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Abstract: Aging is a well-recognized risk factor for the development of cancer. The incidence of new
cancer diagnoses has increased globally given the rising senior population. Many hypotheses for
this increased risk have been postulated over decades, including increased genetic and epigenetic
mutations and the concept of immunosenescence. The optimal treatment strategies for this population
with cancer are unclear. Older cancer patients are traditionally under-represented in clinical trials
developed to set the standard of care, leading to undertreatment or increased toxicity. With this
background, it is crucial to investigate new opportunities that belong to the most recent findings of
an anti-cancer agent, such as immune-checkpoint inhibitors, to manage these daily clinical issues
and eventually combine them with alternative administration strategies of antiblastic drugs such as
metronomic chemotherapy.
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1. Introduction

Although older cancer patients represent the bulk of clinical oncologic practice, fewer
data exist regarding the risk and benefit of cancer treatment in this population, mostly
because they are under-represented in most clinical trials that set international guidelines
for standard of care [1–3]. This problem becomes even more significant in the oldest old
population (above 80 years old) and, in general, leads to undertreatment of this category
due to inadequate knowledge of tolerability and efficacy of anti-cancer therapy [4].

For these reasons, it is necessary to further explore this specific field to be better aware
of the potential treatment planning for older cancer patients, including incorporating
them in clinical trials aiming to find their best standard of care and alternative treatment
strategies. We reviewed the main available treatment strategies for cancer treatment in the
older cancer population, focusing on a potential new treatment approach for this category
of patients.

2. Epidemiologic and Mechanistic Data

In the United States, approximately 50% of new cancer diagnoses and 70% of cancer-
related mortality occurs in patients older than 65 [5]. A similar statistic is observed in Europe,
with more than 50% of newly diagnosed tumors in those older than 65 [6]. Indeed, aging is a
well-recognized risk factor for developing cancer through several mechanisms [7,8]. Genetic
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and epigenetic mutations, mitochondrial dysfunction, endocrine- and cytokine-mediated
pathways, mutations in aging stem cells, and telomere shortening have been the most
studied factors [9,10]. Another mechanism of the relationship between aging and cancer
development is immunosenescence [11]. This is characterized by different features, such
as a lower number of naïve CD8 T+ and CD4 T+ cells in the peripheral blood due to the
involution of structures involved in the immune system [11]. The consequence of these
elements reduces the T-cells’ ability to be activated and perform their functions, even in
tumor growth control, promoting one of the main hallmarks of cancer cell proliferation,
immune escape [12].

3. Maximum Tolerated Dose of Chemotherapy

Conventional chemotherapy is based on the maximum tolerated dose (MTD) concept,
a strategy characterized by the infusion of a chemotherapy drug at the highest dose that
presents tolerable side effects. Since the 1960s, this method has been applied to cure
hematological malignancies, showing for the first time an efficacious strategy for these
diseases. However, the MTD chemotherapy is related to a not negligible series of side
effects due to the destruction of a relevant fraction of highly reproducing normal cells, such
as those lining the gastrointestinal tract and bone marrow cells [13,14].

In general, the cost-effectiveness for toxicity is well balanced in the younger pop-
ulation, especially with the introduction of supportive drugs, such as antinausea or
granulocyte-stimulating factors (G-CSF), preventing the most common side effects related
to chemotherapy regimens [15].

The same outcomes are not available for older cancer patients for many reasons. Aging
is associated with a decline in function of end organs. For example, liver function could
be compromised by slower drug metabolism and this is related to higher chemotherapy
concentration exposure for more extended periods if hepatically cleared [16,17]. The same
occurs with renally cleared agents because the glomerular filtration is reduced over time.
In the bone marrow, its reserve diminishes with aging, leading the patients to experience
prolonged cytopenias [16]. Myelosuppression is not just a quantitative issue of MTD
chemotherapy, but it is represented by a “qualitative” issue worthy of being discussed.
In particular, high-dose chemotherapy leads to a dysfunction of natural killer (NK) and
γδT cells, compromising immune tolerance [18]. Moreover, high-dose chemotherapy can
interfere with dendritic cells (DCs), decreasing their antigen-presenting ability, reducing
their mobility, and downregulating the expression of cell surface markers. Other issues
to consider are that older cancer patients usually are frail, have different comorbidities at
diagnosis that could compromise chemotherapy tolerability, and take a great number of
drugs that could interfere with anti-cancer treatment [19]. Finally, more and more data on
chemotherapy-induced cognitive impairments are being reported in the last decades [20].

All these aspects limit clinicians in treatment decision making, leading to recommen-
dations of best supportive care rather than chemotherapy given the potential risks. Several
prediction tools have been developed specifically on this topic, such as: Chemotherapy
Risk Assessment Scale for High-Age Patients (CRASH) score, able to stratify the patients in
four risk categories of severe toxicity; chemotherapy toxicity calculator from the Cancer
and Aging Research Group (CARG score), a predictive model for chemotherapy toxic-
ity in patients ≥65 years old; and Geriatric 8 score (G8), a screening tool to determine
which older cancer patients should undergo full geriatric evaluation prior to commencing
chemotherapy [21–23].

4. Metronomic Chemotherapy

An alternative approach, low-dose metronomic chemotherapy (MC), has been eval-
uated in recent years to mitigate the disadvantages of MTD chemotherapy and to try to
overcome resistance mechanisms [24]. Its goal is to administer low doses of chemotherapy
without interruption and it has been tested in various studies across multiple histolo-
gies [25–28].
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This new scenario gives many opportunities against cancer cell proliferation and
acquired tumor resistance through several mechanisms. The main fascinating feature
of MC is its effect on the tumor cell growth pathways and the impact on the tumor
microenvironment. In particular, to provide their development, tumor cells need to produce
new blood vessels, to support the high energy needs due to their rapid proliferation, a
process known as angiogenesis [29]. Vascular endothelial growth factor (VEGF), fibroblast
growth factors (FGF), platelet-derived growth factor (PDGF), epidermal growth factor
(EGF), and thrombospondin-1 (TSP-1) are all involved in blood vessel genesis. They are
produced in a high fraction by tumor cells [30]. In this background, MC has been shown to
induce apoptosis of activated endothelial cells and endothelial migration and reduce the
activity of essential angiogenesis factors [31,32].

Another effect on the tumor cell microenvironment is related to the immune system.
As mentioned above, immune escape represents one of the most important and most
studied hallmarks for cancer cell proliferation. It consists of the production and stimulation
of immunosuppressive molecules in order to silence both the innate and adaptive immune
response and avoid tumor infiltration and destruction [33].

Several cell types are involved in this challenge, such as Treg cells, able to suppress
tumor-specific effectors (CD8+ T lymphocytes, CD4+ T helper cells and NK cells) and
myeloid-derived suppressors (MDSC’s), able to suppress T and NK cells through different
mechanisms [34,35]. In recent years, some evidence showed that MC could potentiate
host immunity by many immunomodulatory mechanisms. For example, the continuous
exposure of a low dose of cyclophosphamide showed in vitro to stimulate through the
macrophages the secretion of pro-inflammatory factors (IL-6 and IL-12), downregulation of
anti-inflammatory cytokines (TGF-β) and IL-10, and reduction of Treg levels [36,37]. Low
concentrations of methotrexate, paclitaxel, vincristine, and vinblastine promote maturation
of DCs and their antigen-presenting activity [38].

The advantages of MC are not just biological, but they play an essential role in clinical
aspects. In particular, MC shows a great anti-cancer activity and survival benefit in the main
oncologic outcomes, such as overall survival and progression-free survival, in different kinds
of histologies, and an excellent profile of safety, especially in older cancer patients [25–28,39].
The two agents most studied in this setting are capecitabine and vinorelbine. These benefits
were kept in the older cancer patients, even when these agents were administered in
combination at metronomic dosage [40].

Indeed, it is more and more frequent that oncologists choose this strategy to treat
those frail older patients unable to tolerate a standard chemotherapy regimen.

5. Immunotherapy

The antitumoral role of the immune system has been known since William Coley
discovered that the injection of inactivated bacteria into sites of sarcoma could lead to
tumor shrinkage [41].

Several kinds of immunotherapies have been under investigation in recent years.
The manipulation of immune checkpoints, in particular cytotoxic T-lymphocyte antigen 4
(CTLA-4) and programmed cell death 1 (PD-1), known as an immune checkpoint inhibitor
(ICI), has been of particular interest in this regard [42].

These transmembrane proteins are expressed on immune system cells: CTLA-4 on the
cell surface of CD4+ and CD8+ T lymphocytes, PD-1 on the surface of T cells, B cells and NK
cells. All of these are able to activate inhibitor pathways in these cells and a transformation
in immunosuppressive landscape, such as with Treg cells for instance [43–45]. Blockade
of these inhibitory cell surface proteins shows excellent efficacy in many malignancies,
such as renal cell carcinoma, melanoma, non-small cell lung cancer, and breast cancer, with
others still being further elucidated [46–49].

These results are also confirmed in the older population and represent a valid treat-
ment strategy, even in the oldest old population. The improvement in survival associated
with ICIs is consistent across an age cut-off of ≥65 years old. However, more data are
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needed to understand these results among the oldest old patients (>75 years) [50,51].
This approach offers a frequently tolerable option given that these drugs have a variable
side effect profile but are more often than not very well tolerated even in patients with a
compromised performance status.

6. Metronomic Chemotherapy and Immunotherapy: A New Horizon?

In older individuals requiring combination chemo-immunotherapy, a new model of
anti-neoplastic treatment could be combination of low-dose metronomic chemotherapy
and immunotherapy. There are data suggesting that certain cytotoxic agents could enhance
the efficacy of immunotherapy and further data outlining the immunostimulatory potential
of metronomic therapy. Several recent preclinical studies have explored this field outlining
promising results [52,53].

In one trial, 28 metastatic melanoma patients with progressive disease were treated
with a metronomic dose of cyclophosphamide (50 mg twice a day for 1 week altering with
off treatment) and celecoxib (200 mg daily throughout the study) followed by vaccination
with DCs, showing improved survival compared to retrospective data of treatment without
chemotherapy and celecoxib [54]. Encouraging results were found even with the new
class of ICI drugs. Karachi et al. demonstrated a relationship between peripheral and
tumor immune microenvironment transformation and dose modulation of temozolomide
in murine models [55]. Moreover, some data show that the anti-PD1 activity dampens
glycolysis, providing cytotoxic lymphocytes with an additional competitive advantage [56]
(Tables 1 and 2).

Table 1. Synergistic effect of immunotherapy and metronomic therapy. Preclinical data.

Author, Year Reference Study Design Treatment Regimen Outcomes

Xu C et al., 2017 EMT-6 and MC38 murine tumor
models

NHS-muIL12 (2 or 10 µg) and
avelumab (200 µg)

combination therapy

Complete tumor regression,
generation of long-term

tumor-specific protective
immunity

Ma J, 2009 PC-3 tumors and 9 L gliosarcoma
xenograft models in mice

Axitinib (25 mg/kg body
weight) and

cyclophosphamide (140
mg/kg body weight)
combination therapy

Increased antitumor activity

Ko H.-J, 2007

Tumor model in mice; mouse
Her-2/neu as self-antigen

investigated whether genetic
vaccination with DNA plasmid

and/or adenoviral vector
expressing the extracellular and

transmembrane domain of
syngeneic mouse Her-2/neu or

xenogenic human Her-2/neu could
induce mouse Her-2/neu–specific

CTL responses.

60 mg/kg (1.2 mg per mouse)
of gemcitabine, followed by

AdhHM 1 treatment and
agonistic αGITR Ab 2

(DTA-1 3)

Higher levels of therapeutic
antitumor immunity

A Karachi, 2019 GL261 and KR158 murine glioma
models

MD 4 temozolomide (25
mg/kg × 10 days) or standard

dose temozolomide (50
mg/kg × 5 days) and PD-1

antibody combination therapy

Decrease in exhaustion
markers in tumor infiltrating

lymphocytes with MD
temozolomide/PD-1 antibody

group
Benefit of PD-1 inhibition’s

reduction with standard
dosing strategies of

temozolomide
1 Adenoviral vectors expressing xenogenic human Her-2/neu. 2 Agonistic anti-glucocorticoid-induced TNFR family-related receptor
(GITR) antibody. 3 anti-GITR. 4 Metronomic dose.



Geriatrics 2021, 6, 42 5 of 8

Table 2. Synergistic effect of immunotherapy and metronomic therapy. Clinical data.

Author, Year Study Design Primary
Endpoint

Study Population,
n, Disease, Mean

Age (Range)
Treatment Regimen Outcome

M Podrazil,
2015

Open-label,
single-arm
Phase I/II

clinical trial

Safety and
immune

responses

25 patients,
metastatic CRPC a,

median age 73
years (age range

48–82)

Docetaxel combined
with treatment with

autologous mature DCs
b pulsed with

DCVAC/PCa c

Twelve doses of 1 × 107

dendritic cells injected.
Administration of

docetaxel (75 mg/m2)
and prednisone (5 mg
twice daily) after the
initial two doses of

DCVAC/PCa
Metronomic

cyclophosphamide
(Cyclophosphamide

Orion® 50 mg daily for 1
week), before the 1st
DCVAC/PCa dose

PSA reduction by at
least 50% on two visits

at least 6 weeks apart in
39.1%

A ≥50% decrease in PSA
in 34.8% of patients at 6

months after the
initiation of

chemo/immunotherapy
Median survival of 19

months for the
DCVAC/PCa-treated

group compared to 11.8
months in the Halabi
and 13 months in the

MSKCC control
predictions

Improvement in the
median overall survival

with combined
docetaxel and
DCVAC/PCa

N Abd El Bary,
2010

Tolerability
and PFS

41 patients,
istologically
aggressive

non-Hodgkin
lymphoma,

median age 56
years

Oral cyclophosphamide
(50 mg every day), oral
methotrexate (2.5 mg 4

times/week) and
high-dose oral celecoxib

(400 mg twice daily)
until disease progression
or unacceptable toxicity

No major toxicities
Partial response in 31.7%
Stable disease in 48.8%

Progression-free
survival was 12 months

Median response
duration was 10 months

E Ellebaek,
2012

Phase II
vaccination

trial

Tolerability
and safety,

immunological
and clinical

response and
to determine

PFS as well as
OS

28 patients,
progressive
metastatic
melanoma,

median age 58
years (age range

22–82)

Metronomic dose of
cyclophosphamide (50

mg twice a day for 1
week altering with off

treatment) and celecoxib
(200 mg daily

throughout the study)
followed by vaccination

with DC

Improved survival
compared to treatment
without chemotherapy

and celecoxib
Prolonged survival in

SD d patients compared
with PD e patients (10.5
vs. 6.0 months, p = 0.048)

a Castration-resistant prostate cancer. b Dendritic cells. c Killed LNCaP prostate cancer cells. d Stable disease. e Progressive disease.

In summary, both MC and immunotherapy seem to increase immune cell activation,
the former promoting tumor-specific activation and the latter maintaining that activation.
MC can affect the tumor microenvironment and facilitate tumor infiltration and cytotoxic
effects [53].

This evidence outlines an encouraging option via the synergistic effect of low-dose
metronomic chemotherapy and immunotherapy, allowing efficacious treatment while
minimally affecting quality of life in frailer patients and opening up a potential option in
those that may have just had supportive care offered.
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7. Final Remarks

Anti-neoplastic treatment in older patients is still problematic since this population is
under-represented in clinical trials. The scientific community should stress the importance
of conducting clinical trials to assess treatment efficacy and safety in geriatric populations.
The management of these patients should be multidisciplinary with the involvement of
disease specialists and geriatricians in order to have these patients appropriately evaluated
with validated tools that can better predict how they will tolerate treatments and how
effective these treatments might be.

Data in the older population have shown that toxicities often do not allow the same
dose intensity as in younger patients and the vast majority of geriatric patients will receive
less effective and sometimes still toxic treatments.

This leads to conventional chemotherapy regimens, both monotherapy and com-
bination regimens, being modified in their schedules and in reduced dose intensities
reducing efficacy.

To overcome this issue, recent advances have been made showing how the combina-
tion of “new” and “old” therapies, such as immunotherapy with ICIs and MC, might be an
option to avoid cancer progression and resistance. Emerging data have been encouraging
but also very premature since they derive from little clinical experiences or in vitro models.
There is an urgent need for such approaches to be validated in wider, placebo-controlled,
randomized trials conducted on the older population in concert with appropriate clinical
evaluation through validated geriatric tools. The strong preclinical rationale and the favor-
able toxicity profile seem to be the winning step of this anti-cancer therapy combination. It
is crucial to keep on studying these approaches in clinical practice.
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