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Background: To evaluate the dosimetric parameters of different bone marrow sparing
strategies and radiotherapy technologies and determine the optimal strategy to reduce
hematologic toxicity associated with concurrent chemoradiation (cCRT) for cervical cancer.

Methods: A total of 15 patients with Federation International of Gynecology and
Obsterics (FIGO) Stage IIB cervical cancer treated with cCRT were re-planned for bone
marrow (BM)-sparing plans. First, we determined the optimal BM sparing strategy for
intensity modulated radiotherapy (IMRT), including a BMS-IMRT plan that used total BM
sparing (IMRT-BM) as the dose-volume constraint, and another plan used os coxae (OC)
and lumbosacral spine (LS) sparing (IMRT-LS+OC) to compare the plan without BM-
sparing (IMRT-N). Then, we determined the optimal technology for the BMS-IMRT,
including fixed-field IMRT (FF-IMRT), volumetric-modulated arc therapy (VMAT), and
helical tomotherapy (HT). The conformity and homogeneity of PTV, exposure volume of
OARs, and efficiency of radiation delivery were analyzed.

Results: Compared with the IMRT-N group, the average volume of BM that received ≥10,
≥20, ≥30, and ≥40 Gy decreased significantly in both two BM-sparing groups, especially
in the IMRT-LS+OC group, meanwhile, two BMS-IMRT plans exhibited the similar effect
on PTV coverage and other organs at risk (OARs) sparing. Among three common IMRT
techniques in clinic, HT was significantly less effective than VMAT and FF-IMRT in the
aspect of BM-Sparing. Additionally, VMAT exhibited more efficient radiation delivery.

Conclusion:We recommend the use of VMAT with OC and LS as separate dose-volume
constraints in cervical cancer patients aiming at reducing hematologic toxicity associated
with cCRT, especially in developing countries.

Keywords: cervical cancer, bonemarrow sparing, helical tomotherapy (HT), volume-modulated arc therapy (VMAT),
intensity-modulated radiotherapy (IMRT)
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BACKGROUND

Cervical cancer is the fourth most commonly diagnosed
malignancy and also the fourth most frequent cause of cancer-
related mortality in women worldwide (1). The cisplatin-based
cCRT has been accepted as a standard treatment for most
cervical cancer patients since 1999 (2). In comparison with
radiation therapy (RT) alone, cCRT increases tumor control
and improves patients’ prognosis (3, 4). However, the incidence
of acute hematological toxicity also increases (5). Therefore,
hematologic toxicity, which may result in treatment breaks and
poor prognosis of patients (6–8), is a significant clinical interest
during the duration of cCRT in cervical cancer patients.

Previous studies demonstrate that the occurrence of
hematologic toxicity is associated with the volume of irradiated
pelvic bonemarrow (BM) (9–11). Therefore, BM-sparing IMRT is
considered an effective strategy to reduce hematologic toxicity in
pelvic IMRT (9). More recently, studies have focused on
functionally active BM sparing using [18F] fluoro-2-deoxy-2-D-
glucose (FDG) and 3’-deoxy-3’-[18F] fluorothymidine (FLT)
positron emission tomography/CT (PET/CT) (12–15). However,
functional imaging is expensive and not universally available,
especially in developing countries. Therefore, we explored the
optimal dose limitation strategy and radiotherapy technology in
BM-sparing IMRT for cervical cancer patients basedon the current
RT conditions available in most developing countries.

Previous studies have shown the IMRT plans using the
lumbosacral spine (LS) and os coxae (OC) as the dose-volume
constraints showed the best sparing of BM (16). Currently, the
radiotherapy technologies commonly used in the treatment of
cervical cancer include FF-IMRT, VMAT, and HT. Therefore,
the present study aims to answer 1) which BM sparing strategy
(e.g., the total BM in pelvic or BM as OC and LS separately) is
more beneficial BM-sparing IMRT for cervical cancer patients?
and 2) which radiotherapy technology is more effective and
efficient in BM-sparing IMRT for patients with cervical cancer,
FF-IMRT, VMAT, or HT?
METHODS

Patients and Imaging Data
A total of 15 patients diagnosed with FIGO Stage IIB cervical
cancer and treated with cCRT in our hospital between June 1st
2019 and July 30th 2019 were selected for the present study, and
patients’ information is shown in Table 1. All the patients
undergone external beam radiotherapy (EBRT), brachytherapy,
and concurrent chemotherapy. Before EBRT, all the patients were
scanned using a Philips 16-slice Brilliance big bore computed
tomography scanner (Philips Medical Systems, Amsterdam,
Netherlands) with 5 mm slice thickness images, collected from
the upper border of L2 vertebra to the region of 5 cm below the
ischial tuberosities. All the patients were immobilized with
thermoplastic mold in a supine position with comfortably full
bladder and bowel preparation prior to simulation (after bladder
emptying, patients were requested to drink 800 ml of water with
Frontiers in Oncology | www.frontiersin.org 2
40 ml 60% Meglumine Diatrizoate 1 h before treatment and hold
their urine). The CT scan images were transmitted into the
Pinnacle3 9.10 (Philips Medical Systems, Cleveland, USA)
planning system for targets and OARs contouring. The CT scan
images and RT structures were transmitted to the Monaco 5.11
(Elekta AB, Stockholm, Sweden) planning system and
Tomotherapy planning system (TomoTherapy Inc., Madison,
WI) for radiotherapy planning design.

Target and Normal Tissue Delineation
Targets and OARs were delineated by the same associated chief
physician. Delineation was performed according to the
recommendations of the Radiation Therapy Oncology Group
(RTOG) 0418 protocol and the International Commission on
Radiation Units and Measurements reports (ICRU) Report 62.
The clinical target volume (CTV) was defined as regions
considered to embrace potential microscopic disease, including
the gross tumor volume (GTV), cervix, parametria, uterus,
uterosacral ligaments, sufficient vaginal margin from the gross
disease (at least 3 cm), presacral region, and regional lymph
nodes (e.g., common, internal, and external iliac, obturator, and
presacral nodal basins). On account of the application of image
guidance technique during radiotherapy, the target volume
(PTV) expanded a 5 mm margin by CTV.

The following OARs were delineated as avoidance structures:
bladder, small intestine, rectum, spinal cord, femoral heads, BM,
OC, LS. Total BM was contoured from the centrum 2 cm above
the upper boundary of PTV to the ischial tuberosities, including
the pelvis, L4-5 centrum, and sacrum. We only contoured the
marrow cavity of the intramedullary low-density area, which
contains most of the hematopoietically active bone marrow,
based on the bone window/level of CT simulation in pinnacle
9.10 planning system. And as reported previously (16), the total
BM was also divided into two parts in this study: OC—defined as
the region extending from the iliac crests to the ischial
tuberosities comprising the ilium, pubis, ischium, and
acetabula but not containing the femoral heads; and LS—
extending from centrum 2 cm above the upper boundary of
PTV to the coccyx. The contour of marrow cavity was shown in
Figure 1.
TABLE 1 | Clinicopathological characteristics of the patients with cervical
squamous cell carcinoma.

Variables No. Patients (N = 15)

Age(years)
<45 9
≥45 6

SCC-Ag value
1.5–10 11
>10 4

Tumor size(cm)
≤4 10
>4 5

Deep stromal invasion
No 4
Yes 11
December 2020 | Volum
e 10 | Article 554241

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yu et al. BM-Sparing IMRT and Cervical Cancer
RT Planning
All patients were treated with IMRT of 45.0 Gy in 25 daily fractions
to PTV. In all plans, the PTVhad the highest priority. The standard
for the acceptance of the plan was that at least 95% volume of the
PTV received 100% of the prescription dose, meanwhile the
maximal dose of the PTV should be <110% of the prescribed
dose. Dose-volume constraints for OARs were listed in Table 2.
Radiotherapy Technologies
FF-IMRT plans were used to determine which between BM-
sparing strategy is more beneficial in BM-sparing IMRT for
patients with cervical cancer. And then we also confirmed the
most effective and efficient technology among FF-IMRT, VMAT,
and HT.
Frontiers in Oncology | www.frontiersin.org 3
Fixed-Field IMRT Plan
The fixed-field IMRT plans were done in the Monaco 5.11
planning system and used 6 MV x-ray of a versa HD linear
accelerator (Elekta Ltd., Crawley, UK). FF-IMRT plans were
generated using nine evenly distributed coplanar fields with the
gantry angles of 200°/240°/280°/320°/0°/40°/80°/120°/160°, and
25 control points were set in each beam. All FF-IMRT plans were
calculated using Monte Carlo algorithm and the DMLC (sliding
window) technique.

VMAT Plan
Similar to the FF-IMRT plans, the VMAT plans were done in the
Monaco 5.11 planning system, used 6 MV x-ray of a versa HD
linear accelerator, and computed using the Monte Carlo
algorithm. The VMAT plans were designed using one beam
with two full arcs, and there was 150 control points were found in
each arc. The optimization objectives of the VMAT plans were
the same as those of the FF-IMRT plans.

HT Plan
The DICOM images and RT structures were transferred to the
tomotherapy planning system (Accuray Inc., Madison, WI,
USA) for HT plans with 6MV photon beams. The beamlet
calculation parameters included a field width of 2.5 cm, pitch
value of 0.287, modulation factor of 3, and a normal dose
calculation grid.
A B

DC

FIGURE 1 | Typical figures showing contours for bone marrow cavity of pelvic: Digital reconstruction (A) of pelvic bone cavity of LS (orange line) and OC (blue line);
An axial (B), sagittal (C) and coronal (D) figure for inner cavity of LS (orange line) and OC (blue line).
TABLE 2 | The dose-volume constraints of normal tissues in cervical cancer.

Structures Dose-volume constraints

Small bowel V40 < 30%, Dmax < 48Gy
Rectum V40 < 40%, Dmax < 48Gy
Bladder V40 < 40%
Femoral head V40 < 5%
Spinal cord Dmax < 40 Gy
BM V10 < 80%, V20 < 60%, V30 < 40%
OC V10 < 80%, V20 < 50%, V30 < 30%
LS V10 < 90%, V20 < 70%, V30 < 40%
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Plan Evaluation
The dose volume histograms (DVHs) obtained from the PTV
and other contoured OARs were analyzed. Dosimetric
parameters, including D98% (the dose received 98% volume of
the PTV), D50%, D2%, the mean dose (Dmean), conformity index
(CI), and homogeneity index (HI), were quantified from the
PTV. CI was defined to evaluate the conformity of prescribed
dose distribution (17).

CI =
Vt,ref

Vt
� Vt,ref

Vref

Here Vt,ref, Vt, and Vref denoted the target volume that
receives the prescribed dose, the target volume, and the total
volume covered by the prescribed dose, respectively. The CI
ranges from 0 to 1, in which a higher CI represents better
conformity. According to ICRU report NO.83 (18), the HI was
calculated as follows:

HI =
D2% − D98%

D50%

The smaller value of HI indicates better homogeneity of the
target volume.

For OARs: Data analysis was carried out for the V10 (the OAR
volume received the dose of 10 Gy), V20, V30, V40, Dmean, and
Dmax. Treatment time, including the time for radiation delivery
and gantry rotation, was also collected and compared.

Treatment Regimen
EBRT was delivered by FF-IMRT, VMAT, or HT, and the total
dosage of EBRT was 45 Gy (applied in daily fractions of 1.8 Gy,
five fractions weekly). Patients also received brachytherapy using
Ir192 radioactivity (high-dose rate) with a total dosage of 30–36
Gy for each A point (5–6 fractions at 6 Gy per fraction) once or
twice weekly. As a result of the dose in brachytherapy has a sharp
decline, its dose was not included in the dosimetric analysis.
Patients were also received 30–40 mg/m2 of cisplatin/nedaplatin
once a week continuously during EBRT, beginning at the first
day of radiation. The course of cCRT lasted 6–8 weeks.
Statistical Methods
Each treatment plan was normalized to the same coverage of 95%
of the PTV with the prescribed dose to maintain the
comparability of the results. Then, the dose-volume histogram
(DVH) parameters of PTV and OARs were analyzed using
paired t test. Statistical analyses were performed using SPSS
version 16.0 (SPSS, Chicago, IL), and P <0.05 was considered
statistically significant.
RESULTS

The median age of all the included patients is 45 years (38–69
years). The mean volume values for PTV were 1,095.41 ± 135.49
cc. The mean volume values for the small intestine, rectum, and
Frontiers in Oncology | www.frontiersin.org 4
bladder were 1,471.06 ± 323.10, 64.85 ± 21.79, and 262.41 ±
148.88 cc, respectively. The mean volume value for the bone
marrow was 283.34 ± 32.64 cc for LS and 436.06 ± 63.02 cc for
OC, respectively.

Comparison of IMRT-N, IMRT-BM, and
IMRT-LS+OC
PTV dosimetric parameters and comparisons among the two
BM-sparing strategies and nomal IMRT plans were summarized
in Table 3. Compared with the IMRT-N, the IMRT-BM plans
have the similar CI and HI, and the IMRT-LS+OC plans have
similar HI and a slightly lower CI (Figure 2A), which is only
approximately 1.12% (IMRT-LS+OC Vs. IMRT-N: 0.883 ± 0.023
Vs. 0.893 ± 0.022, P < 0.001), indicating a slightly poorer
conformal dose distribution to the PTV. Also compared with
IMRT-N, the mean PTV dose increased in the IMRT-LS+OC
with the differences within 0.20% (IMRT-LS+OC Vs. IMRT-N:
0.883 ± 0.023 Vs. 0.893 ± 0.022, P < 0.001). Although a statistical
difference in Dmean and CI between IMRT-N and IMRT-LS+OC
was observed, the difference of the absolute value is very small
and the CI in all these three types of plans is ideal. In general, all
these three types of plans maintained the coverage of PTV, with
95% of the total volume receiving 100% of the prescribed dose
(Figure 3).

The dose parameters of the BM are also listed in Table 3, and
the typical dose-volume histograms for BM are shown in Figures
4A, B. Compared with the IMRT-N group, the average volume
of BM receiving ≥10, ≥20, ≥30, and ≥40 Gy and the mean dose
decreased significantly in the two BM-sparing groups, especially
in the IMRT-LS+OC group. The volume reductions are
presented as follows: 2.49 and 6.23% for V10 (IMRT-BM Vs.
MRT-N: 84.22 ± 1.48 Vs. 86.37 ± 2.50%, P = 0.003; IMRT-LS+OC
Vs. IMRT-N: 80.99 ± 2.10 Vs.86.37 ± 2.50%, P < 0.001), 9.35 and
19.42% for V20 (IMRT-BM Vs. IMRT-N: 65.54 ± 2.13
Vs.72.30 ± 2.34%, P < 0.001; IMRT-LS+OC Vs. IMRT-N:
58.26 ± 1.10 Vs 72.30 ± 2.34%, P < 0.001), 12.85 and 28.69%
for V30 (IMRT-BMVs. IMRT-N: 43.96 ± 1.76 Vs. 50.44 ± 3.24%,
P < 0.001; IMRT-LS+OC Vs. IMRT-N: 35.97 ± 1.32 Vs. 50.44 ±
3.24%, P < 0.001), and 11.31 and 30.09% for V40 (IMRT-BM Vs.
IMRT-N: 18.66 ± 2.04 Vs. 21.04 ± 2.69%, P < 0.001; IMRT-LS
+OC Vs. IMRT-N: 14.71 ± 1.47 Vs. 21.04 ± 2.69%, P < 0.001),
and the mean dose reduction for bone marrow was 6.45 and
13.00% (IMRT-BM Vs. IMRT-N: 26.12 ± 0.36 Vs. 27.92 ± 0.86%,
P < 0.001; IMRT-LS+OC Vs. IMRT-N: 24.29 ± 2.55 Vs. 27.92 ±
0.86%, P < 0.001).

The dose parameters of other OARs were also listed in Table
3. According to our results, not all the plans achieved our dose-
volume constraints of OARs, the main reason is that the priority
of PTV is the highest in the plan parameter setting. In the case
that the OARs cannot achieve the preset conditions, the OARs
will compromise to ensure the CI and HI of PTV.

The mean V20 and V40 of small intestine and V10 of rectum,
were statistically and significantly increased by the IMRT-BM
and IMRT-LS+OC plans compared with the IMRT-N plan.
However, the difference of the absolute value is very small and
still within our dose-volume constraint. On the contrary, Dmax
December 2020 | Volume 10 | Article 554241
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A B

FIGURE 2 | Conformity index (CI) and homogeneity index (HI) for planning target volume (PTV) with different BM-sparing strategies (A) and different radiotherapy
technologies (B). *P < 0.05, **P < 0.01, ***P < 0.001. ns: P > 0.05, no statistical significance.
TABLE 3 | Dose-volume histogram comparisons for PTV and main OARs in IMRT plans.

OARs IMRT-N IMRT-BM IMRT-LS+OC P*

IMRT-BM VS IMRT-N IMRT-LS+OC VS IMRT-N IMRT-LS+OC VS IMRT-BM

PTV
Dmean (Gy) 45.95 ± 0.11 45.96 ± 0.07 46.04 ± 0.14 0.253 0.001 0.005
HI 0.053 ± 0.005 0.053 ± 0.005 0.053 ± 0.005 0.334 1.000 0.334
CI 0.893 ± 0.022 0.891 ± 0.018 0.883 ± 0.023 0.384 <0.001 0.006

Bone marrow (BM)
V10 (%) 86.37 ± 2.50 84.22 ± 1.48 80.99 ± 2.10 0.003 <0.001 <0.001
V20 (%) 72.30 ± 2.34 65.54 ± 2.13 58.26 ± 1.10 <0.001 <0.001 <0.001
V30 (%) 50.44 ± 3.24 43.96 ± 1.76 35.97 ± 1.32 <0.001 <0.001 <0.001
V40 (%) 21.04 ± 2.69 18.66 ± 2.04 14.71 ± 1.47 <0.001 <0.001 <0.001
Dmean (Gy) 27.92 ± 0.86 26.12 ± 0.36 24.29 ± 2.55 <0.001 <0.001 0.025

Small intestine
V10 (%) 82.84 ± 4.60 83.04 ± 4.57 82.12 ± 4.25 0.276 0.056 0.013
V20 (%) 60.56 ± 6.29 63.43 ± 6.40 65.05 ± 5.62 <0.001 <0.001 0.027
V30 (%) 37.29 ± 7.38 37.73 ± 7.13 37.58 ± 7.37 0.164 0.528 0.745
V40 (%) 17.84 ± 5.52 18.18 ± 5.60 18.29 ± 5.44 0.007 0.026 0.513
Dmax (Gy) 47.00 ± 0.28 47.06 ± 0.19 47.16 ± 0.31 0.194 0.004 0.130

Rectum
V10 (%) 97.35 ± 2.96 97.68 ± 2.77 97.66 ± 2.88 0.018 0.019 0.839
V20 (%) 93.73 ± 3.70 93.94 ± 3.40 93.52 ± 3.30 0.327 0.404 0.072
V30 (%) 75.97 ± 3.99 76.12 ± 3.21 74.85 ± 3.91 0.877 0.256 0.177
V40 (%) 34.14 ± 4.99 34.56 ± 5.83 35.96 ± 6.85 0.602 0.125 0.212
Dmax (Gy) 45.46 ± 0.49 45.40 ± 0.50 45.70 ± 0.52 0.481 0.013 <0.001

Bladder
V10 (%) 98.64 ± 1.73 98.15 ± 2.08 98.19 ± 1.98 0.261 0.140 0.830
V20 (%) 82.34 ± 2.58 82.41 ± 3.36 82.41 ± 3.69 0.891 0.904 0.998
V30 (%) 63.73 ± 3.30 64.55 ± 1.93 64.57 ± 2.01 0.324 0.385 0.965
V40 (%) 43.37 ± 4.40 43.20 ± 5.71 43.51 ± 5.21 0.618 0.669 0.471

Spinal Cord
Dmax (Gy) 34.10 ± 3.03 28.40 ± 4.88 17.70 ± 3.74 <0.001 <0.001 <0.001

Femoral head-L
V10 (%) 76.19 ± 7.57 77.54 ± 8.25 78.96 ± 9.71 0.434 0.211 0.561
V20 (%) 38.42 ± 6.18 38.10 ± 5.55 37.61 ± 5.73 0.802 0.538 0.528
V30 (%) 14.41 ± 5.33 13.56 ± 5.23 11.74 ± 4.95 0.152 0.006 0.043
V40 (%) 0.794 ± 1.306 0.687 ± 1.290 0.687 ± 1.308 0.294 0.676 0.998

Femoral head-R
V10 (%) 73.84 ± 8.25 75.77 ± 6.80 77.25 ± 8.59 0.356 0.034 0.351
V20 (%) 33.70 ± 5.84 33.63 ± 6.81 34.06 ± 6.52 0.945 0.790 0.615
V30 (%) 11.93 ± 5.64 11.05 ± 5.24 10.44 ± 5.59 0.130 0.019 0.236
V40 (%) 1.043 ± 1.819 0.821 ± 1.645 0.564 ± 1.416 0.401 0.199 0.097
Frontiers in Oncology
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of the spinal cord showed a significant decrease in these two BM-
sparing plans, especially in the IMRT-LS+OC (IMRT-BM Vs.
IMRT-N: 28.40 ± 4.88 Vs. 34.10 ± 3.03%; IMRT-LS+OC Vs.
IMRT-N: 17.70 ± 3.74 Vs. 34.10 ± 3.03%, both P < 0.001), which
may be caused by the dose limitation of the adjacent BM.

Comparison of HT, VMAT, and FF-IMRT
Subsequently, we further investigated which radiotherapy
technology is more effective in IMRT-LS+OC for patients with
cervical cancer.

With regard to conformal and homogeneous dose distribution
to the PTV target dose distribution, a significant benefit from the
HT plans with lowest HI and highest CI were observed, and FF-
IMRT and VMAT were comparable (Table 4 and Figure 2B).
However, HT demonstrated a more inferior sparing in the BM
considering the V10, V20, and V30 of BM compared with FF-
IMRT andVMAT (all P < 0.001) (Figures 4C, D). Additionally, all
these three radiotherapy techniques resulted in sufficient sparing
of the OARs, and we have listed all the average doses to the OARs
in Table 4. The treatment time was also listed in Table 4 and
Figure 4E, the mean treatment time of FF-IMRT, VMAT, and HT
Frontiers in Oncology | www.frontiersin.org 6
were 583.53 ± 22.88, 294.13 ± 12.55, and 760.33 ± 53.48 s
respectively. In comparison with conventional FF-IMRT and
HT, the mean treatment time of VMAT was greatly decreased
by 49.59 and 61.32% (both P < 0.001).
DISCUSSION

Our study explored the optimal bone marrow sparing strategy
and radiotherapy technology in BM-sparing IMRT for cervical
cancer patients who receive the cCRT. Our results demonstrated
that BM-sparing IMRT plan with OC and LS as separate dose-
volume constraints achieved the best BM-sparing without
compromising target volume dose coverage and increasing the
radiation dose to other OARs. We also demonstrated that all
techniques achieved adequate coverage of PTV, however, VMAT
planning yielded better BM-Sparing and shorter estimated
treatment times when compared to HT planning.

It is known that BM is composed of both hematopoietically
active “red” marrow and inactive “yellow” marrow, and
FIGURE 3 | Typical dose distributions of the five plans in cervical cancer. (A) IMRT-N, (B) IMRT-BM, (C) IMRT-LS+OC, (D) VMAT-LS+OC, and (E) HT-LS+OC plans.
December 2020 | Volume 10 | Article 554241
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approximately 50% of hematopoietically active BM lies within the
lumbar sacrum, ilium, ischium, pubis, and proximal femur (19),
where are just adjacent to the pelvic EBRT field of cervical cancer.
Meantime, BM is extremely sensitive to irradiation, haematopoietic
stem cells is damaged and BM microenvironment is modified
adversely even at low doses (20–23). Previous studies indicated
that the mean radiation dose and the volume that receives lower
dose irradiation of the pelvic bone marrow were relative to
hematologic toxicity (24–27). With the development of
radiotherapy technology, IMRT that uses multiple beam angles or
arcs, can reduce irradiation dose to OARs, which is correlated with
reduced acute and late adverse events (AEs) (28–30). However, the
irradiation of a large volume of BM is unavoidable during
pelvic IMRT.

Asmost of previous studies focusing on PET-guided functional
BM demonstrated that most of the functional BMs were located in
the marrow cavity (12–15), OC, LS, and total BM were delineated
on the basis of themarrowcavity of the intramedullary low-density
area in our current study considering limited medical resources
and treatment cost in our developing countries. Our results
Frontiers in Oncology | www.frontiersin.org 7
demonstrated that BM-sparing IMRT plan with OC and LS as
separate dose-volume constraints achieved the best BM-sparing,
with the lowest volume of BMreceiving≥10,≥20,≥30, and≥40Gy.
With the rapiddevelopment of thefield of artificial intelligence, the
program of automatic delineation of OARs is becoming mature.
We applied the program of automatic delineation of OARs in the
MIMversion 6.7 system (MIMSoftware, Cleveland,USA) through
a database of 50 patients and delineated the OC and LS relatively
simple.Therefore,we recommended to introduceOCandLS as the
independent OARs and use dose-volume constraints in BM-
sparing IMRT. These results were similar to previous study on
BM-IMRT in cervical cancer of Prof. Bao (16), and the main
innovations of our study are the delineation method of bone
marrow and the dose constraint method of LS and OC.

Highly conformal radiation techniques have dramatically
improved, in which the most representative ones are HT and
VMAT. Compared with FF-IMRT plan, HT plan has a highly
conformal dose distribution and reduces the high-dose volume
of OARs close to the target (31, 32) while VMAT plans have less
monitor units (MUs) and treatment time. Our results from the
A B

D

E

C

FIGURE 4 | The comparison of planning target volume, bone marrow volume, and treatment time in BM-sparing IMRT. Typical dose-volume histograms for planning
target volume (purple) and bone marrow (green) (A+C), histogram for bone marrow volume (B+D) with three different dose limitation strategies for pelvic
radiotherapy: IMRT-N, IMRT-BM, and IMRT-LS+OC and three different radiotherapy technologies: IMRT-LS+OC, VMAT-LS+OC, and HT-LS+OC. Typical scatter
diagram for treatment time (E) with three different radiotherapy technologies. *P < 0.05, **P < 0.01, ***P < 0.001. ns: P > 0.05, no statistical significance.
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dosimetric comparison of these technologies in BM-sparing
IMRT demonstrated that all plans met our clinical demand,
and HT demonstrated the highest CI and lowest HI but the
inferior sparing of low-dose radiation in BM (e.g., V10, V20, and
V30). Meanwhile, compared with FF-IMRT and HT, the main
advantage of VMAT was that it spent relatively less time on
radiation delivery, thereby reducing patients’ discomfort and the
probability of patents’ moving during treatment. Collectively,
these results indicate that VMAT can be considered the most
optimized and effective technology in BM-sparing IMRT of
cervical cancer. To the best of our knowledge, no published
data compare the planning parameters of HT and VAMT vs. FF-
IMRT in terms of the effectiveness and efficiency of BM-sparing
IMRT in cervical cancer patients.

Aswe know, themedical resources are insufficient inmost of the
developing countries. Barriers to availability of radiotherapy in
these countries are attributed primarily to costs, including
Frontiers in Oncology | www.frontiersin.org 8
equipment cost and the cost of staff education. There are about
only two medical linear accelerators per million people in China.
Our results demonstrated that in the BM-sparing IMRT, the mean
treatment time of VMAT was greatly decreased by 49.59 and
61.32%, compared with the conventional FF-IMRT and HT. The
results are consistent with previous studies in other solid cancers
(33–35). Therefore, VMAT, with a better dose conformity or
sparing of OARs and a shorter treatment delivery time, is more
recommended in the BM-sparing IMRT for cervical cancer
patients, especially in the developing countries.

Our study has some limitations. First, we generally contoured
the low-density regions of the bone (marrow-cavity) as the BM
based on the bone window/level of CT simulation in pinnacle 9.10
planning system, this strategy may overestimate the volume of
active BM or define the active BM inadequately. Second, we used
the choice of uniform outward expansion of 5mm from CTV to
generate a PTV in all the cases because we used image-guided
TABLE 4 | Dosimetric parameters for PTV and main OARs in FF-IMRT, VMAT, and TOMO plans.

Parameters FF-IMRT VMAT TOMO P*

VMAT Vs. FF-IMRT TOMO Vs. FF-IMRT TOMO Vs. VMAT

PTV
Dmean (Gy) 46.04 ± 0.14 46.05 ± 0.09 46.17 ± 0.20 0.945 0.076 0.035
HI 0.053 ± 0.005 0.053 ± 0.005 0.046 ± 0.005 1.000 <0.001 <0.001
CI 0.883 ± 0.023 0.889 ± 0.017 0.901 ± 0.016 0.014 <0.001 <0.001
Bone marrow
V10 (%) 80.99 ± 2.10 82.30 ± 2.67 85.73 ± 0.54 0.013 <0.001 <0.001
V20 (%) 58.26 ± 1.10 57.60 ± 1.00 62.69 ± 1.00 0.061 <0.001 <0.001
V30 (%) 35.97 ± 1.32 35.27 ± 1.73 40.67 ± 1.12 0.062 <0.001 <0.001
V40 (%) 14.71 ± 1.47 14.91 ± 1.63 14.70 ± 1.63 0.450 0.956 0.334
Dmean (Gy) 24.49 ± 2.55 23.86 ± 0.27 25.56 ± 0.68 0.350 0.139 <0.001
Small intestine
V10 (%) 82.12 ± 4.25 83.74 ± 4.77 91.45 ± 4.32 <0.001 <0.001 <0.001
V20 (%) 65.05 ± 5.62 61.82 ± 6.22 61.59 ± 6.73 <0.001 <0.001 0.758
V30 (%) 37.58 ± 7.37 37.63 ± 6.41 36.82 ± 7.74 0.894 0.137 0.118
V40 (%) 18.29 ± 5.44 18.16 ± 5.58 16.53 ± 5.39 0.460 <0.001 0.002
Dmax (Gy) 47.16 ± 0.31 47.21 ± 0.29 46.98 ± 0.32 0.541 0.06 0.005
Rectum
V10 (%) 97.66 ± 2.88 98.28 ± 2.43 99.03 ± 1.74 0.001 0.010 0.071
V20 (%) 93.52 ± 3.30 95.30 ± 3.53 83.12 ± 7.90 <0.001 <0.001 <0.001
V30 (%) 74.85 ± 3.91 75.95 ± 3.75 54.06 ± 7.59 0.378 <0.001 <0.001
V40 (%) 35.96 ± 6.85 38.20 ± 4.57 27.26 ± 5.40 0.208 <0.001 <0.001
Dmax (Gy) 45.70 ± 0.52 43.90 ± 7.57 46.45 ± 0.53 0.360 <0.001 0.202
Bladder
V10 (%) 98.19 ± 1.98 99.29 ± 1.25 100 ± 0.00 0.014 0.003 0.045
V20 (%) 82.41 ± 3.69 85.28 ± 5.94 92.55 ± 10.54 0.025 <0.001 0.008
V30 (%) 64.57 ± 2.01 63.39 ± 2.62 61.45 ± 5.20 0.108 0.023 0.201
V40 (%) 43.51 ± 5.21 42.38 ± 5.45 35.89 ± 4.50 0.039 <0.001 <0.001
Spinal Cord
Dmax (Gy) 17.70 ± 3.74 13.98 ± 2.32 22.42 ± 3.75 <0.001 0.006 <0.001
Femoral head-L
V10 (%) 78.96 ± 9.71 86.80 ± 10.09 98.67 ± 2.00 0.005 <0.001 0.001
V20 (%) 37.61 ± 5.73 29.48 ± 8.31 66.52 ± 9.96 0.002 <0.001 <0.001
V30 (%) 11.74 ± 4.95 4.98 ± 3.30 29.41 ± 11.35 <0.001 <0.001 <0.001
V40 (%) 0.687 ± 1.308 0.089 ± 0.204 0.235 ± 0.593 0.078 0.221 0.349
Femoral head-R
V10 (%) 77.25 ± 8.59 82.96 ± 7.79 98.92 ± 1.99 0.043 <0.001 <0.001
V20 (%) 34.06 ± 6.52 26.89 ± 12.49 66.22 ± 9.23 0.064 <0.001 <0.001
V30 (%) 10.44 ± 5.59 4.29 ± 5.32 25.72 ± 10.61 <0.001 <0.001 <0.001
V40 (%) 0.564 ± 1.416 0.066 ± 0.144 0.058 ± 0.201 0.161 0.190 0.888
Treatment time (s) 583.53 ± 22.88 294.13 ± 12.55 760.33 ± 53.48 <0.001 <0.001 <0.001
December 2020 | Volume 1
*P value was computed by paired t test.
0 | Article 554241

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yu et al. BM-Sparing IMRT and Cervical Cancer
technique to reduce the positioning error. However, due to the
influence of organ motion, positioning error and other factors, the
generation rules ofPTVof radiotherapy for cervical cancerhavenot
reached a consensus. Lastly, this study only focused on the
dosimetric advantages of BM-sparing IMRT technology at the
planning and design level. Future work should focus on its
clinical significance correlated with the hematologic toxicity of
cervical cancer patients treated with cCRT.
CONCLUSION

Our study confirmed that BM-sparing IMRT plan with OC and
LS as separate dose-volume constraints achieved the best BM-
sparing without compromising target volume dose coverage.
Moreover, VMAT exhibited the optimal BM-sparing and
efficiency in all the advanced radiotherapy technologies.
Therefore, VMAT with OC and LS as separate dose-volume
constraints, as an effective BM-sparing IMRT, is a promising
treatment option to reduce hematologic toxicity for cervical
cancer patients in developing countries with limited medical
resources and expenditures, not only avoids expensive functional
imaging of active bone marrow but also improves the efficiency
of radiotherapy.
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