 genes in the HPO database and we predict

189 genes with DeepPheno. 69 genes from our predictions were already included in the HPO

database and we consequently generated 120 false positives. We found that our false positive

associations with genes WFS1, HNF4A, NPHP4, and TXNL4B were reported to be associated

with Type II Diabetes in GWAS Catalog while the others were not. NPHP4 was also associated

by a GWAS study using the UK Biobank dataset (https://www.nealelab.is/uk-biobank). For the

Hypothyroidism (HP:0000821) phenotype, we predict 61 genes which are not in our train-

ing set. A GWAS study using the UK Biobank dataset reported an association with LGR4 gene

which is in our false positive set. As we predict genes that interact with phenotype-associated

genes, and while the predicted genes do mostly not reach genome-wide significance in GWAS

studies, a possible explanation may be that some of the predicted genes have only low effect

sizes, preventing them from being detected in a GWAS study. In future research, it may be

possible to explore this hypothesis further by directly evaluating interaction models and Deep-

Pheno’s predictions on GWAS datasets.

Discussion

DeepPheno can predict sets of gene–phenotype associations from gene functional annotations.

Specifically, it is designed to predict phenotypes which arise from a loss of function (where

functions are represented using the Gene Ontology) and we have illustrated how DeepPheno

relates loss of functions to their downstream phenotypic effects. While DeepPheno was trained

using phenotypes arising from the loss of function of a gene, its reliance on functions (instead

of structural features) may allow it to also be applied to different alterations of gene function

such as partial loss of function. Together with function prediction methods such as DeepGO-

Plus [31], DeepPheno can, in principle, predict phenotype associations for protein-coding

genes using only the protein’s amino acid sequence. However, DeepGOPlus was trained on

experimentally annotated sequences of many organisms, including several animal model

organisms. It further combines global sequence similarity and a deep learning model which

learns to recognize sequence motifs as well as some elements of protein structure. The combi-

nation of this information is implicitly used in DeepGOPlus and its predictions, and is there-

fore able to predict physiological functions that are closely related to the abnormal phenotypes

predicted by DeepPheno.

Evaluation

We evaluated DeepPheno on two datasets and compared its predictions with the top perform-

ing methods in the CAFA2 challenge. DeepPheno showed overall the best performance in the

evaluation with time based split. However, when we compared the performance of DeepPheno

on 5-fold cross-validation on CAFA2 challenge training set with other hierarchical classifica-

tion methods such as PhenoStruct [15] and HTD/TPR [34], our method did not outperform

HTD/TPR methods combined with support-vector machine classifiers and resulted in the

same performance as PhenoStruct. We think that the main reason for this is that we only rely

on function annotations and the other methods use additional features such as protein–pro-

tein interactions, literature and disease causing variants associated through gene-disease asso-

ciations from HPO [10]. We did not use gene expression data because it was not available

during CAFA2 challenge. However, in our experiment with recent data, we have shown that

DeepPheno can easily combine features from multiple sources which resulted in improvement

of its performance.
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Hierarchical classifier

We implemented a novel hierarchical classfication neural network in DeepPheno. It was

inspired by our previous hierarchical classifer in DeepGO [32]. However, the version used in

DeepPheno is significantly faster and scalable. The main difference here is that DeepPheno

uses only one layer which stores ontology structure whereas DeepGO had a layer for each class

in the ontology which required a connection to its children classes. Also, our new model

achieves hierarchical consistency by a simple matrix multiplication operation followed by a

MaxPooling layer and does not require complex operations. In DeepGO, the largest model can

predict around 1, 000 classes while DeepPheno predicts around 4, 000.

We specifically compare DeepPheno with other hierarchical classification methods such as

PhenoStruct [15] and HTD/TPR [34]. Also, we use the true path rule [27] to fix hierarchical

dependencies of DeepPhenoFlat classifiers and compare them with our hierarchical classifiers.

In all cases, the DeepPheno models outperform flat classifiers that apply the true path rule

after predictions.

Hierarchical deep neural networks have also been used to simulate interactions between

processes within a cell and predict (cellular) phenotypes, notably in the DCell model [59].

DCell established a correspondence between the components of a deep neural network and

ontology classes, both to model the hierarchical organization of a cell and to provide a means

to explain genotype–phenotype predictions by identifying which parts of the neural network

(and therefore which cell components or functions) are active when a prediction is made.

DeepPheno uses ontologies both as input and output and to ensure that predictions are consis-

tent with the HPO, but does not directly enable the interpretability of models such as DCell.

DeepPheno also solves a different problem compared to DCell; while DCell relates (yeast)

genotypes to growth phenotypes, DeepPheno predicts the phenotypic consequences of a loss

of function; while DCell can simulate the processes within a cell, DeepPheno aims to simulate

some aspects of human physiology and the phenotypes resulting from altering physiological

functions.

Limitations and future research

Currently, DeepPheno suffers from several limitations. Firstly, we use mainly function anno-

tations and gene expressions as features. This gives our model the ability to predict pheno-

types for many genes; however, phenotypes do not only depend on functions of individual

gene products but also they arise from complex genetic and environmental interactions.

Including such information may further improve our model. Specifically, we plan to include

different types of interactions between genes in order to improve prediction of complex

phenotypes.

Secondly, DeepPheno currently can only predict a limited number of phenotypes for which

we find at least 10 annotated genes. This limitation is caused by the need to train our neural

network model and limits DeepPheno’s ability to predict specific phenotypes which are the

most informative. One way to overcome this limitation is to include phenotype associations

with different evidence, such as those derived from GWAS study instead of using only pheno-

types resulting from Mendelian disease as included in the HPO database.

Finally, DeepPheno uses a simple fully connected layer and sparse representation of func-

tional annotations and do not considers the full set of axioms in GO and HPO. Although,

this model gave us the best performance in our experiments, we think that more “complex”

learning methods which encode all semantics in the ontologies need to be considered in the

future.
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Conclusions

DeepPheno provides a fast and scalable way of generating phenotype annotations from func-

tional annotations and expression values of genes. We developed a novel neural network based

hierarchical classification layer which can be easily integrated into any neural network archi-

tecture and which is applicable for many prediction tasks with a large number of classes with

hierarchical dependencies. Our model can combine different types of features (multi-modal);

therefore, it can be extended further by adding new information. We have shown that the per-

formance of the model increases with the number of training data and we believe that this will

allow our model to improve further in future. Our predictions are useful in associating genes

and diseases, and we make our predictions publicly available for most of human genes.

We observe that incorporating axioms in ontologies into optimization of learning task

helps to improve the model’s performance. Moreover, DeepPheno relies on ontologies to relate

altered molecular functions and processes to their physiological consequences. This property

of DeepPheno could be exploited for other applications that rely on deriving phenotypes from

functional aberrations.

Materials and methods

Evaluation and training data

Training and testing dataset. We downloaded the Human Phenotype Ontology (HPO)

version released on 15th of April, 2019 and phenotype annotations released on 3rd of June,

2019 from https://hpo.jax.org. The HPO provides annotations from OMIM and Orphanet. We

use gene–phenotype annotations from both sources and build a dataset of 4,073 genes anno-

tated with 8,693 different phenotypes. In total, the dataset has 529,475 annotations with an

average of 130 annotations per gene after propagating annotations using the HPO structure.

3,944 of the genes map to manually reviewed and annotated proteins from UniProtKB/Swis-

sProt [60]. We refer to this dataset as “June 2019”. We use reviewed genes/proteins and split

the dataset into 80% training and 20% testing sets. We use 10% of the training set as a valida-

tion set to tune the parameters of our prediction model. We generate 5 folds of random split

and report 5-fold cross-validation results.

In order to have sufficient data for training, we select HPO classes that have 10 or more

annotated genes. The model trained with this dataset can predict 3,783 classes. However, we

use all 8,693 classes when we evaluate our performance counting the classes that we cannot

predict as false negatives.

Our main features from which we predict phenotypes are gene functions. We use the Gene

Ontology (GO) [27] released on 17th of April, 2019 and GO annotations (uniprot_sprot.dat.

gz) from UniProtKB/SwissProt released in April, 2019. We construct three different datasets

with different types of functional annotations for the same genes. In the first dataset, we use all

annotations from the file which includes electronically inferred ones. The second dataset has

only experimental functional annotations. We filter experimental annotations using the evi-

dence codes EXP, IDA, IPI, IMP, IGI, IEP, TAS, IC, HTP, HDA, HMP, HGI, HEP. For the

third dataset, we use GO functions predicted by DeepGOPlus [31]. The number of distinct GO

classes which are used as features in our model is 24, 274.

Additionally, we perform an experiment where we combine gene functions with gene

expressions data downloaded from Expression Atlas [61] Genotype-Tissue Expression (GTEx)

Project (E-MTAB-5214) [62]. This data provides 53 features for each gene which are expres-

sion values of a gene for 53 different tissues. In total, there are expressions values for 40, 079

genes. We normalize values by genes and use zero for missing values.
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Comparison dataset. To compare our method with state-of-the-art phenotype prediction

methods we follow the CAFA [29] challenge rules and generate a dataset using a time based

split. CAFA2 [33] challenge benchmark data was collected from January 2014 until September

2014. We train our model on phenotype annotations that were available before the challenge

started and evaluate the model on annotations that appeared during the challenge period. Sim-

ilarly, we use function annotations that were available before a challenge starts and train Deep-

GOPlus on a UniProt/Swissprot version released in January 2014. We use the same versions of

HPO and GO that were used in the challenge. Here, our model can predict 2, 029 classes that

have 10 or more annotations for training.

In addition, phenotype prediction methods such as PHENOStruct [15] and HTD/TPR [34]

report 5-fold cross-validation evaluation results using the phenotype annotations released in

January 2014. We also follow their experimental setup and compare our results on this data.

Protein–protein interactions data. To evaluate false positive predictions generated by

our approach we use protein–protein interactions (PPI) data. We download StringDB PPI net-

works [57] version 11 published in January, 2019. StringDB is a database of protein’s func-

tional associations which includes direct physical and indirect functional interactions.

StringDB combines interactions from several primary PPI databases and adds PPI interactions

that are predicted with computational methods. We use interactions with a score of 0.7 or

above in order to filter high confidence interactions.

Baseline and comparison methods

We use several approaches to benchmark and compare our prediction results. The “naive”

approach was proposed by the CAFA [29] challenge as one of the basic methods to assign GO

and HPO annotations. Here, each query gene or protein g is annotated with the HPO classes

with a prediction score computed as

Sðg; pÞ ¼
Np

Ntotal
ð1Þ

where p is a HPO class, Np is a number of training genes annotated by HPO class p, and Ntotal

is a total number of training genes. It represents a prediction based only on the total number

of genes associated with a class during training.

The CAFA2 [33] challenge evaluates several phenotype prediction methods which present

state-of-the-art performance for this task. We train and test our model on the same data and

compare our results with top performing methods. The CAFA3 [30] challenge also evaluated

HPO predictions but did not release the evaluation results yet.

HPO2GO predicts HPO classes by learning association rules between HPO and GO classes

based on their co-occurrence in annotations [19]. The idea is to map every HPO class p to a

GO class f and score the mapping with the following formula:

Sðp; f Þ ¼
2 � Np&f

Np þ Nf
ð2Þ

where Np&f is the number of genes annotated with both p and f, Np is the number of genes

annotated with p and Nf is the number of genes annotated with f. In the prediction phase the

mappings are used to assign HPO classes to genes with available GO classes.

PHENOStruct [15] is a hierarchical multilabel classifier which predicts HPO classes using a

structured SVM method. The PHENOStruct method relies on multiple gene features such as

PPIs, GO functions, literature and genetic variants linked through gene-disease associations.
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The Hierarchcal Top-Down (HTD) and True Path Rule (TPR) [34] methods are hierarchi-

cal ensemble methods which first train a flat classification method and update prediction

scores using the ontology structure to fix inconsistencies of hierarchical label space. In the

HTD strategy, scores are propagated from parent to children starting from the root class. If a

parent has a lower score than its child then the child’s score will be updated to the parent’s

score. In the TPR strategy, all superclasses of predicted classes are added to the predictions.

Scores for the parent class are updated based on their children class scores. For example, a par-

ent class can take an average value of positively predicted children or a maximum of all chil-

dren scores. Both strategies guarantee consistency of prediction scores with hierarchical

dependencies of the labels. The main limitation of these strategies is that they do not consider

the hierarchical label space while training the models.

Evaluation metrics

In order to evaluate our phenotype predictions and compare our method with other compet-

ing methods we use the CAFA [29] gene/protein-centric evaluation metrics Fmax, area under

the precision-recall curve (AUPR) and Smin [63]. In addition to this, we report term-centric

area under the receiver operating characteristic curve (AUROC) [64]. We compute AUROC

for each ontology class and then take the average.

Fmax is a maximum gene/protein-centric F-measure computed over all prediction thresh-

olds. First, we compute average precision and recall using the following formulas:

priðtÞ ¼
P

pIðf 2 PiðtÞ ^ p 2 TiÞ
P

pIðp 2 PiðtÞÞ
ð3Þ

rciðtÞ ¼
P

pIðf 2 PiðtÞ ^ p 2 TiÞ
P

pIðp 2 TiÞ
ð4Þ

AvgPrðtÞ ¼
1

mðtÞ
�
XmðtÞ

i¼1

priðtÞ ð5Þ

AvgRcðtÞ ¼
1

n
�
Xn

i¼1

rciðtÞ ð6Þ

where p is an HPO class, Ti is a set of true annotations, Pi(t) is a set of predicted annotations

for a gene i and threshold t, m(t) is a number of proteins for which we predict at least one

class, n is a total number of proteins and I is an identity function which returns 1 if the condi-

tion is true and 0 otherwise. Then, we compute the Fmax for prediction thresholds t 2 [0, 1]

with a step size of 0.01. We count a class as a prediction if its prediction score is higher than t:

Fmax ¼ max
t

2 � AvgPrðtÞ � AvgRcðtÞ
AvgPrðtÞ þ AvgRcðtÞ

� �

ð7Þ

Smin computes the semantic distance between real and predicted annotations based on infor-

mation content of the classes. The information content IC(c) is computed based on the annota-

tion probability of the class c:

ICðcÞ ¼ � logðPrðcjPðcÞÞ ð8Þ

where P(c) is a set of parent classes of the class c. The Smin is computed using the following
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formulas:

Smin ¼ min
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ruðtÞ2 þmiðtÞ2
q

ð9Þ

where ru(t) is the average remaining uncertainty and mi(t) is average misinformation:

ruðtÞ ¼
1

n

Xn

i¼1

X

c2Ti � PiðtÞ

ICðcÞ ð10Þ

miðtÞ ¼
1

n

Xn

i¼1

X

c2PiðtÞ� Ti

ICðcÞ ð11Þ

Gene–disease association prediction

To evaluate predicted phenotype annotations we downloaded gene-disease association data

from OMIM [65]. The OMIM database provides associations for around 6,000 diseases and

14,000 genes. We filter these associations with the genes from our randomly split test set and

their associated diseases. In total, the dataset has 561 associations of 395 genes with 548

diseases.

We predict an association between gene and disease by comparing their phenotypes. Our

hypothesis is that if a gene and disease are annotated with similar phenotypes then there could

be an association between them [36]. We compute Resnik’s [66] semantic similarity measure

for pairs of phenotype classes and use the Best-Match-Average (BMA) [67] strategy to com-

bine similarites for two sets of annotations. We use the similarity score to rank diseases for

each gene and report recall at top 10 rank, recall at top 100, mean rank and the area under the

receiver operating characteristic curve (AUROC) [64] for each prediction method.

Resnik’s similarity measure is defined as the most informative common anchestor (MICA)

of the compared classes in the ontology. First, we compute information content (IC) for every

class with following formula:

ICðcÞ ¼ � logðpðcÞÞ

Then, we find Resnik’s similarity by:

SimResnikðc1; c2Þ ¼ ICðMICAðc1; c2ÞÞ

We compute all possible pairwise similarities of two annotation sets and combine them with:

SimBMAðA;BÞ ¼
avg
c12A
ðmax

c22B
ðsðc1; c2ÞÞÞ þ avg

c12B
ðmax

c22A
ðsðc1; c2ÞÞÞ

2

where s(x, y) = SimResnik(x, y).

DeepPheno model

The aim of DeepPheno is to predict phenotypes which result from the loss of function of a sin-

gle gene. In order to achieve this goal, we need to combine different types of features such as

functions of gene products, molecular and multi-cellular interactions, pathways, and physio-

logical interactions. Our approach is to use existing experimental and predicted function

annotations of proteins, and learn the associations between combinations of functions and
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phenotype annotations. We use OMIM [11, 65] diseases and their phenotype annotations

from the HPO [10] to learn associations between sets of GO functional annotations and sets of

HPO phenotype annotations. Since experimental function annotations are not available for all

gene products, we also utilize the sequence-based function prediction method DeepGOPlus

[31], which uses information of function annotations in many organisms, to fill this gap and

predict the functions of gene products. Consequently, DeepPheno can predict phenotypes for

all protein-coding genes with an available sequence.

Our phenotype prediction model is a fully-connected neural network followed by a novel

hierarchical classification layer which encodes the ontology structure into the neural network.

DeepPheno takes a sparse binary vector of functional annotation features and gene expression

features as input and outputs phenotype annotation scores which are consistent with the

hierarchical dependencies of the phenotypes in HPO; the input vector is deductively closed

following the taxonomy and axioms in the GO ontology, i.e., function annotations are

propagated. Fig 2 describes the model architecture. The first layer is responsible for reducing

the dimensionality of our sparse function annotation input and expression values are

concatenated to it. The second layer is a multi-class multi-label classification layer with sig-

moid activation functions for each neuron. We use a dropout layer after the first fully-con-

nected layer to avoid overfitting during training. The number of units in the second layer is

the same as the number of prediction classes and its output is considered as the output of a

“flat” classifier, i.e., a classifier which does not take the taxonomy of HPO into account. Our

novel hierarchical classification layer computes the score for a class by selecting the maximum

score of its descendants (i.e., subclasses according to the HPO axioms).

DeepPheno’s hierarchical classification layer was inspired by the hierarchical classifier of

DeepGO [32]. In DeepGO, each output class had a classification layer which was connected to

its direct children’s classifiers with a maximum merge layer. The main limitation of this

method was its performance both in terms of training and runtime, since all the computations

were performed sequentially. Consequently, the model did not scale to large ontologies such as

GO or HPO. The novel hierarchical classification layer we implement in DeepPheno over-

comes the limitations of the hierarchical classification previously used in DeepGO by using

matrix multiplication operations and MaxPooling layers to encode the consistency constraints

of phenotype annotations that arise from the ontology’s taxonomic structure. We implement

the layer by multiplying the sigmoid output vector with a binary vector encoded for the hierar-

chical dependencies in GO, where a value of “one” indicates that a class at this positions is a

descendant of the class to be predicted; this multiplication is then followed by MaxPooling

layer. Formally, given a vector x for a set of phenotype classes P such that xi is a prediction

score for a phenotype pi at position i, then we define the hierarchical classification function h
(x) as:

hðxÞ ¼ max
pi2P
ðx � sðpiÞÞ ð12Þ

where s is a function which returns a binary vector that encodes the subclass relations between

pi and all other phenotype classes. The value of the vector s(pi) at position j is 1 if pj is a (reflex-

ive) subclass of pi (pjv pi), and 0 otherwise. The function returns a vector of the same size as x

which will be consistent with the true-path-rule because a prediction score of a class will be the

maximum value of the prediction scores of all its subclasses. The use of elementwise matrix

multiplication and pooling allows this hierarchical classification function to be implemented

efficiently (in contrast to the sequential computation model of DeepGO) and we use this classi-

fication function during training of DeepPheno as well as during prediction. Fig 3 provides an

example of the hierarchical classification function.

PLOS COMPUTATIONAL BIOLOGY DeepPheno

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008453 November 18, 2020 16 / 22

https://doi.org/10.1371/journal.pcbi.1008453


Training and tuning of model parameters

We evaluated several models with two, three and four fully connected layer models. We

selected the number of units for each layer from {250, 500, . . ., 4000} with dropout rate from

{0.2, 0.5} and learning rate from {0.01, 0.001, 0.0001} for the Adam optimizer [68]. We trained

the models with mini-batch size of 32. We performed 50 trials of random search for best

parameters for each type of the models and selected the best model based on validation loss.

We use the TensorFlow 2.0 [69] machine learning system with Keras API and tune our param-

eters with Keras Tuner.

Our model is trained and tuned in less than 1 hour on a single Nvidia Quadro P6000 GPU.

In average, it annotates more than 100 samples per second.

Fig 2. Neural network model architecture.

https://doi.org/10.1371/journal.pcbi.1008453.g002
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