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Background: Hepatocellular carcinoma (HCC) is the main cause of mortality from cancer globally. This paper intends to classify
public gene expression data of patients with Hepatitis C virus-related HCC (HCV+HCC) and chronic HCV without HCC (HCV alone)
through the XGboost approach and to identify key genes that may be responsible for HCC.
Methods: The current research is a retrospective case–control study. Public data from 17 patients with HCV+HCC and 35 patients
with HCV-alone samples were used in this study. An XGboost model was established for the classification by 10-fold cross-
validation. Accuracy (AC), balanced accuracy (BAC), sensitivity, specificity, positive predictive value, negative predictive value, and F1
score were utilized for performance assessment.
Results: AC, BAC, sensitivity, specificity, positive predictive value, negative predictive value, and F1 scores from the XGboost
model were 98.1, 97.1, 100, 94.1, 97.2, 100, and 98.6%, respectively. According to the variable importance values from the
XGboost, the HAO2, TOMM20, GPC3, and PSMB4 genes can be considered potential biomarkers for HCV-related HCC.
Conclusion: A machine learning-based prediction method discovered genes that potentially serve as biomarkers for HCV-related
HCC. After clinical confirmation of the acquired genes in the following medical study, their therapeutic use can be established.
Additionally, more detailed clinical works are needed to substantiate the significant conclusions in the current study.
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Introduction

According to the most recent epidemiological and clinical data,
primary liver cancer is the sixth most prevalent type of cancer and
the third leading cause of death worldwide. About 906 000 new
cases and 830 000 deaths are reported each year. Primary liver
cancer includes hepatocellular carcinoma (HCC) and intrahepa-
tic cholangiocarcinoma, as well as other rare types[1,2]. Hepatitis
B virus (HBV), alcoholism, Hepatitis C virus (HCV), and
nonalcoholic fatty liver disease are among the most critical risk
factors for HCC[3].

Hepatotropic RNA viruses, or HCV, are blood-borne infec-
tions that exclusively infect the liver. Most people infected with
HCV will never be able to cure themselves of the virus, making
their condition chronic and lifelong. Fibrosis, cirrhosis, and HCC

are all serious liver diseases that occur due to HCV-induced
chronic inflammation. Cirrhosis affects 20–30% of HCV-infec-
ted people, and yearly, 1–4% of cirrhotic individuals develop
HCC[4,5]. In most cases, HCC develops alongside cirrhosis[6].
It has been reported that HCV infection can directly induce
HCC without cirrhosis in patients who develop HCC[7].
Approximately 34% of all instances of HCC in the United States
may be attributed to chronic HCV infection, making it the main
cause of HCC in Western countries[7]. The risk of HCC is
increased by 15 to 20-fold in patients infected with HCV[8,9].
Deaths from HCV-attributable HCC increased by 21.1 percent
over the last decade when deaths from HCC secondary to causes
other than HCV and alcohol remained stable[9]. Both geographic
location and ethnicity influence the incidence of HCC caused by
HCV. HCV is the most common cause of HCC in the United
States, Europe, Japan, and South America, whereas HBV is the
most common cause of HCC in Asia and Africa[10]. Concurrent
liver disease, viral genotype, lifestyle factors, obesity, and dia-
betes mellitus are the most critical risk factors for developing
HCC in chronic HCV infection[11].

HIGHLIGHTS

• In this study, we identified differentially expressed genes
for hepatitis C virus (HCV)-associated hepatocellular
carcinoma (HCC).

• HCV-related HCC and chronic HCV patients without
HCC were classified using the proposed machine learning
method.

• Possible genetic biomarkers for HCV-associated HCC
were identified at the end of the classification model.
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The spread of HCV is becoming an international health
crisis. In many regions, HCV is widespread and poses a
growing challenge for healthcare systems. Long-term effects,
including cirrhosis and HCC, are rising daily[12]. Chronic
HCV infection typically progresses slowly, with few cases of
severe liver disease appearing in the first 10 to 15 years fol-
lowing infection (even in individuals with co-factors for
fibrosis progression). Therefore, key factors determining
morbidity and mortality include the patient’s age and the
length of time they have had a chronic HCV infection[13].
Immune tolerance deteriorates due to chronic HCV infection,
resulting in a protracted inflammatory response in the liver.
Numerous nonviral agents induce cellular stress and liver
damage, culminating in persistent sterile inflammation. The
functional and morphogenetic changes in the liver are rever-
sible if the substances or stressors that cause the damage are
eliminated within the early stages of injury. As the liver shifts
from normal to pathological adaptability, the continuation
of chronic damage might result in irreparable impairment.
Cirrhosis of the liver is a pathological response to cellular
stress that results in structural and functional alterations in
the liver parenchyma to avoid harm. Virus-induced cellular
adaptation may be reversible or irreversible, depending on the
type and degree of the stressor[4].

Noncoding RNAs, such as microRNAs (noncoding RNAs that
are single-stranded and regulate gene expression primarily at the
post-transcriptional level) and long noncoding RNAs (noncoding
RNAs with lengths ranging from 200 nucleotides to 100 kilo-
bases), are increasingly being recognized as crucial players in the
regulation of liver function and hepatocarcinogenesis[14,15].
MiRNAs and lncRNAs have been reported in many studies of
HCC and HCV-related HCC[16,17]. If the data is sufficient, arti-
ficial intelligence (AI) can classify relevant patterns without
requiring a protracted time of learning[18].

Machine learning (ML) is a branch of AI that seeks to
anticipate new data through data-driven learning when
exposed to fresh data. AI/ML algorithms are widely employed
in illness diagnosis and clinical decision support systems in
recent years and have a wide range of applications. The fun-
damental infrastructure of apps for diagnosing genetic ill-
nesses, early cancer diagnosis, and recognizing patterns in
medical imaging relies on ML, which has a wide range of
applications in the health sector. With the availability of
massive datasets and increased processing power over the past
decade, ML approaches have attained excellent performance
in a variety of contexts[19,20]. Today, it is essential to diagnose
HCC, to identify/predict the genes that cause the occurrence of
HCC as biomarkers, and to use these biomarkers concerning
the HCC stage. Consequently, several clinical articles have
used ML techniques to discover genes that may serve as bio-
markers for HCC[21]. One study studied Noncoding RNAs for
HCV-associated HCC[17]. Another study employed ML to
diagnose HCC with HCV-associated chronic liver disease[22].
This work intends to classify public gene expression data of
patients with HCV-related HCC (HCV+HCC) and chronic
HCV without HCC (HCV alone) using the XGboost approach
and to identify significant genes that may contribute to the
development of HCC.

Methods

Study design and data

The current research is a retrospective case–control study, and the
XGboost method, one of the ML methods, was applied to open-
access gene expression data of HCV-related HCC and chronic
HCV patients without HCC. For this purpose, public data from
17 HCV-related HCC and 35 chronic HCV samples were
encompassed in the present study. Complementary DNA (cDNA)
microarrays achieved from liver samples were utilized for the
targeted analysis[23]. In genetics, cDNA refers to a DNA fragment
generated from mature mRNA using reverse transcriptase as a
catalyst. cDNA is the double-stranded DNA counterpart to
mRNA. In eukaryotes, mRNA is more valuable than genomic
sequence for determining polypeptide sequence. Since introns are
removed, scientists prefer to deal with cDNA to mRNA.
Consequently, RNA is intrinsically more unstable than DNA. In
addition, no technology for RNA molecule amplification and
purification exists. Reverse transcriptase synthesizes single-
stranded DNA molecules using mRNA as a template. This
molecule is then used to generate DNA with two strands[24].
Based on the design of the current study, the primary outcome
measure was the HAO2 gene in the HCV-related HCC and
chronic HCV patients without HCC.

Study protocol and ethics committee approval

This study, which utilized the open-access Gene Expression
Omnibus dataset from the National Center for Biotechnology
Information, involved human participants adhering to the ethical
standards of the institutional and national research committees,
the 1964 Helsinki Declaration and its later amendments, or other
ethical standards. Ethical approval for this study (Ethical
Committee No: 3647) was provided by the Ethical Committee of
Inonu University, Malatya, Turkey on 07 June 2022. This ret-
rospective case–control study is reported in line with the
Strengthening the Reporting Of Cohort Studies in Surgery
(STROCSS) guidelines[25].

Feature selection

Choosing which variables to include in a model is a crucial part of
any predictive modeling process, and data selection is a crucial
part of any statistical modeling process. Determining the most
valuable elements of the dataset to be utilized in the study before
dealing with massive datasets and models with high computing
costs will lead to significant efficiency in terms of outcomes.
Finding which aspects of a dataset affects the dependent variable
is the goal of feature selection. There is a risk of over-learning the
data and producing biased findings if there are too many expla-
natory factors and the computation time needed to process them
is too great.Moreover, it is challenging to understandmodels that
contain a large number of variables. Important influencing fac-
tors should be chosen before statistical modeling[26]. Large
datasets can overwhelm the effectiveness of most ML and data
mining techniques, leading to poor outcomes. As a result, redu-
cing the dimensionality yields better outcomes using these
approaches[27].

Gene expression huge datasets are massive. Modeling ana-
lyses require a long time due to the high amount of gene
expression datasets, and these datasets may lead to computa-
tional inefficiencies in the performed studies. Because of the
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high dimensionality, the model’s performance may suffer. A
classification method may overfit the training instances and
undergeneralize novel samples in gene expression datasets with
many genes. Several regularization strategies have been
developed for model fitting and variable selection in poorly
specified multiple regressions. These strategies include least
absolute shrinkage and selection operator (LASSO), ridge, and
elastic net. Compared to LASSO regularization, ridge reg-
ularization causes predictors to decrease, leading to more
stable parameter estimation. However, LASSO regularization
causes many regression coefficients to become precisely zero,
which allows for automatic variable selection in which a single
predictor is chosen from a set of correlated predictors. To get
the best of both worlds, elastic-net regularization combines
ridge and LASSO penalties. As a result, it offers shrinkage and
automatic variable selection, as well as the ability to handle
more effectively the severe multicollinearity common in
genome-wide association study analysis[28–31].

XGBoost algorithm

In ML, Gradient Boost is a potent tool for regression and clas-
sification issues where ensemble versions of decision trees are
typically the result of poor predictive models. The boosting-based
Gradient Boost technique aims to build numerous sequentially
weak learners and merge them into an elaborate model[32].

One of the most powerful supervised learning techniques is
gradient boosting machines, and one of its applications is
Extreme Gradient Boosting (XGBoost). It is established on gra-
dient boosting and decision tree algorithms, which form its basic
structure. Its speed and efficiency are much beyond those of
competing algorithms. In addition to its strong predictiveness,
XGBoost is 10 times quicker than competing algorithms and has
many regularizations that boost overall performance while miti-
gating overfitting or over-learning. To produce a robust classifier,
gradient boosting uses a collection of weak classifiers and the
boosting technique to combine them. The powerful learner is
educated in an iterative process, commencing with a primary
learner. XGBoost works on the same fundamentals as gradient
boosting. Themain distinctions lie in the specifics of their use. It is
possible to improve XGBoost’s performance by using a variety of
regularization approaches to the trees’ complexity[33,34].

Bioinformatics analysis

Gene expression patterns were analyzed for samples of HCV-
related HCC and chronic hepatitis C patients using differential
expression analysis performed via the limma package of the R
programming language[35]. The statistical examination of nor-
malized read count data to discover quantifiable variations in

expression activity between treatment arms is known as differ-
ential expression analysis. A pipeline was built for the critical
analysis using the R software environment. A table describing the
relative importance of the genes and a graph showing the genes
with various expression levels are provided as output. The most
reliable genes are those with the fewest P values in the table of
results, which also includes corrected P and log2-fold-change
(log2FC) values. Genes with a log2FC greater than 1 were con-
sidered up-regulated, whereas those with a log2FC − 1 were
considered down-regulated[36]. We used a volcano plot to
visually emphasize readily noticeable high values concerning the
key genes.

Biostatistical and power analyses

A posteriori/retrospective power analysis generated roughly
100% power, considering the type I error (alpha) of 0.05, the
sample size of 35 in the HCV alone group, the effect size of 2.43
for the HAO2 gene, and the two-sided alternative hypothesis
(H1). It was determined using the Shapiro–Wilk test if the values
followed a normal distribution. The summarized information for
that variable was shown as the median (minimum–maximum) or
the mean + SD. Mann–Whitney U test was used to compare data
that did not follow a normal distribution. At the same time, the
independent-samples t-test was employed to evaluate the data
that follow a normal distribution. Odds ratios for each gene were
estimated using logistic regression (a measure of effect size). For
logistic regression, we usedHosmer and Lemeshow’s goodness of
fit test and the omnibus test of model coefficients. Statistical sig-
nificance was assumed at a P-value of less than 0.05. The study
was conducted using IBM’s SPSS Statistics 25.0.

AI/ML modeling process

One of the ML techniques utilized in the modeling was termed
XGBoost. The n-fold cross-validation strategy was used for the
analyses. The n-fold cross-validation technique divides the data
into n subsets and then applies the model to each subset. The
n-part dataset is divided as follows: one part is utilized for testing,
while the remaining n-1 parts are used for model training. The
cross-validation approach is assessed by looking at the median of
the results. The modeling in this research used 10-fold cross-
validation. The performance metrics employed were accuracy
(AC), balanced accuracy (BAC), sensitivity (Sens), specificity
(Spec), positive predictive value (PPV), negative predictive value
(NPV), and F1 score. Moreover, variable importance scores were
determined, which revealed how much each input variable con-
tributed to the overall explanation of the outcome. Figure 1
shows a flowchart of all the research procedures that were
conducted.

Figure 1. The flowchart of all the methods used in the study.
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Results

Baseline characteristics and bioinformatics analysis

In the current study, 52 patients (HCV+HCC=17; HCV alone
= 35) were examined, of which 39 were male and 13 were female.
The mean age of the patients was 61.78 ± 11.11 years. While 13
of the HCV+HCC patients were male and four were female, 26
of the patients with HCV alone were male, and nine were female.
The mean age of HCV+HCC patients is 62.88 ± 9.96 years, and
the mean age of patients with HCV alone is 61.25 ± 11.73 years.
The dataset used contains 8516 expressions. According to the
findings of the bioinformatics analysis, ʻTable 1ʼ contains a
summary of the first fifteen results concerning the minimum
adjusted-P-values. Based on the statistics from Table 1, seven
genes (id: 8479, 6164, 3602, 7647, 8871, 4496, 1474, 5497,
7542, 7208, 1418) were down-regulation, two genes (id: 3456,
8733) were up-regulation, and two genes (id: 8938, 3439,) was
unregulated. Table 1 presents descriptive statistics for the selected
genes concerning the groups. According to Table 1, Log2FC

values for the id= 8479, GPC3, SPINK1, GLYAT, VIPR1,
HAO2, TOMM20, SLC22A1, FBP1, IGFBP3, ASS, CYP2C8,
ECHS1, CLEC2, and THBD genes were −1.697632, 2.948391,
3.250553, −1.821402, − 1.526099, − 1.385486, 0.852574,
− 2.118282, − 1.8152, − 1.978404, − 1,557922, −1,700409,
− 0,930418, − 2,580425, and −1,054523, respectively.

Figure 2 shows the volcano plot displaying the differentially
expressed genes. The volcano graph compares significance against
fold-change in log2 based on the y-axes and x-axes, respectively,
to identify rapid genes with significant expression differences.

Findings of AI modeling stage

Applying the Elastic Net feature selection approach to the
8516 expression results yielded 44 expression results. Table 2
gives some descriptive statistics for the chosen genes in terms
of the categories and the odds ratio per gene for the output
variable with respect to the groups. Table 2 shows that sig-
nificant differences were found across groups for all save the

Table 1
The results of the bioinformatics analysis

ID (Gene name) Symbol Adjusted P P t B Log2FC Diff-expressed

8479 HIRIP3 9.59E-11 1.84E-14 − 10.295045 22.4779 − 1.697632 Down
3456 GPC3 2.39E-10 9.19E-14 9.847219 20.9528 2.948391 Up
8733 SPINK1 8.32E-10 4.80E-13 9.392099 19.378 3.250553 Up
6164 GLYAT 1.18E-09 9.09E-13 − 9.218003 18.7695 − 1.821402 Down
3602 VIPR1 4.20E-09 4.04E-12 − 8.813517 17.3437 − 1.526099 Down
7647 HAO2 5.95E-09 7.36E-12 − 8.652349 16.7713 − 1.385486 Down
8938 TOMM20 5.95E-09 8.01E-12 8.629476 16.6899 0.852574 No
8871 SLC22A1 6.32E-09 9.73E-12 − 8.577299 16.504 − 2.118282 Down
4496 FBP1 1.93E-08 3.34E-11 − 8.247317 15.3235 − 1.8152 Down
1474 IGFBP3 2.06E-08 3.96E-11 − 8.202082 15.1611 − 1.978404 Down
5497 ASS 2.73E-08 5.77E-11 − 8.101588 14.7997 − 1.557922 Down
7542 CYP2C8 7.17E-08 1.66E-10 − 7.82152 13.7897 − 1.700409 Down
3439 ECHS1 1.34E-07 3.36E-10 − 7.634093 13.1117 − 0.930418 No
7208 CLEC2 2.38E-07 6.42E-10 − 7.462451 12.4898 − 2.580425 Down
1418 THBD 2.99E-07 8.64E-10 − 7.383885 12.2048 − 1.054523 Down

Figure 2. The volcano plot.
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NT5E gene (P< 0.05). The results from the XGboost model’s
performance measures are detailed in Table 3.

AC, BAC, Sens, Spec, PPV, NPV, and F1 scores from the
XGboost model were 98.1, 97.1, 100, 94.1, 97.2, 100, and
98.6%, respectively. The performance criteria values are plotted
for the XGboost model in Figure 3. All of the identified genes’
expression levels that contribute significantly to explaining the
output variable are displayed in Figure 4. The HAO2 gene was the

most important predictor, with a value of 100%, followed by
TOMM20 (68.047%), GPC3 (43.85%), and PSMB4 (34.907%).

Discussion

One of the most frequent forms of cancer, HCC, has a dismal
survival rate for its victims. Although gene expression profiling in
HCC and normal liver has been studied in-depth[23], the structure

Table 2
Descriptive statistics for the input variables with respect to the study groups

Groups

HCV+HCC (n= 17) HCV Alone (n= 35)

Gene name Prop number Mean± SD Median Mean± SD Median OR P

THBD 1418 − 1.22± 0.52 − 1.19 − 0.17± 0.45 − 0.16 0.03 < 0.001**
IGFBP3 1474 − 2.46± 1.18 − 2.38 − 0.48± 0.62 − 0.38 0.08 < 0.001*
EPHX1 2604 + 0.49± 0.98 + 0.80 − 0.85± 0.81 − 0.82 5 < 0.001*
ANGPTL3 2764 − 1.47± 0.82 − 1.64 − 0.33± 0.62 − 0.28 0.12 < 0.001*
ALDOC 2765 + 0.53± 0.39 + 0.52 − 0.17± 0.40 − 0.24 88 < 0.001*
SFN 2810 − 2.18± 1.19 − 2.63 − 0.18± 1.18 + 0.07 0.32 < 0.001**
AFM 2855 − 1.96± 0.92 − 1.75 − 0.39± 0.69 − 0.39 0.08 < 0.001*
HNRNPF 3185 + 0.19± 0.41 0.14 − 0.34± 0.37 − 0.30 87 < 0.001*
PCK1 3306 − 2.28± 1.31 − 2.07 − 0.30± 0.95 − 0.02 0.23 < 0.001**
UGT2B7 3364 − 1.89± 0.77 − 1.77 − 0.66± 0.60 − 0.57 0.09 < 0.001*
TCIRG1 3392 + 0.87± 0.34 + 0.83 + 0.49± 0.36 + 0.45 21 0.001*
GPC3 3456 + 3.75± 1.31 + 4.02 + 0.80± 0.90 + 0.89 63 < 0.001**
TIMP3 3510 + 1.49± 0.85 + 1.31 + 0.38± 0.77 + 0.45 16 < 0.001**
VIPR1 3602 − 1.68± 0.83 − 1.92 − 0.15± 0.43 − 0.19 0.02 < 0.001*
GOLGA5 3728 + 0.68± 0.51 + 0.57 − 0.14± 0.34 − 0.10 943 < 0.001*
RPL8 3781 + 0.26± 0.49 + 0.41 − 0.39± 0.34 − 0.44 34.8 < 0.001*
HFE2 3905 + 0.86± 0.66 + 0.74 + 0.01± 0.37 0.05 132 < 0.001*
Homo sapiens mitochondrion complete genome 4011 − 0.72± 0.68 − 0.87 + 0.14± 0.58 + 0.04 0.08 < 0.001**
ACTA2 4579 + 1.04± 1.13 + 1.13 − 0.06± 0.55 − 0.09 – < 0.001*
NT5E 4907 + 0.55± 0.85 + 0.48 + 0.31± 0.47 + 0.37 – 0.290
FDPS 4980 + 0.83± 0.63 + 0.96 − 0.22± 0.44 − 0.15 70 < 0.001*
VWF 5258 + 1.62± 0.81 + 1.52 + 0.69± 0.86 + 0.68 6.5 < 0.001**
PME-1 5445 + 0.49± 0.47 + 0.47 − 0.17± 0.42 − 0.21 26 < 0.001**
POR 5447 + 0.82± 0.39 + 0.92 + 0.17± 0.36 + 0.20 156 < 0.001*
ASS 5497 − 1.66± 0.72 − 1.69 − 0.10± 0.63 − 0.13 0.03 < 0.001*
KRTCAP2 5898 + 0.90± 0.67 + 0.79 − 0.15± 0.36 − 0.20 – < 0.001*
GLYAT 6164 − 2.09± 0.82 − 2.17 − 0.27± 0.60 − 0.35 0.02 < 0.001*
DNCL2A 7013 + 0.55± 0.30 + 0.59 0.04± 0.28 + 0.02 396 < 0.001*
C8A 7165 − 1.63± 0.76 − 1.67 − 0.55± 0.51 − 0.57 0.03 < 0.001*
YWHAE 7531 + 0.57± 0.40 + 0.44 − 0.19± 0.28 − 0.20 321650 < 0.001*
HAO2 7647 − 1.84± 0.65 − 1.78 − 0.45± 0.48 − 0.51 0.01 < 0.001*
GTF2A1 7807 − 0.81± 0.27 − 0.88 − 0.28± 0.32 − 0.33 0.001 < 0.001**
ARID5B 7812 − 0.32± 0.35 − 0.38 + 0.22± 0.37 + 0.23 0.01 < 0.001*
COL15A1 7856 + 0.85± 0.77 + 0.81 + 0.129± 0.43 + 0.12 7.77 0.002*
HIRIP3 8479 − 1.71± 0.74 − 1.61 − 0.01± 0.45 + 0.03 0.01 < 0.001*
S100A10 8503 + 1.31± 0.66 + 1.30 + 0.055± 0.55 + 0.13 92 < 0.001**
SPINK1 8733 + 3.46± 2.06 + 3.87 + 0.21± 0.42 + 0.18 – < 0.001**
TOMM20 8938 + 0.59± 0.39 + 0.56 − 0.27± 0.26 − 0.31 25538 < 0.001*
BHMT 9379 − 1.86± 1.25 − 2.01 + 0.02± 0.80 + 0.24 0.14 < 0.001*
SIAHBP1 9402 + 0.79± 0.48 + 0.86 + 0.12± 0.30 + 0.12 158 < 0.001*
TANK 10010 + 1.19± 0.66 + 1.11 − 0.38± 0.78 − 0.29 195 < 0.001**
COL4A2 10344 + 1.21± 0.73 + 1.12 + 0.39± 0.54 + 0.46 9.5 < 0.001*
PLG 10469 − 1.87± 0.69 − 1.75 − 0.71± 0.57 − 0.64 0.02 < 0.001*
PSMB4 10537 + 0.60± 0.49 + 0.52 − 0.28± 0.35 − 0.23 1469 < 0.001**

*Independent-samples t-test.
**Mann–Whitney U test.
OR, Odds ratio; SD: Standard deviation.
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of ML-based prediction of HCV-related HCC and identification
of essential candidate biomarkers using an AI strategy remains
unclear. Therefore, this study aims to utilize the XGboost method
to categorize gene expression data related to HCC caused by
HCV and HCC not caused by HCV and to identify candidate
genes for HCC.

HCC is among the most common causes of death from cancer
worldwide and is responsible for a significant disease burden. It is
the third leading cause of cancer-related mortality in many parts
of the world[2,37,38]. The death rate and frequency of HCC
demonstrate the large regional and national variability. The
timing and severity of exposure to environmental and viral risk
factors, access to medical care, early detection of HCC, and the
availability of curative therapy all play a role in these dis-
crepancies. Eastern Asia and Sub-Saharan Africa, two regions
with exceptionally high poverty rates, account for a dispropor-
tionate share (85%) of the world’s new cases of HCC[8,39]. Some
possible risk factors for HCC are HBV, HCV, alcoholism,
NASH, nonalcoholic fatty liver disease, and exposure to dietary
toxins like aflatoxins and aristolochic acid[38]. Eighty percent of
all instances of HCC are caused by chronic HBV and HCV
infection[10]. One of themost widespread viral blood illnesses and
a major killer globally is HCV[40,41]. There are around 71 million
persons with chronic HCV infection or about 1% of the global
population. The number of chronic HCV patients in Europe is
10.2 million, with the vast majority located in Eastern Europe
(6.7 million), followed by Western Europe (2.3 million) and
Central Europe (1.2 million)[42,43]. Nearly 1.75million newHCV
infections and 400 000 HCV-related fatalities occur annually
despite high cure rates with direct-acting antiviral treatments[44].
The chance of developing HCC is increased 10-fold to 20-fold in
people who have a chronic infection with the HCV[45]. There was
a 21.1% rise in HCV-related HCC fatalities over the preceding
decade, but deaths from other causes of HCC (e.g. alcohol)
remained steady throughout this time[9].

Patients withHCC have a dismal 5-year survival rate; thus, it is
imperative that we rationally increase our efforts to minimize
HCC risk factors so that we may lessen the disease’s worldwide
impact. To better understand the causes of liver carcinogenesis
and enhance the clinical care of HCC patients, there is an
increasing interest in genomics and molecular biology investiga-
tions to uncover early diagnostic and prognostic indicators and
new therapeutic targets. Building on these findings, advance-
ments in HCC surveillance promise to significantly reduce the
global burden of HCC over the next few decades[15,38].

Genomic data from liver tissue samples collected from 17
patients with HCV-related HCC and 35 individuals with chronic
HCV but no HCC were analyzed in this study. The samples were
needed to produce cDNA microarrays, and the dataset used
included 8516 expressions. The bioinformatics analysis results
(Table 2) show that the HIRIP3 gene is expressed 3.22-fold less in
HCV-related HCC patients than in chronic HCV patients, as
measured by Log2FC values. Similarly, the GLYAT gene had
3.53-fold lower gene expression, the VIPR1 gene 2.86-fold,
HAO2 had 2.60-fold, the SLC22A1 had 4.31-fold, the FBP1 gene
had 3.50-fold, the IGFBP3 gene had 3.91-fold, the ASS gene had
2.92-fold, the CYP2C8 gene had 3.24-fold, the CLEC2 gene had
5.97-fold, the THBD gene had 2.07-fold lower gene expression.
The GPC3 gene had 7.67-fold, the SPINK1 gene 9.51-fold upper
gene expression HCV-related HCC patients than chronic HCV
patients. Finally, there was no difference in the expression of the
TOMM20 gene or the ECHS1 gene between the two groups.
Because of their sheer quantity, gene expression data provide
unique challenges for modeling. Therefore, the most crucial genes
linked with the output variable were chosen using the Elastic Net
variable selection approach before modeling using the current
data set. To construct XGboost, forty-four genes were chosen
using the Elastic Net technique. AC, BAC, Sens, Spec, PPV, NPV,
and F1 scores from the XGboost model were 98.1, 97.1, 100,
94.1, 97.2, 100, and 98.6%, respectively. Measures of assess-
ment suggested that the suggested XGboost, which relies on AI to
make its determinations, successfully distinguished the two types
of patients. Among the genes whose OR values were calculated,
YWHAE, TOMM20, PSMB4, GOLGA5, DNCL2A, TANK,
SIAHBP1, POR, HFE2, and S100A10 genes were found to have
the highest top 10 OR values, respectively. According to the
variable importance obtained from the XGboost method, HAO2,
TOMM20, GPC3, and PSMB4 genes can be used as candidate
predictive biomarkers for HCV-related HCC. In addition, the

Figure 3. Graph of values for performance criteria obtained from XGboost
models.

Figure 4. The graphic of gene importance values for predicting the output
variable.

Table 3
Performance metrics of the XGboost model

Metric Value (%) (95% CI)

Accuracy 98.1 (94.3–100)
Balanced accuracy 97.1 (92.5–100)
Sensitivity 100 (90–100)
Specificity 94.1 (71.3–99.9)
Positive predictive value 97.2 (85.5–99.9)
Negative predictive value 100 (79.4–100)
F1 score 98.6 (0.954–100)
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calculated OR values and the variable importance values in the
study support each other. According to variable significance
results, genes with tremendous OR values were determined as
contributing genes to HCV-related HCC. The suggested pipeline
also generated a volcano graphic to illustrate the up-and-down-
regulation of genes. Thousands of duplicate data points between
two conditions are commonly included in omics research like
genomics, proteomics, and metabolomics, making these charts
more prevalent[46].

In a medical study, HAO2 was shown to be down-regulated in
HCC, predicting metastasis and poor survival[47]. In another
study, HAO2 was found to be down-regulated in HCC[48]. In an
experimental study in rats, HAO2 was found to be down-
regulated in HCC, and it was stated to be involved in the
mechanism that contributes to the development of liver
cancer[49]. A study has shown the relationship between TOM
M20 with HCC[50]. Another study reported that GPC3 is effec-
tive inHCC progression[51]. Another study foundGPC3 as one of
the potential biomarkers of human HCC[52]. In one study,
PSMB4 was associated with HCC[53]. In another study, HAO2

was found to be down-regulated in HCC, while GPC3 was found
to be up-regulated[54].

All diseases that induce chronic liver cell (hepatocyte) damage
are predisposing factors for developing HCC. As a result, fol-
lowing up on such patients following international guidelines is
critical for detecting possible HCC or detecting it at an early
stage[55]. Societies of the European Association for the Study of
Liver Diseases (EASL)[56], American Association for the Study of
Liver Diseases (AASLD)[57], and Asian Pacific Association for the
Study of the Liver (APASL)[58] publish the most authoritative
guidelines on monitoring chronic liver patients regularly[55].
HCC tumor doubling time is known to range between 4 and
6 months. As a result, the guidelines mentioned above recom-
mend that patients with chronic liver disease who do not have
suspected HCC be followed up with ultrasonography and AFP at
6-month intervals[55]. Patients with suspected HCC (nodule dia-
meter 10 mm) should be evaluated with AFP and US every 3 or
6 months. Patients with a strong suspicion of HCC should be
evaluated by the US and AFP. Further radiological examinations
are recommended for patients with nodule diameters greater than
10 mm and/or AFP levels greater than 20 ng/ml[55].

However, because it is not always simple for people in impo-
verished or developing nations to contact healthcare practi-
tioners, these measures may not consistently deliver the intended
outcomes. Since ultrasound is a radiological device, the rate of
false-negative findings may be higher than predicted, depending
on the operator’s skill. The likelihood of developing HCC is
believed to increase with the length of chronic liver disease.
Furthermore, like with all cancers, gene mutation and mutation-
related mRNA expression changes are to be expected in HCC.
Therefore, after a fixed amount of time in the follow-up of
patients with chronic liver disease, a fundamental genetic analysis
may be carried out to ascertain whether there is a genetic muta-
tion. This study shows that it is possible to closely monitor
patients and start preventative therapy if changes in the expres-
sion of genes highly related to HCC are found. Nonetheless, there
is a lack of evidence-based data on the optimal time for genetic
analysis for chronic liver disease. Therefore, it is necessary to
conduct prospective multicenter research to determine when
genetic analysis should be carried out on individuals with chronic
liver disease. Based on this important discovery, recruiting more

patients might increase the study’s power and expose more of the
human genome.

This study has several limitations. First, the inability to reach
the patients’ necessary demographic and clinical data is an
essential handicap of studies using available datasets. Second,
there is no data to analyze the dynamic relationship between AFP
and radiological instruments frequently used in HCC screening
programs and the gene mutations used in this study.

Conclusions

Using gene expression data from HCV-related HCC and indivi-
duals with chronic HCV alone, this study discovered possible
genetic biomarkers for HCV-related HCC. More in-depth
investigations will evaluate the accuracy of these genes, permit-
ting the development of targeted therapies and elucidating their
clinical relevance. Thus, the ground will be prepared for perso-
nalized medicine and immunotherapy to find wider practical use.
Additionally, more detailed clinical works are needed to sub-
stantiate the significant conclusions in the current study.
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