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Abstract

With the rapid increase of protein sequences in the post-genomic age, it is challenging to develop accurate and automated
methods for reliably and quickly predicting their subcellular localizations. Till now, many efforts have been tried, but most of
which used only a single algorithm. In this paper, we proposed an ensemble classifier of KNN (k-nearest neighbor) and SVM
(support vector machine) algorithms to predict the subcellular localization of eukaryotic proteins based on a voting system.
The overall prediction accuracies by the one-versus-one strategy are 78.17%, 89.94% and 75.55% for three benchmark
datasets of eukaryotic proteins. The improved prediction accuracies reveal that GO annotations and hydrophobicity of
amino acids help to predict subcellular locations of eukaryotic proteins.
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Introduction

Researches on subcellular location of proteins are important for

elucidating their functions involved in various cellular processes, as

well as in understanding some disease mechanisms and developing

novel drugs. Since experimental determinations of the localization

are time-consuming, tedious and costly, especially for the rapid

accumulation of protein sequences, it is highly desirable to develop

effective computational methods for accurately and quickly

predicting their subcellular attributes.

In the past few years, many computational methods have been

developed for this purpose [1,2,3,4]. These methods can be

divided into two main categories [5]. Methods in the first category

are based on the observation that amino acid compositions of

extracellular and intracellular proteins are significantly different

[6]. Along this line, many computational approaches based on

amino acid composition, dipeptide composition [7] and gapped

amino acid pairs [8] were proposed. Meanwhile, to incorporate

more sequence information, many other features were incorpo-

rated, such as amphiphility of amino acids [9], functional domain

composition [10], psi-blast profile [11,12] and so on. Methods in

the second category are based on a certain sorting signals [13,14],

including signal peptides, chloroplast transit peptides and

mitochondrial targeting peptides. For example, Emanuelsson

et al. [14] provided detailed instructions for the use of SignalP

and ChloroP in prediction of cleavage sites for secretory pathway

signal peptides and chloroplast transit peptides. However, the

reliability of these methods is highly dependent on protein N-

terminal sequence assignments, and the molecular mechanisms

related to sorting signals are rather complex and not interpreted

clearly.

Not only protein sequence information but also prediction

algorithms could affect the accuracy of the subcellular localization

prediction. So far, many computational techniques, such as the

hidden Markov models (HMM) [15,16], neural network [17], K-

nearest neighbor (KNN) [18] and support vector machine (SVM)

[5,19] were introduced for the prediction of protein subcellular

localization. However, most of the current predictors are based on

a single theory which could have its own inherent defects, so their

predictions are not satisfactory. For example, the number of

parameters that need to be evaluated in an HMM is large [20].

The neural network can suffer from multiple local minima [21].

Besides, quite a few ensemble classifiers [7,22,23] for prediction of

protein subcellular localizations have been proposed. However,

many of the ensemble classifiers were actually engineered only by

a single algorithm, such as the fuzzy KNN [7], KNN [22], and

Bayesian [23]. Other ensemble classifiers, such as CE-PLoc [24]

and the KNN-SVM ensemble classifier proposed by Zhang [25],

were engineered by different algorithms, mostly including SVM

and KNN. Along this line, an ensemble classifier making use of the

classical SVM and KNN algorithms was developed in this article

to predict subcellular localization of eukaryotic proteins.

We apply our method to three widely used eukaryotic protein

datasets. By the jackknife cross-validation test [26,27,28,29], the

ensemble classifier shows high accuracies and may play an

important complementary role to existing methods.
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Materials and Methods

1. Datasets
In order to evaluate the performance of the proposed method and

compare it with current methods, we introduced three widely used

datasets into this study. The first dataset was constructed by Chou

[30]. This dataset (denoted as iLoc8897) consists of 8,897 locative

protein sequences (7,766 different proteins), which divided into 22

subcellular locations. Among the 7,766 different eukaryotic

proteins, 6,687 belong to one subcellular location, 1,029 to two

locations, 48 to three locations, and 2 to four locations. None of the

proteins has $25% sequence identity to any other in the same

subset. The second benchmark dataset was constructed by Park and

Kanehisa [8]. This dataset (denoted as Euk7579) contains 7579

proteins, which are divided into 12 subcellular locations. Proteins in

this dataset have the pairwised sequence similarity below 80%. The

third dataset was constructed by Shen and Chou [31]. This dataset

(denoted as Hum3681) consists of 3,681 locative protein sequences

(3,106 different human proteins), which are divided into 14 human

subcellular locations. Among the 3,106 different proteins, 2,580

belong to one subcellular location, 480 to two locations, 43 to three

locations, and 3 to four locations. None of the proteins has $25%

sequence identity to any other in the same subcellular location. The

detailed information of the three datasets are listed in Table 1.

2. Gene Ontology
Gene Ontology (GO) is a major bioinformatics initiative. It

meets the need for consistent descriptions of gene products in

different databases. Gene Ontology database is established on the

three criteria: molecular function, cellular component and

biological process. It has been developed to manage the

overwhelming mass of current biological data from a computa-

tional perspective and become a standard tool to annotate gene

products for various databases [32,33]. Accordingly, GO annota-

tion has been being used for diverse sequence-based prediction

tasks, such as analyzing the pathogenic gene function with human

squamous cell cervical carcinoma [34], mapping molecular

responses to xenoestrogens [35], predicting the enzymatic attribute

of proteins [36], predicting the transcription factor DNA binding

preference [37], and predicting the eukaryotic protein subcellular

localization [38]. In particular, the growth of Gene Ontology

databases has increased the effectiveness of GO-based features

[39]. As a result, Gene Ontology could be used to improve the

predictive performance of protein subcellular localization [22,40].

We downloaded all GO data at ftp://ftp.ebi.ac.uk/pub/

databases/GO/goa/UNIPROT/(released on March 15, 2010),

and searched the GO terms for all the protein entries in the three

datasets. We eliminate those proteins, which have no correspond-

ing GO terms and the number (60, 127 and 4 for the iLoc8897,

Euk7579 and Hum3681 datasets) are relatively small compared to

the total datasets. We consider this would not have a great

influence on its final accuracy. After this step, we got a list of GO

terms for each protein entry of the three datasets. For example, the

human protein entry ‘‘Q9H400’’ in the Hum3681 dataset

corresponds to four GO numbers, i.e., GO: 0005886, GO:

0006955, GO: 0016020 and GO: 0016021, while the protein

Table 1. Three benchmark datasets used to train and test our predictor.

iLoc8897 Euk7579 Hum3681

Subcellular location Number of proteins Subcellular location Number of proteins Subcellular location Number of proteins

Acrosome 14 Chloroplast 671 Centriole 77

Cell membrane 697 Cytoplasm 1241 Cytoplasm 817

Cell wall 49 Cytoskeleton 40 Cytoskeleton 79

Centrosome 96 Endoplasmic reticulum 114 Endosome 24

Chloroplast 385 Extracell 861 Endoplasmic reticulum 229

Cyanelle 79 Golgi apparatus 47 Extracell 385

Cytoplasm 2186 Lysosomal 93 Golgi apparatus 161

Cytoskeleton 139 Mitochondrion 727 Lysosome 77

Endoplasmic reticulum 457 Nucleus 1932 Microsome 24

Endosome 41 Peroxisomal 125 Mitochondrion 364

Extracell 1048 Plasma membrane 1674 Nucleus 1021

Golgi apparatus 254 Vacuolar 54 Peroxisome 47

Hydrogenosome 10 - - Plasma membrane 354

Lysosome 57 - - Synapse 22

Melanosome 47 - - - -

Microsome 13 - - - -

Mitochondrion 610 - - - -

Nucleus 2320 - - - -

Peroxisome 110 - - - -

Spindle pole body 68 - - - -

Synapse 47 - - - -

Vacuole 170 - - - -

Total 8897 Total 7579 Total 3681

doi:10.1371/journal.pone.0031057.t001
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entry ‘‘P81084’’ in the Euk7579 dataset corresponds to six GO

numbers, i.e., GO: 0000166, GO: 0005524, GO: 0006950, GO:

0009507, GO: 0009536 and GO: 0009570. So as to handle these

GO numbers efficiently, a compression procedure was proposed to

renumber them. For example, all involved GO numbers for the

eukaryotic proteins in the Euk7579 dataset are GO: 0000001,

GO: 0000002, GO: 0000003, GO: 0000006, GO: 00000009, GO:

0000011, GO: 0000012, …, GO: 0090184. They are renamed as

GO_compress: 0000001, GO_compress: 0000002, GO_compress:

0000003, GO_compress: 0000004, GO_compress: 0000005,

GO_compress: 0000006, GO_compress: 0000007, ……, GO_-

compress: 0006533, respectively. When this treatment finished, we

got the GO_compress database that contained 6533 numbers. We

numbered those data from 1 to 6533. The total numbers of GO

terms that appeared for the iLoc8897, Euk7579 and Hum3681

datasets were 7871, 6533 and 5553.

As we know, if we want to describe all possible GO terms for a

certain dataset, the simplest way to vector represent a protein was

using a binary feature component for a protein. We used value 1 if

the corresponding GO number appears and value 0 if it does not

appear. For example, the human protein entry ‘‘Q8TDM5’’ in the

Hum3681 dataset corresponds to seven GO numbers in the GO

database, i.e., GO: 0001669, GO: 0005515, GO: 0005886, GO:

0007155, GO: 0016020, GO: 0031225 and GO: 0031410, which

corresponded to GO_compress: 0000212, GO_compress:

0001037, GO_compress: 0001203, GO_compress: 0001722,

GO_compress: 0002543, GO_compress: 0003360, GO_compress:

0003398 in the GO_compress database. So the 212th, 1037th,

1203rd, 1722nd, 2543rd, 3360th, and 3398th components of the

feature vector were assigned the value 1 and the rest

5553{7~5546 components with the value 0. At last, we

transformed the GO terms annotated for each human protein

into a 5553-dimension input vector.

3. Amphiphilic pseudo amino acid composition
In a protein, the hydrophobicity and hydrophilicity of the native

amino acids play an important part in its folding, interior packing,

catalytic mechanism, as well as its interaction with other molecules

in the environment [41]. Therefore, the two indices may be used

to effectively reflect the subcellular locations of proteins. Both the

hydrophobicity and hydrophilicity are introduced in the concept

of AmPseAAC. As we know, the concept of AmPseAAC proposed

by Chou [22] was widely used by many researchers in improving

the prediction quality for protein subcellular localization [42,43].

Following the concept of AmPseAAC, a protein sample could be

descripted by a 20z2l dimensional feature vector, where l is

equal to Lmin{1, where Lmin is the length of the shortest protein

sequence in the dataset. The 20z2l dimensional feature vector

for a protein comprises 20 features of the conventional amino acid

composition (AAC), and the rest 2l components reflect its

sequence-order pattern through the amphiphilic feature. The

protein representation is called the ‘‘amphiphilic pseudo amino

acid composition’’ or ‘‘AmPseAAC’’ for short. In order to get

more local sequence information, we incorporated 400 dipeptide

components to the AmPseAAC. Then the new AmPseAAC is

constructed and the dimension is increased to 420z2l, which are

420z2|49~518, 420z2|9~438, and 420z2|50~520 for

the iLoc8897, Euk7579 and Hum3681 datasets, respectively.

Then we combined the new AmPseAAC and Gene Ontology as

the features for protein subcellular localization prediction. As a

result, the dimensions of the final input feature vectors are

420z2|49z7871~8389, 420z2|9z6533~6971, and

420z2|50z5553~6073 for the iLoc8897, Euk7579 and

Hum3681 datasets.

4. Feature extraction
Due to the limited numbers of learning examples, learning with a

small number of features often leads to a better generalization of

machine learning algorithms (Occam’s razor) [44]. Additionally,

with the increase of the dimension of the feature vector, the

computational loads for some machine-learning tools, e.g., Support

Vector Machine [45] and Neural Network [46], are seriously

affected. As a result, we used the ‘‘fselect.py’’ in Libsvm software

package to reduce the dimensionality. The fselect.py is a simple

python script used F-score to select features. After running the

python script, one could get an output file called ‘‘.fscore’’, in which

each feature was given a score to describe the importance of it and

all features were sorted by their scores. Then we chose the top

features with the highest contribution scores (Figs. 1, 2, and 3).

5. The KNN-SVM ensemble classifier
A wide variety of machine learning methods have been

proposed for predicting protein subcellular localization in recent

years [47,48,49,50], such as Markov chain models [51], neural

networks [46], K-Nearest Neighborhood (KNN) [18], and Support

Vector Machines (SVM) [52,53]. In these methods, KNN and

SVM are two popular classifiers in machine learning task. Previous

studies presented that each algorithm has its own advantage and

the ensemble classifier of different algorithms is the future

direction of protein subcellular localization prediction. So, in this

paper we proposed an ensemble classifier of KNN and SVM based

on one-versus-one strategy and a voting system (Fig. 4). LIBSVM still

has a few tunable parameters which affect the accuracy of the

subcellular localization prediction and need to be determined. In

this article, ‘‘grid.py’’ was used in the iLoc8897 dataset to select

the parameter c and the regularization parameter C in LIBSVM

[24]. Here, the iLoc8897 dataset was selected for optimization of

the parameters of the classification models due to the following

reasons: (i) compared to the other datasets, this dataset has the

largest number of proteins, so it possesses a distinct statistical

significance for training; (ii) sequences in this dataset have

relatively low pairwise sequence homology; (iii) this dataset covers

enough subcellular locations and was widely adopted for

evaluating a new proposed method [30,38].

Prediction of protein subcellular localization is a multi-class

classification problem. Here, the class number is equal to 22 for

iLoc8897 dataset, 12 for Euk7579 dataset and 14 for Hum3681

dataset, respectively. A simple way to deal with the multi-class

classification is to reduce the multi-classification to a series of

binary classifications. During this study, we adopted the one-versus-

one method, i.e., 22|21=2~231, 12|11=2~66, and

14|13=2~91 binary classification tasks were constructed for

the iLoc8897, Euk7579 and Hum3681 datasets. Compared to the

one-versus-one approach, the one-versus-rest strategy has the shortage

that the numbers of positive and negative training data points are

not symmetric [54]. For each binary classification, the predictor

(KNN or SVM) with the higher output accuracy was selected, and

the free parameters, i.e., k for KNN and C and c for LIBSVM, are

optimized by the iLoc8897 dataset.

Take the Hum3681 dataset as an example. Following the one-

versus-one strategy, 14|13=2~91 binary classification tasks were

constructed for this dataset. For each binary classification task, the

KNN and SVM are used to predict the attribute of each protein.

As a result, we chose the predictor with the higher output

accuracy, where the parameters of KNN and SVM were

optimized by the iLoc8897 dataset. Then a score function was

generated by the KNN-SVM ensemble classifier formed by fusing

the 91 individual binary classifiers through a voting system (see

Eqs. 1–3). Each protein was assigned to the subcellular location

Predict Eukaryotic Protein Subcellular Locations
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Figure 2. This graph shows the contribution scores of top 45 features on the Euk7579 dataset. Hydrophobicity: 6, 2, 5 … stand for the
6th, 2nd, 5th … elements in the hydrophobicity vectors respectively.
doi:10.1371/journal.pone.0031057.g002

Figure 1. This graph shows the contribution scores of top 45 features on the iLoc8897 dataset.
doi:10.1371/journal.pone.0031057.g001
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where the score function has the maximum value. Suppose that

the predicted classification results for the query human protein P

for the 91 binary classifiers are R(1),R(2), . . . ,R(91), that is

R(n)[ S1,S2, . . . ,S14f g(n~1,2, . . . ,91) ð1Þ

where S1,S2, . . . ,S14 represent the 14 subcellular locations. The

voting score for the protein P belonging to class i is defined as

Gi~
X91

n~1

d R nð Þ,Sið Þ i~1,2, . . . ,14ð Þ ð2Þ

where the d function in Eq. 2 is given by

d(R(n),Si)~
1, R(n)~Si

0, R(n)=Si

�
ð3Þ

Subsequently, the query protein P was assigned to the class that

gives the highest score for Eq. 2 of the 91 binary classifiers. We

can assume that there are five subsets and 5|(5{1)=2~10
binary classification tasks are constructed. If the predicted

classification results for a query protein P with the ten binary

classifiers are R(1)~S2, R(2)~S1, R(3)~S4, R(4)~S5, R(5)~
S2, R(6)~S2, R(7)~S5, R(8)~S3, R(9)~S5, R(10)~S4 that is,

classifiers 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 assign protein P to subsets

2, 1, 4, 5, 2, 2, 5, 3, 5 and 4, respectively. As a result, the voting

scores for protein P are G1~1, G2~3, G3~1, G4~2, G5~3.

Then protein P was predicted to classes 2 and 5, which both give

the highest score of G2~G5~3.

6. Assessment of prediction performances
The prediction quality is examined by the jackknife test

currently. Three methods, i.e., the jackknife test, sub-sampling

test, and independent dataset test are often used for examining the

accuracy of a statistical prediction method. The jackknife test is

deemed the most objective and rigorous one [55,56].

The accuracy, the overall accuracy, the ‘‘absolute true’’ overall

accuracy and Matthew’s Correlation Coefficient (MCC) [57] for

each subcellular location calculated for assessment of the

prediction system are formulated as

accuracy(n)~
pn(i)zpn(j)

m(i)zm(j)
ð4Þ

accuracy(i)~
TPi

m(i)
ð5Þ

overall accuracy~

PM
i~1

TPi

N
ð6Þ

V~

PD
h~1

m(h)

D
ð7Þ

m(h)~

1, if all the subcellular locations of the hth protein are exactly

predicted without any overprediction or underprediction

0, otherwise

8<
: ð8Þ

Figure 3. This graph shows the contribution scores of top 45 features on the Hum3681 dataset.
doi:10.1371/journal.pone.0031057.g003

(8)
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MCC(i)~
TPi|TNi{FPi|FNiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPizFPi)(TPizFNi)(TNizFPi)(TNizFNi)
p ð9Þ

where M is the class number, N is the total number of locative

proteins, m(i) and m(j) are the numbers of the locative proteins in

classes i and j, pn(i) and pn(j) are the numbers of the correctly

predicted locative proteins of class i and class j by binary classifier n.

V is the so-called ‘‘absolute true’’ overall accuracy. D is the number of

total proteins investigated. TPi, FPi, TNi, and FNi are the numbers

of true positives, false positives, true negatives, and false negatives in

class i by the KNN-SVM ensemble classifier, respectively.

Results and Discussion

1. Selection of algorithms and parameters
It is important to point out that the best combination of

parameters c and C depends on the dimension Dim of the protein

top feature vector. In the present work, we select the parameters c
and C when parameter Dim varied from 10 to 50. As seen in

Table 2, the highest prediction accuracy was 78.01% at

c~0:125, C~2 and Dim~45. While the prediction accuracy

obtained by KNN changed as parameter k varied from 1 to 9, and

the highest prediction accuracy (74.70%) was obtained at k~5
and Dim~45 for the iLoc8897 dataset. Then the same

parameters, i.e., c~0:125, C~2, k~5 and Dim~45 were used

for all the three datasets.

Because the Hum3681 dataset has 14 subcellular locations, a

total of 14|13=2~91 binary classification tasks were constructed.

For each one-versus-one classification task, the algorithm (KNN or

SVM), which gave a higher prediction accuracy for Eq. 4, was

adopt as the final classifier. For example, the 6th, 21st, 26th, 32nd,

34th, 42nd, 43rd, 76th, 82nd, 84th and 90th binary classifiers (11 of 91

classifiers) was based on the KNN method, because the accuracy

of KNN method was higher than LIBSVM method by jackknife

test, while the rest 91{11~80 binary classifiers were based on

Figure 4. This graph shows the flow chart for application of KNN and LIBSVM algorithms.
doi:10.1371/journal.pone.0031057.g004
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LIBSVM, because the accuracy of LIBSVM method was higher

than KNN method by jackknife test.

In addition, most of the existing methods for predicting protein

subcellular localization are limited to a single location. It is

instructive to note that the KNN-SVM ensemble classifier can

effectively deal with multiple-location proteins as well, that is, the

predicted result for a query protein P may be attributed to two or

more subcellular locations. For example, the real subcellular

locations of the protein entry ‘‘Q05329’’ in iLoc8897 dataset are

S2,S12,S21f g, and the predicted subcellular locations for

‘‘Q05329’’ by the KNN-SVM ensemble classifier are also

S2,S12,S21f g, because S2, S12, S21 give the highest score

(G2~G12~G21~20) according to Eq. 2.

2. Comparison with other methods
In order to check the performance of our method, we made

comparisons with the following methods: iLoc-Euk [30], Euk-

mPLoc 2.0 [38], Hum-mPLoc 2.0 [31], LOCSVMPSI [58],

Complexity-based method [59], and the method proposed by

Park and Kanehisa [8] which are also based on the Euk7579

Table 2. Prediction performance of different top-N features on the iLoc8897 dataset by LIBSVM.

Top10 Top15 Top20 Top25 Top30 Top35 Top40 Top45 Top50

c 0.03125 0.5 0.5 0.125 0.125 0.125 0.125 0.125 0.125

C 512 0.03125 0.03125 2 2 2 2 2 2

Overall accuracy (%) 51.14 73.08 75.12 74.18 74.40 77.46 77.65 78.01 77.98

k - - - - - - - 5 -

Overall accuracy (%) - - - - - - - 74.70 -

doi:10.1371/journal.pone.0031057.t002

Table 3. Performance comparisons for eukaryotic protein subcellular location prediction method based on the iLoc8897 dataset.

Subcellular location

Euk-mPLoc 2.0
(2010) (Chou and
Shen 2010)

iLoc-Euk (2011)
(Chou et al. 2011) LIBSVM KNN The proposed method

Jackknife Jackknife Jackknife Jackknife Jackknife

Accuracy (%) Accuracy (%) Accuracy (%) MCC Accuracy (%) MCC Accuracy (%) MCC

Acrosome 7.14 7.14 57.14 0.8526 71.43 0.8449 64.29 0.8659

Cell membrane 64.85 80.49 84.52 0.9123 96.67 0.8558 85.09 0.9121

Cell wall 12.24 16.33 91.84 0.8750 85.71 0.8981 91.84 0.8750

Centrosome 22.92 69.79 86.17 0.8650 92.55 0.6513 88.30 0.8688

Chloroplast 82.60 87.79 99.73 0.9943 99.73 0.9873 99.73 0.9943

Cyanelle 59.49 64.56 100.00 1.0000 98.73 1.0000 100.00 1.0000

Cytoplasm 64.87 76.72 45.24 0.9399 90.34 0.8198 45.70 0.9361

Cytoskeleton 31.65 27.34 50.36 0.7629 6.47 0.8318 49.64 0.7640

Endoplasmic reticulum 76.15 89.06 87.72 0.9529 84.65 0.9457 87.72 0.9542

Endosome 4.88 7.32 21.95 0.7272 19.51 0.8163 21.95 0.7497

Extracell 81.87 90.46 91.82 0.9812 88.64 0.9902 91.92 0.9824

Golgi apparatus 22.05 63.39 76.59 0.8997 46.83 0.9633 77.38 0.9131

Hydrogenosome 20.00 0.00 100.00 1.0000 70.00 1.0000 100.00 1.0000

Lysosome 45.61 31.58 87.72 0.8813 57.89 0.9851 87.72 0.8813

Melanosome 0.00 2.13 76.60 0.9474 14.89 1.0000 76.60 0.9474

Microsome 7.69 0.00 69.23 0.8579 15.38 1.0000 69.23 0.8579

Mitochondrion 70.00 77.05 78.03 0.9749 80.66 0.9688 78.20 0.9750

Nucleus 64.70 87.93 93.69 0.8865 50.65 0.9943 93.60 0.8873

Peroxisome 50.91 54.55 100.00 0.9650 74.55 1.0000 100.00 0.9650

Spindle pole body 33.82 66.18 95.59 0.9110 4.41 1.0000 95.59 0.9181

Synapse 0.00 38.30 80.85 0.7918 25.53 0.8399 80.85 0.7918

Vacuole 59.41 71.76 95.88 0.9399 80.59 0.9819 93.53 0.9606

Overall accuracy 64.17 79.06 78.01 - 74.70 - 78.17 -

V - 71.27 75.54 - 72.84 - 75.64 -

doi:10.1371/journal.pone.0031057.t003
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dataset. We also compared our method with the KNN binary

classifiers, LIBSVM binary calssifiers, and the KNN-SVM

ensemble classifier [25]. The comparison is summarized in

Tables 3, 4, 5, and 6.

For the iLoc8897 dataset, the absolute true overall accuracy of

the current approach is 75.64%, which is 4.37% higher than the

iLoc-Euk method, though the overall accuracy is only 0.89% lower

than it. In addition, our method achieves the best performances

Table 4. Performance comparisons for eukaryotic protein subcellular location prediction method based on the Euk7579 dataset.

Subcellular location

Park et al. (2003) (Park
and Kanehisa 2003)

LOCSVMPSI
(2005) (Xie
et al. 2005)

Complexity-
based method
(2009) (Zheng
et al. 2009) LIBSVM KNN

The proposed
method

Jackknife 5-Fold cross 5-Fold cross Jackknife Jackknife Jackknife Jackknife

Accuracy
(%)

Accuracy
(%)

Accuracy
(%)

Accuracy
(%)

Accuracy
(%) MCC

Accuracy
(%) MCC

Accuracy
(%) MCC

Chloroplast 57 72.3 76.5 86.4 93.21 0.9982 85.52 0.9689 93.21 0.9982

Cytoplasm 88 72.2 76.4 81.6 87.81 0.9035 89.13 0.7444 87.81 0.9013

Cytoskeleton 44 58.5 60.0 77.5 12.82 1.0000 35.90 0.9660 35.90 0.9660

Endoplasmic reticulum 31 46.5 61.4 78.9 59.82 0.9708 27.68 0.9276 59.82 0.9708

Extracell 57 78.0 89.7 84.0 91.01 0.9746 85.92 0.8879 91.01 0.9739

Golgi apparatus 12 14.6 46.8 61.7 33.33 1.0000 22.22 0.9127 33.33 0.9682

Lysosomal 54 61.8 62.4 73.1 67.74 0.9691 16.13 0.9392 67.74 0.9691

Mitochondrion 42 57.4 68.2 62.9 87.02 0.9502 70.99 0.9017 87.15 0.9494

Nucleus 73 89.6 91.5 84.4 95.94 0.8710 81.85 0.9441 95.94 0.8741

Peroxisomal 4 25.2 41.6 62.4 66.94 0.9648 20.16 0.8446 66.94 0.9648

Plasma membrane 91 92.2 94.7 86.7 93.07 0.9647 93.98 0.9140 93.07 0.9647

Vacuolar 25 25.0 40.7 66.7 50.94 0.9648 0.00 - 50.94 0.9330

Overall accuracy 75 78.2 83.5 81.6 89.80 - 81.60 - 89.94 -

V - - - - 89.65 - 81.60 - 89.73 -

doi:10.1371/journal.pone.0031057.t004

Table 5. Performance comparisons for human protein subcellular location prediction method based on the Hum3681 dataset.

Subcellular location

Hum-mPLoc 2.0 (2009)
(Shen and Chou 2009) LIBSVM KNN The proposed method

Jackknife Jackknife Jackknife Jackknife

Accuracy (%) Accuracy (%) MCC Accuracy (%) MCC Accuracy (%) MCC

Centriole - 93.51 0.9240 93.51 0.8867 94.81 0.9249

Cytoplasm - 39.66 0.9151 91.43 0.7218 41.37 0.9007

Cytoskeleton - 51.90 0.8138 8.86 0.8816 51.90 0.8232

Endosome - 54.17 0.7012 33.33 0.7552 54.17 0.7417

Endoplasmic reticulum - 78.85 0.9046 79.30 0.8960 78.85 0.9043

Extracell - 86.23 0.9705 82.60 0.9029 86.23 0.9689

Golgi apparatus - 70.19 0.8853 39.75 0.9284 70.19 0.8887

Lysosome - 93.51 0.9407 57.14 0.9777 93.51 0.9407

Microsome - 50.00 0.8008 0.00 - 50.00 0.8008

Mitochondrion - 84.89 0.9569 81.04 0.9763 83.79 0.9596

Nucleus - 91.67 0.8876 50.15 0.9833 91.77 0.8932

Peroxisome - 97.87 0.9380 51.06 0.9605 97.87 0.9481

Plasma membrane - 84.66 0.8887 60.80 0.9618 84.66 0.8870

Synapse - 86.36 0.8487 27.27 0.8657 86.36 0.8487

Overall accuracy 62.7 75.22 - 67.75 - 75.55 -

V - 72.22 - 65.19 - 72.25 -

doi:10.1371/journal.pone.0031057.t005
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among the 22 subcellular locations except for the locations of

Cytoplasm and Endoplasmic reticulum. Meanwhile, our method

also performs better than Euk-mPLoc 2.0 [38] which is also based

on the same dataset. For the Euk7579 dataset, the overall

accuracy of the current approach is 89.94%, which is also higher

than those achieved using the methods listed in Table 4 (from

6.44% to 14.94%). Meanwhile, our method also performs better

than some other classifiers such as LOCSVMPSI [58] and

complexity-based method [59]. As shown in Table 5, our

method also achieves better performances than Hum-mPLoc 2.0.

For the Hum3681 dataset, the overall accuracy of the current

approach is 75.55%, which is 12.85% higher than the Hum-

mPLoc 2.0 method. It is worth noting that all the three datasets

(Euk-mPLoc 2.0, iLoc-Euk and Hum-mPLoc 2.0), which also

extract sequence features from the Gene Ontology information to

represent the query protein, get the comparable accuracies to the

present method. This demonstrates that the Gene Ontology

information provides a better source of information for the

prediction of protein subcellular location. As shown in Table 6,

the proposed method, examined by the jackknife test, also

performs better than Euk-mPLoc and the KNN-SVM ensemble

classifier [25]. For the Euk6181 dataset [60], the overall accuracy

of the proposed method is 79.14%, which is 11.74% and 8.64%

higher than Euk-mPLoc and the KNN-SVM ensemble classifier

respectively [25].

As illustrated by some researchers, protein sequence similarity

within the datasets has a significant effect on the prediction

performance of protein subcellular location, i.e., accuracies will be

overestimated when using high-similarity datasets. To avoid this

problem, two low-similarity datasets, i.e., the iLoc8897 dataset and

Hum3681 dataset were used to evaluate the performance of our

method. The results also show that our method achieves good

performances and the prediction accuracies are higher than those

achieved using the methods listed in Table 3 and Table 5.

3. A case study
To evaluate the performance of the proposed method, it was

also used to predict the subcellular locations of some proteins used

in our laboratory. Take two proteins for example. The first

example is fibronectin (FN) [61,62], which is an ‘‘extracell’’

protein and abundant in the extracellular matrix and participates

in many cellular processes, including osteoblastic differentiation/

mineralization, tissue repair, embryogenesis, cell migration/

adhesion, and blood clotting. The accession number for FN is

shown in Table 7. According to our ensemble classifier, this

protein was predicted as ‘‘extracell’’ protein, which is in

accordance with the annotation in Swiss-Prot database. The

second is cadherin 11 (CDH 11) [61,62], which is a plasma

membrane protein preferentially expressed in osteoblasts. CDH 11

can promote cells to form specialized cell junctions and enhanced

Table 6. Performance comparisons for eukaryotic protein subcellular location prediction method based on the Euk6181 dataset.

Subcellular location Euk-mPloc KNN-SVM ensemble classifier (2010) The proposed method

Jackknife Jackknife Resubstitution Jackknife

Accuracy(%) Accuracy(%) MCC Accuracy(%) MCC Accuracy(%) MCC

Acrosome - 41.2 0.641 76.5 0.874 76.47 0.9308

Cell wall - 67.9 0.711 88.7 0.903 92.45 0.9028

Centriole - 62.5 0.690 81.3 0.786 89.06 0.8857

Chloroplast - 97.4 0.879 99.0 0.918 97.80 0.9956

Cyanelle - 91.8 0.957 91.8 0.957 100.00 1.0000

Cytoplasm - 88.2 0.640 91.8 0.729 82.64 0.7946

Cytoskeleton - 24.3 0.491 41.9 0.645 0.00 0.0000

Endoplasmic reticulum - 79.7 0.776 86.8 0.839 77.20 0.8906

Endosome - 62.9 0.770 67.4 0.812 65.17 0.7867

Golgi apparatus - 74.0 0.802 79.5 0.828 81.89 0.8355

Hydrogenosome - 38.5 0.620 69.2 0.692 100.00 1.0000

Lysosome - 65.0 0.662 72.5 0.772 98.75 0.9106

Melanosome - 53.9 0.733 84.6 0.880 76.92 1.0000

Microsome - 19.4 0.380 41.9 0.647 9.68 0.5996

Mitochondrion - 85.1 0.872 87.5 0.910 89.91 0.9425

Nucleus - 84.6 0.824 85.7 0.862 61.97 0.9642

Peroxisome - 37.1 0.589 74.2 0.860 98.97 0.9896

Plasma membrane - 81.4 0.766 84.4 0.817 71.86 0.9373

Extracell - 83.3 0.864 85.9 0.894 92.81 0.9537

Spindle pole body - 50.0 0.669 75.0 0.850 72.22 0.8679

Synapse - 66.7 0.816 66.7 0.816 53.33 1.0000

Vacuole - 42.2 0.610 82.4 0.865 92.16 0.9181

Overall accuracy 67.4 70.5 - 77.6 - 79.14 -

V - - - - - 77.62 -

doi:10.1371/journal.pone.0031057.t006
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crosstalk between adjacent osteocytes. The accession number for

CDH 11 is also shown in Table 7. We also predicted it correctly.

More examples are list in Table 7. As is shown, 10 of all the 11

proteins are predicted in accordance with the Swiss-Prot

annotations by the proposed method. While only 8 of 11

eukaryotic proteins and 2 of 4 human proteins are predicted

correctly by iLoc-Euk and Hum-mPLoc2.0 respectively.

We also used iLoc-Euk, Hum-mPLoc 2.0 and the proposed

method to predict the subcellular locations of some multiple-

location proteins. As can be seen from Table 8, all subcellular

locations of the protein Q05329 was correctly identified by the

proposed method and iLoc-Euk, but not entirely correctly by

Hum-mPLoc 2.0. The second protein P58335 was identified

completely correctly by the proposed method, but according to

iLoc-Euk and Hum-mPLoc 2.0, it was assigned to only one of its

real subcellular locations. The third protein P30622 simultaneous-

ly exists at ‘‘Cytoplasm’’ and ‘‘Cytoskeleton’’ in Swiss-Prot. Both

iLoc-Euk and Hum-mPLoc 2.0 only identified one location

correctly. Although the proposed method incorrectly predicted

P30622 as belonging to ‘‘endosome’’, yet it successfully identified

two of its subcellular locations.

4. Conclusions
In this study, a KNN-SVM ensemble classifier by fusing the GO

attributes and hydrophobicity features was investigated to predict

subcellular location of eukaryotic proteins. Three widely used

benchmark datasets were adopted in our work. To improve the

prediction quality, the following strategies were applied: (i)

representing protein samples by using Gene Ontology could

effectively grasp the core features to indicate the subcellular

Table 8. Examples to show the predicted results by three predictors on multiple-location proteins.

Accession number Entry name Swiss-Prot annotation iLoc-Euk (2011) Hum-mPLoc 2.0 (2009) The proposed method

Trained by iLoc8897 dataset

Q05329 DCE2_human Plasma membrane
Golgi apparatus
Synapse

Plasma membrane
Golgi apparatus
Synapse

Cytoplasm
Mitochondrion
Synapse

Plasma membrane
Golgi apparatus
Synapse

P58335 Antr2_human Endoplasmic reticulum
Plasma membrane
Extracell

Extracell Endoplasmic reticulum Endoplasmic reticulum
Plasma membrane
Extracell

P30622 Clip1_human Cytoplasm
Cytoskeleton

Cytoplasm Cytoskeleton
Endosome

Cytoplasm
Cytoskeleton
Endosome

P13395 Sptca_drome Cytoskeleton
Golgi apparatus
Plasma membrane

Golgi apparatus - Cytoskeleton
Golgi apparatus

P11279 Lamp1_human Endosome
Lysosome
Plasma membrane

Plasma membrane Lysosome Plasma membrane
Lysosome
Melanosome

Q15942 Zyx_human Cytoplasm
Cytoskeleton

Cytoskeleton Plasma membrane Cytoplasm
Cytoskeleton
Nucleus

doi:10.1371/journal.pone.0031057.t008

Table 7. Examples to show the predicted results by three predictors.

Accession number Entry name Swiss-Prot annotation iLoc-Euk (2011) Hum-mPLoc 2.0 (2009) The proposed method

Trained by iLoc8897 dataset

P55287 Cad11_human Plasma membrane Plasma membrane Plasma membrane
Cytoplasm
Extracell

Plasma membrane

P02751 Finc_human Extracell Extracell Extracell Extracell

Q8IZC6 Cora1_human Extracell Extracell Extracell

Q9EPU7 Z354c_rat Nucleus Nucleus - Nucleus

Q5QNQ9 Cora1_mouse Extracell Extracell - Extracell

Q5BKR2 Nhdc2_mouse Mitochondrion Plasma membrane - Mitochondrion

P12645 Bmp3_human Extracell Extracell Extracell Extracell

P51690 Arse_human Golgi apparatus Cytoplasm Lysosome Golgi apparatus

Q8C341 Ospt_mouse Endoplasmic reticulum Plasma membrane - Cytoplasm

P00922 Cah2_sheep Cytoplasm Cytoplasm - Cytoplasm

Q30D77 Cooa1_mouse Extracell Extracell - Extracell

doi:10.1371/journal.pone.0031057.t007
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localization, (ii) adopting the one-versus-one strategy and two most

popular classifiers in machine learning task, i.e., LIBSVM and

KNN to predict protein subcellular location, (iii) capturing the top

features and learning with a small number of features might lead

to a better generalization of machine learning algorithms (Occam’s

razor). In summary, the results of the predictions performed by

KNN-SVM ensemble classifier indicate that our method is very

promising and may play an important complementary role to

existing methods.
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