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Abstract: The NFκB protein family regulates numerous pathways within the cell—including
inflammation, hypoxia, angiogenesis and oxidative stress—all of which are implicated in placental
development. The placenta is a critical organ that develops during pregnancy that primarily functions
to supply and transport the nutrients required for fetal growth and development. Abnormal placental
development can be observed in numerous disorders during pregnancy, including fetal growth
restriction, miscarriage, and preeclampsia (PE). NFκB is highly expressed in the placentas of women
with PE, however its contributions to the syndrome are not fully understood. In this review we
discuss the molecular actions and related pathways of NFκB in the placenta and highlight areas of
research that need attention
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1. Introduction

An important family of proteins, known as nuclear-factor kappa-light chain of B cells
(NFκB), regulate multiple pathways that impact cellular function. These include proliferation [1],
differentiation [2], apoptosis [3], angiogenesis [4], epithelial to mesenchymal transition [5,6],
and oxidative stress [7]. As well, NFκB is known for its role as a central mediator of inflammation and
additionally for its roles modulating hypoxia-dependent gene expression [1,4,8], which are critically
involved in placental development.

The placenta is an important organ composed of trophoblast cells that arise from the extraembryonic
layer of the blastocyst. The placenta conducts a range of functions that aim to support fetal growth and
development, including temperature regulation, protection of the maternal micro-environment from
infection, establishment of immunologic tolerance of the fetus, and to provide the exchange of gases,
nutrients, and waste [9–11]. Proper placental development is essential for a successful pregnancy.
In the first trimester of pregnancy, the placenta develops in a low oxygen environment [12]. NFκB is
activated by the inflammation and hypoxia that occurs in early pregnancy. As well, NFκB can further
upregulate genes in both of these pathways. Studies of murine pregnancies result in fetal demise
by day 16 of gestation when NFκB proteins were deleted, which supports its role in pregnancy and
placentation [2,13].

Abnormal placental development can lead to pregnancy complications, such as preeclampsia (PE).
PE is a hypertensive disorder of pregnancy originated from the placenta, that affects up to 8% of all
pregnancies [14]. It is the main cause of maternal and fetal morbidity and mortality worldwide [14].
PE is characterized by new onset of maternal hypertension occurring after 20 weeks of gestation,
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involving systemic endothelial dysfunction in the presence or absence of proteinuria [15]. There is no
cure for PE and the primary method of treatment is placental and fetal delivery [10]. In severe cases,
PE leads to preterm birth, which poses immediate and long-term health complications of the fetus and
mother [14,16]. The exact etiology of PE is unknown however, as in severe cases it involves abnormal
placental development and function [10,17–19].

During PE, the spiral arteries do not provide adequate amounts of nutrients and oxygen as the
demand increases over pregnancy [20,21]. Placentas from women with PE develop in prolonged hypoxic
state that extends beyond the physiological period in the first trimester [20,22]. Additionally, during PE,
the placenta is exposed to excessive oxidative stress and inflammation, accompanied by abnormal
trophoblast differentiation and increased secretion of anti-angiogenic proteins compared to healthy
control patients [23–25]. Inflammation and oxidative stress conditions can increase NFκB activity and
without coincidence, multiple reports show that women with PE exhibit up to 10-fold increase in
NFκB expression in the placenta and maternal circulation compared to control pregnancies [26–28].
This suggests that NFκB may be implicated in PE pathophysiology. In this review, we discuss current
knowledge on pathways regulated by NFκB that affect trophoblast differentiation and function during
normal pregnancy and PE. We further highlight areas where more research would provide critical
insights in placental physiology and disease.

2. The NFκB Family of Proteins

The NFκB protein family describes a group of proteins and their subunits that make up the
Rel family [2]. These include c-Rel, Rel-A (p65), Rel-B, NFκB-1 (p50 and p105) and NFκB2 (p52
and p100) [1,7,13,29,30]. NFκB functions as a transcription factor that is expressed in nearly every
mammalian cell [31]. It remains in its inactive form in the cytoplasm, as it is bound to inhibitor proteins,
IκBs [1,2]. The cytoplasmic sequestering of NFκB ensures a rapid response to various stimuli [13].

2.1. NFκB Activation

NFκB activation begins by IκB phosphorylation and subsequent ubiquitination via IκB kinase
complexes (IKKs, IKKα and IKKβ) to release NFκB [1]. Upon nuclear translocation, NFκB binds to κB
DNA regulatory elements on the promoter of genes to modulate gene expression [1]. NFκB activation
involves both canonical and non-canonical mechanisms for activation [7]. The canonical activation
involves NFκB-1 and occurs by various ligand binding such as cytokine receptors, pattern recognition
receptors, and tumor necrosis factor (TNF) super family receptors, including interleukin-1 (IL-1)
receptors and toll like receptors (TLRs) [1,32]. Bacterial toxins such as lipopolysaccharide (LPS) activate
NFκB-1 to initiate the production of pro-inflammatory cytokines [30,32]. Other endogenous molecules
can activate NFκB-1 as well, such as damage-associated molecular patterns (DAMPs) [33]. DAMPs
are secreted from necrotic or stressed cells and activate NFκB-1 through TLR receptor pathways to
induce pro-inflammatory cascades [34]. The non-canonical activation of NFκB-2 can occur from ligand
binding to lymphotoxin β receptor, B-cell activating factor receptor-3, and CD40 [7].

2.2. Actions of NFκB

NFκB can affect multiple pathways within the cell, including proliferation [1], differentiation [2],
angiogenesis [4], hypoxia [4], epithelial to mesenchymal transition [5,6], and oxidative stress [7].
Probably one of the most known functions of NFκB is its role as a central mediator in inflammatory
and immune response pathways [1]. NFκB initiates the production and secretion of pro- and
anti-inflammatory cytokines and immune cell differentiation as well [35]. TNFα is a common
downstream target of NFκB. It elicits pro-inflammatory cascades by also serving as a ligand to increase
NFκB activity [36,37].

Hypoxia drives many gene expression pathways through the activation of NFκB, to increase
perfusion and promote anaerobic metabolism to maintain a cellular energy balance [4]. Other proteins
such as hypoxia inducible factors 1 and 2 (HIF1, HIF2) are major regulators of hypoxia-mediated gene
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expression pathways in the placenta [38]. Both HIF and NFκB proteins are activated through the oxygen
sensing proteins: prolyl-hydroxylases (PHDs) and factor inhibiting HIFs (FIHs) [13]. During hypoxia,
FIH can directly interact with IκBs to activate NFκB and PHD2 functions as a co-activator for Rel-A [13].
HIF1 controls both hypoxic and inflammatory pathways through NFκB activation to regulate cytokines
and nitric oxide in the placenta [4].

NFκB function is often context dependent, as it is found to act as both a pro- and anti-oxidant
mediator [7] and it similarly has pro- and anti-apoptotic functions [2]. Excessive NFκB activation is
associated with oxidative stress and inflammation in numerous diseases, including atherosclerosis,
osteoporosis, Alzheimer’s disease [28], inflammatory bowel disease (IBD), rheumatoid arthritis [1,32],
and cancer [4]. NFκB is also shown to play a role in the pathogenesis of liver disease in pregnancy,
known as intrahepatic cholestasis of pregnancy (ICP) [39]. As well, NFκB may contribute to pre-term
birth through interactions with activator protein 1 (AP-1) to initiate the onset of labor [40].

Many inflammatory diseases exhibit high NFκB activity or find NFκB to be constitutively active
and this poses harm to surrounding tissues, by sequestering immune cells and increasing production
of pro-inflammatory molecules [41]. Many anti-inflammatory therapeutics target NFκB due to its
gatekeeper role in eliciting inflammatory responses [1]. Targeting NFκB may be done through over
expression of IkBs or inhibition of IKKs [41]. Multiple drugs that target inflammatory pathways impact
NFκB activity, including aspirin and corticosteroids [41]. Other disease-modifying antirheumatic
drugs (DMARDs) target NFκB indirectly, such as sulfasalazine, which is used to treat IBD to prevent
NFκB activity in colon cells [31]. Anti-cytokine drugs are also used to treat Crohn’s disease and
arthritis, including anakinra, an IL-1 receptor antagonist, and adalimamab, an anti-TNFα monoclonal
antibody [31].

3. NFκB Actions in the Placenta during Normal Pregnancy and Preeclampsia

NFκB may be implicated in placental development in a number of ways. Mouse studies involving
NFκB Rel-A knockouts and IKK-knockouts result in fetal demise at day 16 of pregnancy, showing that
NFκB is essential in early development and placentation [2,13]. NFκB can exert protective roles through
the activation of anti-apoptotic pathways during embryonic stress [2]. Furthermore, NFκB modulates
several downstream pathways involved in trophoblast differentiation and function. Here, we discuss
the involvement of NFκB during trophoblast differentiation in normal pregnancy and PE.

3.1. NFκB throughout Normal Pregnancy

Inflammation is an important component to normal pregnancies and can be separated into three
phases. While the first and third trimesters are considered to be pro-inflammatory, the second trimester
is anti-inflammatory [42]. Prior to conception, NFκB expression is high in the decidua where it assists
in regulating the implantation window [43]. The first trimester of pregnancy is considered to be
pro-inflammatory due to the dominance of the pro-inflammatory cytokine profile identified from blood
of pregnant women [42]. As embryo implantation occurs, it exerts an ‘open wound’ phenotype in the
uterus causing secretion of pro-inflammatory cytokines [44].

Maintaining a physiological balance of pro- and anti-inflammatory cytokines is critical for a
successful pregnancy. In a recent study, Kaislasuo et al. quantified the anti-inflammatory, interleukin-10
(IL-10), and pro-inflammatory, TNFα, cytokines in the blood serum of pregnant women. Their results
show that IL-10 was significantly higher in women with normal pregnancies compared to women
with pregnancy loss within 6–8 weeks of gestation [45]. Additionally, TNFα was significantly lower in
women with normal pregnancy outcomes, compared to those with pregnancy loss at weeks 4–9 [45].
These results indicate that pregnancy loss may be associated with greater pro-inflammatory cytokines
and further highlights the importance for proper balance and regulation of inflammation during early
pregnancy [45]. The pro-inflammatory cytokine profile decreases towards the end of the first trimester
and the second trimester exhibits an anti-inflammatory state as pregnancy progresses [42].
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The third trimester of pregnancy is driven by a pro-inflammatory state [42]. NFκB is highly
expressed in the decidua, where it assists in preparing for parturition by inducing cervical ripening and
degradation of the extra-cellular matrix to initiate the rupture of placental membranes [43]. Moreover,
NFκB is known to directly regulate factors that are present during labor, such as IL-8, cyclooxygenase-2
(COX2), and prostaglandins [43].

3.2. Placental Trophoblasts

The placenta is comprised of trophoblast cells which arise from the extra-embryonic trophectoderm
layer of the blastocyst [12,46]. These cells develop into cytotrophoblasts (CTBs) and differentiate into
two main lineages: the invasive extra-villous cytotrophoblasts (EVTs) and the villous cytotrophoblasts
(VTs) [12]. Placental villi are formed at day 10 post-conception, and consist of two main villi types:
a) floating villi which, at the start of the second trimester, are ‘bathed’ in maternal blood, and b)
anchoring villi which secure placental attachment to the uterus in early pregnancy [9,46,47].

The base of the anchoring villi are composed of the human leukocyte antigen (HLA)-G+

proliferative column cytotrophoblasts (pCCTs) [9]. These cells differentiate into distal column
cytotrophoblasts (dCCTs), as they migrate closer to the tip of the villi [12]. As these cells become
detached from the column, they will differentiate to form interstitial or endovascular EVTs, which invade
into the decidua and carry out their functions [12,46].

3.3. EVT Function and NFκB Actions in Normal Pregnancy

EVTs have critical functions during pregnancy. They facilitate maternal immune acceptance of the
placenta and fetus, through their interactions with immune cells in the decidua, such as natural killer
cells, macrophages, and T cells [11,48]. EVTs expand, differentiate, invade, and remodel maternal spiral
arteries to permit low resistance high blood flow into the implantation site and support fetal growth
throughout pregnancy [9]. During this process, the smooth muscle layer inside the arteries is completely
removed and replaced by endovascular EVTs that acquire an endothelial-like phenotype [49], by a
process known as pseudo-vasculogenesis.

EVTs also function to regulate the oxygen conditions of the placenta. In early placental
development, the EVTs will form a plug at the base of the maternal spiral arteries to prevent
blood flow into the implantation site [50,51]. During this time, the placenta will develop in a low
oxygen state [51]. The low oxygen helps to regulate the careful balance between CTB proliferation
and VT and EVT differentiation [9,52,53]. The EVT plugs begin to dissolve around weeks 10–12 of
gestation, which increases placental oxygen tension as the placenta becomes fully exposed to maternal
blood [9,50,52–54].

Several studies suggest that NFκB may have a role in EVT function. EVT invasion is partially
regulated by NFκB-induced secretion of cytokines, such as IL-6 and IL-8, from cells that act in an
autocrine and paracrine manner [12,42,55]. Additionally, cytokines are secreted from the decidua to
regulate EVT invasion [42].

Our group recently conducted a study using human first trimester EVT explants that were treated
with LPS and observed increased EVT outgrowth compared to non-treated explants over a culture
period of 24 hours at 3% O2 [56]. In addition, we treated the trophoblast-like cell line, HTR-8/SVneo
with LPS and performed a matrigel invasion experiment. The LPS-treated cells showed a significant
increase in the number of invaded cells compared to non-treated cells [56]. LPS treatment also increased
expression of the invasion marker, integrin α1, and decreased expression of the non-invasive cell
marker, integrin α6, compared to non-treated cells [56].

A major pathway that causes EVT invasion is epithelial to mesenchymal transition (EMT) [57]
which is known to be regulated by NFκB [58,59]. During EMT, cells change their shape, adhesion
molecules, and polarity to become invasive and drive cell migration [55]. This is facilitated by the
production of matrix metalloproteases (MMPs) [60]. MMPs are secreted from the cell and degrade the
extra-cellular matrix [60]. During low oxygen levels, as found in early pregnancy, NFκB upregulates
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the expression of MMP-2 and MMP-9 [58,59]. Both MMP-2 and -9 are known to have significant roles
in EVT invasion. Liu et al. identified that invasion and migration of HTR-8/SVneo can be induced by
the flavonoid, Baicalein, which activates NFκB and then upregulates MMP-9 expression [58].

Interestingly, NFκB regulates factors that both inhibit and stimulate invasion. In breast cancer
cell lines, NFκB activation via TNFα was shown to promote EMT and invasion [61,62]. However, a
study by Huber et al. showed opposite results using the HTR-8/SVneo cell line [63]. Treatment of
HTR-8/SVneo with TNFα was shown to activate plasminogen activator inhibitor-1 (PAI-1) through
NFκB, which impaired trophoblast invasion during a matrigel invasion assay [63]. Similar results were
reported in a study by Bauer et al. in first trimester placental explants [64]. TNFα treatment increased
PAI-1 expression, which inhibited EVT migration [64].

Tian et al. show that EMT occurs in primary small airway epithelial cells through TGF-β activation
of NFκB [65]. However, secretion of TGF-β from the decidua is known to inhibit EVT invasion to
provide protection of maternal tissues from over invasion [55]. These data suggest that NFκB may help
coordinate EVT invasion to allow sufficient invasion, while simultaneously preventing over-invasion
into maternal tissues.

Besides stimulating invasion, the trophoblast-decidual crosstalk permits immunological acceptance
of EVTs by the maternal tissues [9,11,55,66]. Cytokine secretion from the EVTs educates decidual
immune cells by initiating differentiation or altering immune-cell response [2,48]. A study by
Guzman-Genuino et al. recently demonstrated that trophoblasts can influence decidual B-cell
differentiation in a co-culture system [67]. This immune education assists with trophoblast survival
and maintenance of their migratory phenotypes during immunological insults such as infection [11,67].

3.4. EVT Function and NFκB Actions in Preeclampsia

The preeclamptic placenta is characterized by shallow EVT invasion into the decidua and
reduced spiral artery remodeling, which prevents the vasculature expansion needed to permit low
resistance high blood flow into the placental villi and implantation site [54,68]. Additionally, this
causes intermittent placental perfusion that exposes the placenta to oxidative stress [69–71] and
inflammation [28,72].

Several studies have reported that women with PE exhibit hyper-activation of NFκB, with its
expression measured up to 10-fold in the placenta and maternal circulation, compared to control
pregnancies [26–28]. The excessive activation of NFκB may increase pro-inflammatory cytokines
and decrease regulatory and anti-inflammatory cytokines to promote an inflammatory state [73].
The inflammation and oxidative stress can also promote leukocyte activation and neutrophil infiltration
in the endothelium of women with PE [28,72], contributing to the endothelial dysfunction.

The changes in cytokine profile of women with PE may disrupt trophoblast-decidual crosstalk and
EVT invasion. One example of this may be through NFκB activation of PAI-1. Multiple reports state
that PAI-1 expression is significantly increased in the placenta of women with PE [74,75] and studies
have shown PAI-1 can be induced via TNFα activation of NFκB, to decrease EVT invasion [63,64].

The increased inflammation may be explained by alterations in the toll-like receptor 4 (TLR4)
signaling pathway that may enhance NFκB activation and is shown to play a role in PE [76]. Studies
in animal models have shown that a low dose of inflammatory agents that target TLR4, such as LPS,
is enough to upregulate placental expression of TLR4, which subsequently activates NFκB and causes
PE-like symptoms [77]. Moreover, antagonizing the TLR4 signaling pathway was shown to block
placental activation of NFκB and attenuate preeclampsia symptoms in murine models [78,79].

There appears to be an overlap of dysfunctional pathways that are present in the preeclamptic
placenta which are in-part regulated by NFκB. However, there is a lack of critical studies investigating the
direct impact of exacerbated activation of NFκB on EVT differentiation and function. This field of study
requires more research due to the important functions of EVTs in healthy and abnormal pregnancies.
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3.5. VT Function and NFκB Actions in Normal Pregnancies

In the floating villi of the placenta, VTs differentiate as they fuse together forming the
multi-nucleated fetal-maternal interface, known as the syncytium [68]. VT differentiation is regulated
by important transcription factors, such as peroxisome proliferator activated receptor (PPAR)-γ [68]
and glial cell missing 1 (GCM1) [80]. The primary function of the syncytium is to interact with maternal
blood to provide nutrients, waste, and gas exchange between the mother and developing fetus [12,68].

VTs also function as the main source of placental protein and hormone production [9]. VTs produce
and secrete pro- and anti-angiogenic proteins that assist in regulating placental and maternal
angiogenesis, which are essential for generating a circulatory system that provides nutrients to
the fetus [81,82]. Several proteins are important for angiogenic function, including the vascular
endothelial growth factor (VEGF) proteins [48], fibroblast growth factor, and angiopoietins and their
receptors [81]. NFκB may have a functional role in VTs, as it is known to modulate the expression of
angiogenic proteins.

Several cancer reports have shown a role for NFκB in coordinating angiogenesis by initiating
gene expression of pro-angiogenic proteins: VEGF, IL-8, and MMP-9 [83–87]. Walton et al. identified
direct regulation of VEGF-A by NFκB via a chromatin immunoprecipitation study in adult rat
cardiomyocytes [88]. Included in the VEGF family of proteins is placental growth factor (PIGF),
which is secreted by trophoblasts and is expressed under hypoxia and pro-inflammatory stimuli [52,85].
One of the primary functions of PIGF is to support angiogenesis and modulate trophoblast growth
and differentiation [89]. NFκB has regulatory binding sites in the PIGF gene promoter and can initiate
transcriptional activity of PIGF via Rel-A during hypoxia [85]. Endoglin (ENG) is another angiogenic
protein that is highly expressed in the syncytium and is regulated by NFκB [90]. ENG functions as the
cell surface receptor for TGF-β and assists in the production of vasodilatory gases, such as nitric oxide
synthesis, to maintain vascular homeostasis [91].

NFκB may also have a role in regulating oxidative stress response pathways in VTs. Around
10–12 weeks of gestation, the placenta is exposed to maternal blood [49] which increases placental
oxygen tension from 3% to 8% [92]. At this time, the VTs and the syncytium will exhibit an increase in
oxidative stress as they adapt to the change in oxygen tension [92]. Reactive oxygen species (ROS) are
generated during this process, including superoxide, hydroxide, and hydrogen peroxide (H2O2) [92].
NFκB is shown to be activated by the H2O2 oxidation process, which degrades IκB, allowing nuclear
translocation and subsequent activation of NFκB [93]. NFκB may exert anti-apoptotic and antioxidant
properties during this process by activating ROS sequestering molecules to decrease ROS during
oxidative stress [7].

3.6. VT Function and NFκB Actions in Preeclampsia

As previously mentioned, placentas of women with preeclampsia are characterized by a prolonged
hypoxic state with intermittent perfusion, which leads to a placenta exposed to high amounts of
inflammation and oxidative stress. These conditions can suppress CTB proliferation and cause abnormal
VT differentiation and defective syncytialization [10]. Abnormal differentiation and function of VT may
also be responsible for the aberrant secretion of angiogenic proteins into the maternal-fetal circulation,
which largely contributes to maternal vascular dysfunction, proteinuria, and hypertension [18,94].

In T cells, it has been shown that during oxidative stress, the cytosolic oxidation of H2O2 can
activate NFκB [95]. When this occurs in excess, such as in PE, NFκB can directly upregulate downstream
targets, like TNFα, to promote an inflammatory response [95]. This can also induce the production of
placental-originated proteins that negatively affect vascular function. This includes endothelin-1 (ET-1)
and soluble fms-like tyrosine kinase 1 (sFLT1) [96,97]. NFκB may upregulate anti-angiogenic factors
that increase oxidative stressors like Arginase II in the maternal endothelium, causing additional
damage and dysfunction of the vasculature in women with PE [98].

In a study investigating the effects of LPS on human first trimester explants, we observed a
positive reaction of increased EVT outgrowth after LPS treatment [56]. However, LPS treatment of
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villous explants led to an increased secretion of pro-inflammatory cytokines IL-6, IL-1β, IL-8, RANTES,
and TNFα, which induced trophoblast cell apoptosis [56]. Additionally, LPS significantly decreases
GCM1 mRNA expression, which is a critical transcription factor driving VT differentiation in the
villous explants [56].

Overall these studies suggest that NFκB expression is important in the placenta and the outcomes
of NFκB activity largely depends on the context. It is unclear at what point NFκB expression may
cause harm or when it is involved in the physiological events governing pregnancy. There is a clear
lack of knowledge of the molecular mechanisms of NFκB regulation in VT differentiation and function
in normal pregnancies, and PE and further studies are needed to close this gap.

4. Conclusions

Throughout this review, we discussed the potential roles of NFκB during normal placental
development and in the preeclamptic placenta. NFκB exerts its function during the prop-inflammatory
and hypoxic state of the first trimester of normal pregnancies where it regulates production of the
cytokines that promote EVT invasion and trophoblast-decidual crosstalk. NFκB is known to regulate
angiogenic proteins, which happen to be secreted from VTs and have key roles in the development of a
feto-placental vasculature system. Moreover, studies show that NFκB can exert anti-apoptotic and
anti-oxidative properties, which is important during periods of oxidative stress which similarly occurs
in VTs, such as upon placental exposure to maternal blood.

Multiple pieces of evidence show that excessive activation of NFκB occurs in PE and this
may exacerbate disease conditions [26–28]. In the preeclamptic placenta, EVT invasion is shallow,
which prevents sufficient blood and oxygen from reaching the implantation site, resulting in intermittent
oxygen perfusion and placental oxidative stress. Under these conditions, VTs exhibit abnormal
differentiation, causing a defective syncytial layer, which exerts abnormal secretion of proteins into
maternal-fetal circulation and causes maternal endothelial dysfunction. The effects of NFκB activity in
the healthy and preeclamptic placenta are summarized in Figure 1.

While NFκB is known to affect several pathways within the placenta that are also found to drive
PE, it is still unclear how NFκB activation contributes to abnormal placental development and function.
Future research on the roles of NFκB in the placenta during normal and pathological pregnancies
would help to better understand human placentation, PE etiology, and identify possible therapeutic
targets for PE.
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Figure 1. Actions of NFκB in the healthy and preeclamptic placenta. During normal pregnancies, 
NFκB functions to support the cellular migration, invasion, and production of angiogenic proteins 
from the placenta, through activation of several target genes. During pathological pregnancies such 
as preeclampsia (PE), NFκB is highly expressed as described by the red arrows. NFκB may induce 
expression of pro-inflammatory and anti-angiogenic proteins, further promoting oxidative stress, 
inflammation, and vascular dysfunction that occurs in PE. 

Author Contributions: Conceptualization, B.A., L.K., H.-R.K.-G., and S.D.; literature search, B.A., L.K., and H.-
R.K.-G.; writing—original draft preparation, BA.; writing—review and editing, B.A., L.K., H.-R.K.-G., and S.D. 
All authors have agreed to the published version of the manuscript.  

Funding: Funding for production of this article was provided by the Department of Obstetrics, Gynecology and 
Reproductive Biology in the College of Human Medicine at Michigan State University. 

Conflicts of Interest: The authors declare no conflict of interest. 

Abbreviations 

NFκB Nuclear-Factor Kappa-Light Chain of B Cells 
PE Preeclampsia 
TNF Tumor Necrosis Factor 
IL-1 Interleukin-1 
TLR Toll-Like Receptor 
LPS Lipopolysaccharide 
HIF1 Hypoxia Inducible Factor 1 
HIF2 Hypoxia Inducible Factor 2 
DAMPs Damage-Associated Molecular Patterns 

Figure 1. Actions of NFκB in the healthy and preeclamptic placenta. During normal pregnancies,
NFκB functions to support the cellular migration, invasion, and production of angiogenic proteins
from the placenta, through activation of several target genes. During pathological pregnancies such
as preeclampsia (PE), NFκB is highly expressed as described by the red arrows. NFκB may induce
expression of pro-inflammatory and anti-angiogenic proteins, further promoting oxidative stress,
inflammation, and vascular dysfunction that occurs in PE.

Author Contributions: Conceptualization, B.A., L.K., H.-R.K.-G., and S.D.; literature search, B.A., L.K.,
and H.-R.K.-G.; writing—original draft preparation, B.A.; writing—review and editing, B.A., L.K., H.-R.K.-G.,
and S.D. All authors have agreed to the published version of the manuscript.
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HIF2 Hypoxia Inducible Factor 2
DAMPs Damage-Associated Molecular Patterns
PHDs Prolylhydroxylases
FIHs Factor Inhibiting HIFs
IBD Inflammatory Bowel Disease
ICP Intrahepatic Cholestasis of Pregnancy
AP-1 Activator Protein-1
DMARDs Disease-Modifying Antirheumatic Drugs
IL-10 Interleukin-10
COX2 Cyclooxygenase-2
CTB Cytotrophoblast
EVT Extravillous Cytotrophoblast
VT Villous Cytotrophoblast
pCCT Proliferative Column Cytotrophoblast
dCCT Distal Column Cytotrophoblast
EMT Epithelial-Mesenchymal Transition
PAI-1 Plasminogen Activator Inhibitor-1
TGFB Transforming Growth Factor B
TLR4 Toll-Like Receptor 4
PPARG Peroxisome Proliferator Activated Receptor G
GCM1 Glial Cell Missing 1
VEGF Vascular Endothelial Growth Factor
PIGF Placental Growth Factor
ENG Endoglin
ROS Reactive Oxygen Species
H2O2 Hydrogen Peroxide
ET-1 Endothelin-1
sFLT1 Soluble Fms-Like Tyrosine Kinase 1
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