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Advances in high-throughput sequencing are reshaping how we perceive microbial communities inhabiting
the human body, with implications for therapeutic interventions. Several large-scale datasets derived from
hundreds of human microbiome samples sourced from multiple studies are now publicly available.
However, idiosyncratic data processing methods between studies introduce systematic differences that
confound comparative analyses. To overcome these challenges, we developed GUTCYC, a compendium of
environmental pathway genome databases (ePGDBs) constructed from 418 assembled human microbiome
datasets using METAPATHWAYS, enabling reproducible functional metagenomic annotation. We also
generated metabolic network reconstructions for each metagenome using the PATHWAY TOOLS software,
empowering researchers and clinicians interested in visualizing and interpreting metabolic pathways
encoded by the human gut microbiome. For the first time, GUTCYC provides consistent annotations and
metabolic pathway predictions, making possible comparative community analyses between health and
disease states in inflammatory bowel disease, Crohn’s disease, and type 2 diabetes. GUTCYC data products
are searchable online, or may be downloaded and explored locally using METAPATHWAYS and PATHWAY TOOLS.

Design Type(s) data integration objective • database creation objective
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Technology Type(s) digital curation

Factor Type(s) Clinical Treatment
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Background & Summary
The myriad collections of microorganisms found on and in the human body are known as the human
microbiome1. Changes in microbiome structure and function have been implicated in numerous disease
states including inflammatory bowel disease, cancer, and even cardiovascular disease2,3. Increasingly,
researchers are using high-throughput sequencing approaches to study the genes and genomes of
microbiomes and characterize diversity and metabolic potential in relation to health and disease states4,
opening new opportunities for prevention and therapeutic intervention at the interface of microbial
ecology, bioinformatics and medicine. The most densely colonized human habitat is the distal gut,
inhabited by thousands of diverse microorganisms, as differentiated at the strain level. Despite providing
essential ecosystem services, including nutritional provisioning, detoxification and immunological
conditioning, the metabolic network driving matter and energy transformations by the distal gut
microbiome remains largely unknown. Several large-scale metagenomic datasets (derived from hundreds
of microbiome samples) from the Human Microbiome Project (HMP)5, Beijing Genomics Institute
(BGI)6, and Metagenomes of the Human Intestinal Tract project (MetaHIT)7 are now available on-line,
creating an opportunity for large-scale metabolic network comparisons.

While the studies cited above provide the sequencing data, they do not provide the software
environment used for generating their annotations. In contrast to these proprietary pipelines, over the
past few years a number of metagenomic annotation pipelines available to third parties have emerged
including IMG/M8, Metagenome Rapid Annotation using Subsystem Technology (MG-RAST)9,
SMASHCOMMUNITY

10 and HUMANN11. Differing pipelines used to process sequence information between
studies introduces biases based on idiosyncratic formatting, and alternative annotations or algorithmic
methods. Specifically, support for metabolic pathway annotation varies significantly among pipelines due
to differences in reference database selection with resulting impact on metabolic network comparisons.
The most common metabolism reference database currently in use is Kyoto Encyclopedia of Genes and
Genomes (KEGG)12. Although extant pipelines often provide links to KEGG module and pathways
maps12 (using KEGG ontology (KO) or pathway identifiers) that can be visualized with coverage or gene
count information using programs like KEGG Atlas13, they do so using often incompatible formats. Such
mapping is limited because there is no simple way to query, manipulate, or visualize the underlying
implicit metabolic model directly. Moreover, prediction using KEGG results in amalgamated pathways
with limited taxonomic resolution, impeding enrichment and association studies11.

In responding to the deficiencies of existing tools, we recently developed a modular annotation and
analysis pipeline enabling reproducible research14 called METAPATHWAYS, that guides construction of
environmental Pathway Genome Databases (ePGDBs) from environmental sequence information15 using
PATHWAY TOOLS

16 and METACYC
17–19. PATHWAY TOOLS is a production-quality software environment

developed at SRI International that supports metabolic inference and flux balance analysis based on the
METACYC database of metabolic pathways and enzymes representing all domains of life. Unlike KEGG,
METACYC emphasizes smaller, evolutionarily conserved or co-regulated units of metabolism and contains
the largest collection (over 2,400) of experimentally validated metabolic pathways20. Navigable and
extensively commented pathway descriptions, literature citations, and enzyme properties combined
within an ePGDB provide a coherent structure for exploring and interpreting predicted metabolic
networks from the human microbiome across multiple levels of biological information (DNA, RNA,
protein and metabolites). Over 9,800 PGDBs have been developed by researchers around the world, and
thus ePGDBs represent a data format for metabolic reconstructions that exhibit a potential for reusability
in further studies.

Here we present GUTCYC, a compendium of over 418 ePGDBs constructed from public shotgun
metagenome datasets generated by the HMP5, the MetaHIT inflammatory bowel disease study7, and the
BGI diabetes study6. Relevant pipeline modules are summarized in Fig. 1. GUTCYC provides consistent
taxonomic and functional annotations, facilitates large-scale and reproducible comparisons between
ePGDBs, and directly links into robust software and database resources for exploring and interpreting
metabolic networks. This metabolic network reconstruction provides a multidimensional view of the
microbiome that invites discovery and collaboration21.

Methods
Metagenomic data sources
We collected 418 assembled human gut shotgun metagenomes from public repositories and
Supplementary Materials sourced from the HMP (American healthy subjects, n= 148)5, a MetaHIT
(European inflammatory bowel disease subjects, n= 125)22, and a BGI (Chinese type 2 diabetes subjects,
n= 145) study6. See Supplementary Tables 1 and 2 for a detailed listing of accession numbers and file
descriptors.

Data processing
Microbiome project sample metadata were manually curated to ensure compatibility with METAPATH-

WAYS. ePGDBs were created for each sample by running the METAPATHWAYS 2.5 pipeline and the PATHWAY

TOOLS version 17.5, using the assembled metagenomes described above. The pipeline consists of five
modular steps, including (1) quality control and ORF prediction, (2) homology-based functional and
taxonomic annotation, (3) analyses consisting of tRNA and lowest common ancestor (LCA)23
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Figure 1. The GutCyc pipeline diagram. The MetaPathways pipeline consists of five modular stages including

(1) Quality control (QC) and open reading frame (ORF) prediction (2) Functional and taxonomic annotation,

(3) Analysis (4) ePGDB construction, and (5) Pathway export. Inputs and programs are depicted on the left

with corresponding output directories and exported files on the right.

www.nature.com/sdata/

SCIENTIFIC DATA | 4:170035 | DOI: 10.1038/sdata.2017.35 3



identification, (4) construction of ePGDBs using PATHWAY TOOLS and, finally, (5) pathway export24,25

(see Fig. 1). The following paragraphs describe the individual processing steps required to construct an
ePGDB for each sample, starting with assembled contigs in FASTA format.

Quality control. Contigs from each sample were collected from their respective repositories and
curated locally. The METAPATHWAYS pipeline performs a number of quality control steps. First, each
contig was checked for the presence of ambiguous base pairs and homopolymer runs, splitting contigs
into smaller sequences by removing such problematic regions. Next, the contigs were screened for
duplicates. Finally, a length cutoff of 180 base pairs was applied to the remaining sequences to ensure that
very short sequences were removed from downstream processing steps26.

ORF prediction. Sequences passing quality control were scanned for ORFs using METAPRODIGAL
27,

a robust ORF prediction tool for microbial metagenomes considered to be among the most accurate ORF
predictors28. Resulting ORF sequences were translated to amino acid sequences using NCBI genetic code
Table 11 for bacteria, archaea, and plant plastids29. Translated amino acid sequences shorter than 30
amino acids were removed as these sequences approached the so-called functional homology search
‘twilight zone’, where it becomes difficult to detect true homologs30.

Functional annotation. The quality-controlled amino acid sequences were queried against a panel of
functionally-annotated protein reference databases used in the validation of the METAPATHWAYS pipeline31

: KEGG12 (downloaded 2011-06-18), COG32 (downloaded 2013-12-27), METACYC
19 (downloaded 2011-

07-03), REFSEQ33 (downloaded 2014-01-18), and SEED34 (downloaded 2014-01-30). Protein sequence
similarity searches were performed using the program FAST35 with standard alignment result cutoffs
(E-value less than 1 × 10− 5, bit-score greater than 20, and alignment length greater than 40 amino acids30;
and blast-score ratio (BSR) greater than 0.4 (ref. 36)). The choice of parameter thresholds were selected to
maximize annotation accuracy, and were guided based on parameter choices used in previous
studies31,37,38.

Taxonomic annotation. Quality-controlled contigs were also searched against the SILVA39 (version
115) and GREENGENES

40 (downloaded 2012-11-06) ribosomal RNA (rRNA) gene databases using BLAST
version 2.2.25, with the same post-alignment thresholds applied as was previously described for the
functional annotation. BLAST was applied for rRNA gene annotation because it has greater sensitivity for
nucleotide-nucleotide searches than FAST, and the smaller reference database sizes make the relatively
larger computational requirement justifiable.

Additionally, predicted ORFs were taxonomically annotated using the LCA algorithm23 for taxonomic
binning. In brief, the LCA in the NCBI Taxonomy Database33 was selected based on the previously
calculated FAST hits from the RefSeq database. This effectively sums the number of FAST hits at the
lowest shared position of the NCBI Taxonomy Database. The RefSeq taxonomic names often contain
multiple synonyms or alternative spellings. Therefore, names that conform to the NCBI Taxonomy
Database were selected in preference over unknown synonyms.

tRNA scan. METAPATHWAYS uses tRNAsCAN-SE version 1.4 (ref. 41) to identify relevant tRNAs from
quality-controlled sequences. Resulting tRNA identifications are appended as additional functional
annotations.

ePGDB creation. Functional annotations were parsed and separated into three files that serve as inputs
to PATHWAY TOOLS, namely: (1) an annotation file containing gene product information (0.pf), (2) a
catalog of contigs and scaffolds (genetic-elements.dat), and (3) a PGDB parameters file
(organism-params.dat). The PathoLogic module42,43 in the PATHWAY TOOLS software, was used to
build the ePGDB and predict the presence of metabolic pathways based on functional annotations.
Following ePGDB construction, the base pathways (i.e., pathways that are not contained within super-
pathways) were extracted from ePGDBs to generate a summary table of predicted metabolic pathways for
each sample.

Accessibility and flexibility. METAPATHWAYS 2.5 generates data in a consistent file and directory
structure. The output for each sample is contained within a single directory, which in turn is organized
into sub-directories containing relevant files (see Fig. 1). The METAPATHWAYS 2.5 graphical user interface
(GUI) enables interactive exploration, visualization, and searches of individual sample results along with
comparative queries of multiple samples, via a custom knowledge engine data structure. Input and output
files are available for download from the GUTCYC website (www.gutcyc.org) and may be readily
explored in the METAPATHWAYS GUI or PATHWAY TOOLS on LINUX, MAC OS X and WINDOWS machines.

Computational environment. Computational processing was performed using a local cluster of
machines in the Hallam laboratory and on WestGrid's BUGABOO cluster part of Compute Canada's
national platform of Advanced Research Computing resources. https://www.westgrid.ca/
support/systems/bugaboo. The Hallam lab computers have a configuration profile of 2 × 2.4
GHz Quad-Core Intel Xeon processors with 64 GB 1,066MHz DDR3 RAM. The BUGABOO cluster
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provides 4,584 cores with 2 GB of RAM per core on average. The average sample took 7–8 h to process on
a single thread, and the span of the processing required to generate the GUTCYC COLLECTION was 135 days.

Software availability
METAPATHWAYS 2.5, including integrated third party software, is available on GitHub (github.com/
hallamlab/metapathways2), licensed under the GNU General Public License, version 3), along
with a companion tutorial (github.com/hallamlab/mp_tutorial/) released under the
Creative Commons Attribution License (allows reuse, distribution, and reproduction given proper
citation). PATHWAY TOOLS is available under a free license for academic use, and may be commercially
licensed (www.biocyc.org/download-bundle.shtml). METAPATHWAYS outputs were pro-
cessed using PATHWAY TOOLS version 17.5 under default settings except for disabling of the PathoLogic
taxonomic pruning step (i.e., -no-taxonomic-pruning) as was described previously31, and an
additional refinement step of running the Transport Inference Parser44 to predict transport reactions
(i.e., -tip). FAST is freely available under the GNU General Public License, version 3 on our GitHub
page (github.com/hallamlab/FAST).

Data Records
A list of each sample, its provenance, location and relevant data processing steps can be found in
Supplementary Table 1. All records are available at the GUTCYC project website (www.gutcyc.org),
and at Figshare as described in (Data Citation 1). Each sample’s data records are contained within a single
directory. Within this directory, sub-directories and files are located as depicted in Fig. 1. A summary of
the data present in the GUTCYC COLLECTION is presented in Table 1. A full set of summary data for each
ePGDB may be found in Supplementary Table 2.

preprocessed
For a sample with an identifier of osample_ID>, this directory contains two files: (1)
osample_ID>.fasta, which contains the renamed, quality-controlled sequences, and (2)
osample_ID>.mapping.txt, which maps the original sequence names to the new names
assigned by METAPATHWAYS. Sequences are renamed to osample_ID>_X where X is the zero-indexed
contig number pertaining to the order in which the contig appears in the input file (e.g., a contig
identified as DLF001_27 is interpreted as the 28th contig listed in the FASTA file for sample DLF001 ‘s
assembly).

orf_prediction
This directory contains four files, (1) osample_ID>.fna which contains nucleic acid sequences of
all predicted ORFs, (2) osample_ID>.faa which contains amino acid sequences of all predicted
ORFs, (3) osample_ID>.qced.faa which contains amino acid sequences of all predicted ORFs
meeting user defined quality thresholds (in this study, a minimum length of 60 amino acids), and (4)
osample_ID>.gff, a general feature format (GFF) file45 containing all quality-controlled sequences
and information about the strand (− or +) on which the ORF was predicted. ORFs are named
osample_ID>_X_Y, where X is the contig number pertaining to the order in which the contig
appears and Y represents the order in which the ORFs were predicted on the contig.

results
This directory contains four sub-directories: (1) annotation_table, (2) rRNA, (3) tRNA, and (4)
pgdb. The annotation_table sub-directory contains (1) statistics files for each functional
database used to annotate the ORFs (osample_ID>.oDB>_stats_oindex>.txt),

Min 1st quartile Median 3rd quartile Max

Bases 0.98 54.75 81.35 113.75 370.51

Contigs 2,506 27,788 47,486.5 76,275.75 399,331

ORFs 2,448 61,703.5 95.531 139,690 550,312

Func. Annots. 2,176 57,102.25 86,054.5 123,747.25 425,033

Reactions 1,635 2,385.5 3,438 3,667.75 4,881

Trans. Reactions 12 26 31 34 46

Compounds 1,052 1,678 2,008.5 2,119.5 2,676

Base Pathways 257 350 616 654 832

Table 1. Summary statistics for the GUTCYC Collection across 418 samples. The statistics for the number
of bases processed is in units of Megabases. ‘Func. Annots.’ are functional annotations. ‘Trans. Reactions’ are
transport reactions. ‘Compounds’ are small molecule metabolites. ‘Base Pathways’ include all pathways except
complex pathways known as Super-Pathways.
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(2) osample_ID>.functional_and_taxonomic_table.txt detailing the length, loca-
tion, strand and annotation (functional and taxonomic) of each ORF, and (3) a file listing all ORFs and
their functional annotations (osample_ID>.ORF_annotation_table.txt). The prokaryotic
small subunit ribosomal RNA (SSU or 16S rRNA) gene is a standard marker gene used for measuring
taxonomic diversity46. The rRNA sub-directory contains files detailing statistics for each taxonomic
database used to annotate the ORFs (named as osample_ID>.oDB>.rRNA.stats.txt). The
tRNA sub-directory contains (1) osample_ID>.trna.stats.txt, detailing the type, anticodon,
location and strand of each predicted tRNA and (2) osample_ID>.tRNA.fasta containing all
predicted tRNA sequences. The pgdb sub-directory contains a osample_ID>.pwy.txt file
describing metabolic pathways predicted in the ePGDB, specifically, each predicted pathway, the ORF
identities involved in each pathway, the enzyme abundance, and the pathway coverage in a tabular format
navigable via the METAPATHWAYS GUI.

genbank
This directory contains a file named osample_ID>.annotated.gff, a GFF file containing all
quality-controlled sequences with their annotations.

ptools
This directory contains the three files necessary to build a ePGDB using PATHWAY TOOLS: (1) genetic-
elements.dat, (2) organism-params.dat, and (3) 0.pf which contains all functional
annotations to be processed by PATHWAY TOOLS. A sub-directory called flat-files contains flat files
describing database objects such as compounds, reactions, pathways (each of which is described in more
detail in47) for individual ePGDBs.

run_statistics
This directory contains three files: (1) osample_ID>.run.stats, the parameters used to process
the sample; (2) osample_ID>.nuc.stats, the number and length of nucleic acid sequences
before and after quality control filtering; and (3) osample_ID>.amino.stats, the number and
length of amino acid sequences before and after quality control filtering.

Technical Validation
GUTCYC was derived from third-party sequence data from three publicly-available human gut
microbiome sampling projects with metagenomic assemblies, with published details on their own
technical validation steps: the HMP5, a MetaHIT study22, and a BGI study6. The technical validation of
third-party software used in METAPATHWAYS may be found in the corresponding publications for
METAPRODIGAL

27, BLAST48, and tRNASCAN-SE41. GUTCYC functional sequence similarity was computed
using FAST, an aligner based on a version of LAST49, with multi-threading performance improvements
and new support for generating BLAST-like E-values, with significant correlation with BLAST output
(correlation of the log(E-value) outputs of BLAST and LAST: R2= 0.887, Po0.01)24. The protocols
undertaken in the METACYC project for the ongoing manual curation of new metabolic pathways, and its
subsequent implications for accurate pathway prediciton, may be found in the following METACYC

publications17–19,50.
Validation of the overall METAPATHWAYS pipeline may be found in previously published reports31,51

with specific emphasis on how changes in taxonomic pruning, read length and metagenomic assembly
coverage impact the accuracy and sensitivity of pathway recovery. In brief, pathway prediction is affected
by taxonomic distance, sequence coverage and sample diversity, nearing an asymptote of maximum
accuracy for metagenomes with increasing coverage. Additionally, like any alignment-based analysis,
annotation quality is a function of both the level of errors in the input sequence data and the selection of
reference databases. Summary data generated for each ePGDB as presented in Supplementary Table 2
was reviewed to detect samples with unusual statistics, such as a lack of 16S gene annotations. The
metabolic reconstruction pathways were computationally predicted using the PATHWAY TOOLS PathoLogic
module52, which has an accuracy of 91% as evaluated using organism pathway databases with high levels
of manual curation43). The performance of the PATHWAY TOOLS PathoLogic module has also been
evaluated using datasets with different complexity and coding potential, including simulated
metagenomes, a symbiotic system, and the Hawaii Ocean Time-series31. The authors provide detailed
information about the effects of read length, coverage and sample diversity on pathway recovery but
found that performance specificity was high (>85%) using all three datasets. The authors also provide a
list of `prediction hazards’ such as the identification of dissimilatory nitrate reduction pathways of which
the user should be aware and conclude that despite being imperfect, PATHWAY TOOLS provides a powerful
means with which to predict metabolic interactions31.

Usage Notes
Once a set of data such as GUTCYC COLLECTION has been crafted into a format that is both comprehensible
to domain experts, and interpretable by machines, there are myriads of uses that can be explored. For
example, comparing ePGDBs with sets of microbial PGDBs from the same environment can aid in
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identifying ‘distributed pathways’ present in the metagenome metabolic reconstruction, but absent from
any individual genomic metabolic reconstruction31. Annotations from each of the protein reference
databases can also be explored individually using METAPATHWAYS. In addition, a file for each sample,
located at sample/results/annotation_table/sample.2.txt provides a detailed
overview of the annotation for each ORF in each database as well as score reflecting the confidence of
the alignment and annotation. The predicted transport proteins can be used to predict trophism patterns
within a community. Furthermore, the PATHWAY TOOLS software allows for sophisticated comparative
analyses between ePGDBs, at the level of compounds, reactions, enzymes, and pathways53. The
METAFLUX54 module of PATHWAY TOOLS for performing flux balance analysis (FBA)55 can be used with
GUTCYC ePGDBs to generate quantitative simulations of microbiome growth and pathway flux. A set of
microbiome metabolic models also facilitates the exploration of the impact of xenobiotics56, and provides
a computational substrate for systems biology approaches to engineering the gut microbiome57. Figure 2
demonstrates the user interface for METAPATHWAYS and PATHWAY TOOLS, along with example data analysis
use cases.

In this section we motivate further two specific use cases for GUTCYC. In the first case, we demonstrate
how to use a GUTCYC ePGDB to determine the metabolic path between two small molecules of interest. In
the second case, we use GUTCYC to visualize different levels of biological information, e.g., metabolomics
data, in the context of a microbiome metabolic network.

Optimal metabolite tracing
The PATHWAY TOOLS software provides advanced biochemical querying capabilities for both PGDBs and
ePGDBs. One such capability is energy-optimal metabolite tracing. To summarize, given both a starting
and a terminal/target compound within an ePGDB, PATHWAY TOOLS is able to compute the shortest and
most energetically-favorable route through the metabolic reaction network. While there is no guarantee
that, in a complex milieu such as the gut microbiome, the syntrophic flux will necessarily follow a short
and minimal energy path, these criteria allow us to narrow down a multiplicity of possible paths
to a single parsimonious candidate path.

In a study by Koeth et al.58, they demonstrated a causal connection between the intestinal gut
microbiota’s metabolism of red meat and the promotion of atherosclerosis. In brief, the gut microbiome
is capable of transforming excess L-carnitine into trimethylamine (TMA), which is further processed by
the liver to form the cardiovascular disease-associated metabolite trimethylamine N-oxide (TMAO).
Using this biotransformation as a motivating case, we queried an arbitrarily selected ePGDB from the
GUTCYC COLLECTION, SRS015217CYC, for the biochemical reaction path from L-carnitine to TMA, which
is not provided explicitly by Koeth et al.58 Utilizing the PATHWAY TOOLS Metabolic Route Search feature,
we found an optimal path between L-carnitine to TMA for this ePGDB, using the METACYC carnitine
degradation II pathway (PWY-3,602, expected in Proteobacteria) along with a betaine reductase reaction
(EC 1.21.4.4; found in Clostridium sticklandii and Eubacterium acidaminophilum, both species affiliated
with the order Clostridiales), minimizing the number of enzymes involved and chemical bond
rearrangements. PATHWAY TOOLS found the optimal path in seconds.

The metabolic route identified may also help generate mechanistic hypotheses from microbiome study
observations. L-carnitine and glycine betaine have known transporter families that facilitate their
movement across the cell membrane59, as do TMA and TMAO60, and thus the metabolic route in this
ePGDB may be a distributed pathway31. This demonstrates the power of ePGDBs in computing
connections between nutritional or pharmaceutical inputs (such as L-carnitine) to identify potential
interactions with known disease biomarkers (as TMAO is to cardiovascular disease).

High-throughput data visualization
Another capability of PATHWAY TOOLS is to visualize the results of high-throughput experiments mapped
onto the Cellular, Genome, and Regulation Overviews, or as ‘Omics Pop-Ups’ when viewing a particular
pathway61. Specifically, PATHWAY TOOLS provides support for the analysis of mass spectrometry data, by
automatically mapping a list of monoisotopic masses to matching entries in METACYC, or in specific
ePGDBs62. As a demonstration of this capability, we analyzed mass-spectrometry data from a
metabolomic study of humanized mice microbiomes63. The dataset contained 867 unique masses, of
which 453 masses were identified using METACYC by performing standard adduct monoisotopic mass
manipulations64, followed by monoisotopic mass search using PATHWAY TOOLS. We mapped the identified
compounds on the Cellular Overview65 of an arbitrarily-selected ePGDB from the GUTCYC COLLECTION for
illustrative purposes, as seen in Fig. 3. This facilitates turning a massive table of data into a more intuitive
construct based on the community metabolic interaction network, enabling more efficient pattern
matching. For example, using the enrichment analysis tools in PATHWAY TOOLS

62, we identified the
pathway class of ‘Secondary Metabolites Degradation’ as enriched for identified compounds
(P= 2.0 ×10 − 2, Fisher Exact Test with Benjamini-Hochberg multiple testing correction). By visually
inspecting the pathways in the class, we can see that pathway P562-PWY, ‘myo-, chiro-, and scillo-
inositol degradation pathway’, has four matched compounds from the metabolomics dataset.
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Figure 2. GUTCYC ePGDB use cases. In the upper left and upper right insets, a GUTCYC ePGDB is opened in

METAPATHWAYSIn the upper left, we display the Pipeline Execution step, and the Process Monitor interfaces. In

the upper right, we display the Summary Table (with exportable sample statistics), and the Pathway Table (with

exportable pathway abundances) interfaces. In the lower four inset images, a GUTCYC ePGDB is opened in

PATHWAY TOOLS. Clockwise from the upper left, we display the ePGDB summary statistics, interactive metabolic

network visualization, the Pathway View, and the biochemical Reaction View.
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Figure 3. The Cellular Overview for the SRS056259Cyc ePGDB, at three different zoom levels. Compounds

are highlighted in red if identified from a mass spectrometry analysis of the gut microbiome63, and otherwise

appear in grey. Reactions with enzyme data in SRS056259Cyc are drawn in blue. The top left inset shows a

fraction of the full metabolic map. The middle inset shows a zoom-in of the ‘Secondary Metabolite

Degradation’ pathway class. Bottom right inset shows zoom-in on Pathway P562-PWY, ‘myo-, chiro-, and

scillo-inositol degradation pathway’, showing four mass-spectrometry identified compounds in red.
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