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Abstract

The prediction of cell-lines sensitivity to a given set of compounds is a very important factor

in the optimization of in-vitro assays. To date, the most common prediction strategies are

based upon machine learning or other quantitative structure-activity relationships (QSAR)

based approaches. In the present research, we propose and discuss a straightforward strat-

egy not based on any learning modelling but exclusively relying upon the chemical similarity

of a query compound to reference compounds with annotated activity against cell lines. We

also compare the performance of the proposed method to machine learning predictions on

the same problem. A curated database of compounds-cell lines associations derived from

ChemBL version 22 was created for algorithm construction and cross-validation. Validation

was done using 10-fold cross-validation and testing the models on new data obtained from

ChemBL version 25. In terms of accuracy, both methods perform similarly with values

around 0.65 across 750 cell lines in 10-fold cross-validation experiments. By combining

both methods it is possible to achieve 66% of correct classification rate in more than 26000

newly reported interactions comprising 11000 new compounds. A Web Service implement-

ing the described approaches (both similarity and machine learning based models) is freely

available at: http://bioquimio.udla.edu.ec/cellfishing.

Introduction

The prediction of a cell-line sensitivity to chemical compounds is a very important factor to

optimize in-vitro assays in the drug discovery processes. The usual prediction approaches

addressing this problem can be divided into two major groups:
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• Approaches based on quantitative structure-activity relationships (Q)SAR modeling. These

approaches aim at establishing a model relating chemical structures with their effect on dif-

ferent cell lines [1–6].

• Approaches based on gene expression such as the well-known CMAP and L1000CDS2

methodologies [7–9]. Other methods had been explored in this type of strategies but all of

them rely on the CMAP or L1000 projects [10].

The goal of the methods using gene expression is to compare the genetic expression profile

triggered by a query compound with a known reference expression pattern generated with a

particular cell line-compound pair. Therefore, these methods require the gene expression pro-

file triggered by the compounds under investigation, which is frequently unknown.

On the other hand, QSAR strategies had been previously applied for drugs-cell lines sensi-

tivity prediction [1–6] with satisfactory results. All these studies used some type of modeling

involving optimization functions (random forest, SVM, kernel optimization, etc) and in sev-

eral cases the similarity between cell lines is also included in the model (i.e. genome expression

profile, mutations in cell lines, etc) [2,5]. On the other hand, the number of cell lines and/or

compounds used in previous studies is sometimes reduced in order to fulfill the models crite-

ria. For example, Ammad-ud-din et al [5] modelled 650 cancer cell lines but employing only

116 compounds while Lagunin et al [1] studied 59882 compounds and 278 cancer cell lines.

The core idea behind any QSAR model is the similarity principle. This principle postulates

that compounds sharing a high structural similarity should also have similar activities/proper-

ties. Actually, the work of Zhang et al [6] clearly corroborate that similar compounds induce

similar cells response in terms of gene expression for more than 120 drugs and 600 cancer cell

lines. However, the similarity principle is sometimes disrupted and depends on the corre-

sponding structure-property space. Such space is determined by the chemical description used

(i.e. chemical fingerprints, molecular descriptors) and the associated properties (i.e. the biolog-

ical property of interest) [11,12]. The modeling task attempts to discover the best function

capable of representing the structure-property space. In this sense, even when several mathe-

matical approaches had been explored, machine learning is by far the most used strategy in

QSAR modeling. A comprehensive review of Ruolan et al cover several strategies specially

focused on machine learning and similarity [13]

In the present work, we went through a direct similarity-based strategy being the first time

that this approach is evaluated for predictions of compounds-cell lines interactions. Under this

approach, no learning based algorithm is used to model the structure-activity space and only

the consideration of molecular similarity is required. It is a simple and fast approach that was

first applied in the area of chemicals-proteins interactions prediction and later coined as “tar-

get fishing” [14–17]. In this sense, a similarity-based strategy is not only the simplest one but

also has the potential to be easily extended to different cell lines without the need of highly

curated databases [18,19]. These features are desirable with the constantly growing amount of

data in databases such as ChemBL [20] and PubChem [21]. Our goal is to explore the perfor-

mance of a similarity-based approach for the prediction of potential compounds-cell lines

interactions and compare it with machine learning algorithms evaluated on the same problem.

Results and discussion

Overall performance of the cell fishing approach

We first evaluated the influence of the radius of the MCFPs and similarity cutoff on the perfor-

mance of our “cell fishing” or similarity-based approach. The results of these analyses are sum-

marized in Fig 1. Increasing the similarity cutoff decreases the true positives rate and increases
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the true negative detection. This means that selecting higher similarity values increases the

stringency of the model, yielding fewer sensible interactions but with highest confidence.

Increasing the Morgan radius in the fingerprint computation increases both resolution and

predictability. The effect of the Morgan radius on the prediction metrics is shown in Fig 1,

however, it is clearest seen in Fig 2(A) were the choice of Radius = 8 leads toward maximum

accuracy in the similarity interval 0.2–0.3.

In Fig 2(B) it can be noticed that, with Radius = 8, for similarity cutoff of 0.25 around 50%

of the data show TP> 0.65 and for around 25% of the data TP> 0.8 with TN>0.6. This is a

clear sign that in many cell lines the similarity-based strategy (also machine learning, as we

will see next) is a good prediction strategy. Actually, the ratio of cell lines with good predictions

is similar to those obtained by Lagunin et al [1] using a machine learning strategy. These

Fig 1. Variation in the true positive (TP) (Left) and true negative (TN) (Right) with respect to similarity cutoff considering Morgan radius of 2, 4 and 8. Results

obtained from 10-fold cross-validation.

https://doi.org/10.1371/journal.pone.0223276.g001

Fig 2. Left (A) Variation in the accuracy (ACU) with respect to similarity cutoff considering Morgan radius of 2, 4 and 8. Right (B) Boxplot for true positive (TP) and

true negative (TN) in 758 cell lines for similarity cutoff of 0.25 and 0.30 with Radius = 8.

https://doi.org/10.1371/journal.pone.0223276.g002
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authors initially started with 943 human cell lines and 59882 compounds but the final model

was only reported for the cell lines with AUC higher than 0.8 (278 cancer cell lines, 29.4%).

The similarity-based strategy compares a query compound with known sensitive interac-

tion for a particular cell lines. Therefore, the goal is to detect sensitive response. Increasing the

similarity cutoff reduces the chances of finding similar molecules but if detected, the confi-

dence will be higher (Figs 1 and 2). Accuracy values (Fig 2) are lower than those obtained in

target modelling [14–17,22]. The inhibition of a cell line growth can be accomplished through

several known and unknown mechanisms usually involving different targets. In contrast, tar-

gets ligands can be reduced to a few chemical scaffolds. Therefore, the chemical diversity is

larges in cell line-compound problems compared with the chemical diversity found in a com-

pound-target prediction.

Comparison between the similarity-based approach and machine learning

As described in the methodology section, for SVM we choose cell lines with more than 20

compounds with reported sensitive and resistant interactions (a minimum of 40 compound

per cell line). However, for the similarity-based approach we only need 10 sensitive com-

pounds. This difference reduces the cells space from 960 cell lines and 109349 compounds

with 140114 sensitive and 147690 resistant LCLAs to 758 cell lines and 107195 compounds

with 134565 sensitive and 145064 resistant LCLAs.

It can be noticed (Fig 3) that closer results between SVM model and similarity-based

approach are obtained for similarities between 0.25–0.30. For a similarity cutoff of 0.25 cell

fishing clearly tend to overestimate the sensitive associations compared to SVM. On the other

hand, lower values of the similarity cutoff will lead to increase the false positives detection.

However, for a cutoff of 0.3, 50% of the predicted true positive responses already contain 75%

of the predictions made with SVM with higher specificity regarding true negative detection. It

is possible that a middle value between 0.25–0.30 provides closest results to SVM in terms of

TP and TN detection.

Fig 3. Comparative result in terms of accuracy, true positive and true negative, for SVM (blue boxes) and similarity-based strategy (orange boxes) under several

cutoff similarities.

https://doi.org/10.1371/journal.pone.0223276.g003
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In general, some sensitive/resistant association are better predicted with the similarity

approach and vice versa. Moreover, several cell lines are equally modelled with both methods

(Table 1). By keeping the cell lines with accuracy higher than 0.65 and 0.7 (Table 1) according

to both methods over 300 cell lines can be covered with true-positive and true-negative detec-

tion levels around 70% and 80%, respectively. These detection rates are higher in about 200

cell lines. These results are better than previous published methods considering the number of

compounds-cell lines under study (see SM3).

Exploring predictability in new molecules

The objective of both considered strategies is to identify the maximal amount of interactions

between a query compound and all cell lines under consideration. Therefore, the goal in this

experiment is to evaluate the capacity to identify all possible sensitive/resistant interactions for

new molecules. In this sense, the metrics were calculated across the interactions space. This

experiment is not comparable with cross-validation results because on the later the metrics

were evaluated across cell lines. That is, in the 10-fold cross-validation the true positives ratio

indicates the average detection across cell lines, instead of the true positive detection ratio in

all known sensitive/resistant interactions for a given set of compounds (as in Table 2).

Three strategies were evaluated in external validation (Table 2):

1. The algorithm based on SVM over the 758 cell lines.

2. The similarity-based algorithm over the 758 cell lines using the similarity cutoff of 0.20,

0.25 and 0.3.

3. The combined SVM and similarity-based algorithms over the 758 cell lines using the simi-

larity cutoff of 0.25.

The similarity-based approach apparently lead to poor prediction compared to SVM. How-

ever, it is important to remember that the similarity-based strategy is based on comparing only

to similar sensitive compounds. Therefore, it is possible that some of the new compounds can-

not be compared to any of the existing ones in the database.

For a cutoff of 0.20, the similarity approach covers almost 92% of the compounds, which

means that for 10279 new compounds at least one cell line was predicted based on similarity.

In this space, the true-positive and true negative ratios are comparable to those obtained by

Table 1. Performance indexes obtained in 10-fold cross-validation by combining both methods under cutoff dis-

tance of 0.25 and 0.3. Results are limited to cell lines with accuracy of 0.65 and 0.7.

Accuracy (ACU)

0.65 0.65 0.7 0.7

Similarity Cutoff 0.25 0.3 0.25 0.3

Cell Lines (SVM) 258 189

TP (SVM) 0.700 0.758

TN (SVM) 0.82 0.830

Cell Lines (Similarity) 162 123 48 54

TP (Similarity) 0.722 0.67 0.791 0.777

TN (Similarity) 0.661 0.75 0.699 0.750

Cell Lines (Common) 65 98 27 45

Cell Lines (Total) 355 283 210 198

TP (Total) 0.69 0.675 0.751 0.758

TN (Total) 0.786 0.832 0.825 0.834

https://doi.org/10.1371/journal.pone.0223276.t001
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SVM. Actually, the inclusion of SVM models for the remaining 8% of the compounds do not

improve performance (Table 2, model 5). Also, increasing the cutoff in the similarity-based

model lead to a reduction in TP because of the reduction in the number of predicted cell lines.

However, the considerable increment in TN indicates that the specificity of the obtained inter-

action increases. Using a higher similarity cutoff provides lower number of predicted cells but

a higher confidence for those predicted cell lines.

The model 6 (Table 2) is the result of combining both strategies: we apply the similarity-

approach using a similarity cutoff of 0.25 and in those compounds with no prediction (35.5%),

we applied the SVM model. The result is better compared with any method separately.

Advantage, limitations and further considerations

In the S3 Table we show a comparison between previous models and our current algorithm

including cells and compounds diversity, source databases, modeling strategy and perfor-

mance metric. Because of the highly heterogeneous data and modelling strategies is hard to

stablish a direct comparison. Moreover, no software is available for prediction of several smiles

at once in order to stablish a common benchmark.

The ChemBL database is continuously growing regarding the number of assays as well as the

number of new compounds. The addition of new compounds and biological assays, if SVM

models are used for LCLAs predictions, will require the reevaluation of the entire model so scal-

ability will become an important issue. In a similarity-based strategy, this problem can be simply

addressed. In both cases, the compounds additions will lead to improvements in predictability

because they will necessarily increase the molecular as well as the cell lines diversity.

The machine learning strategy (as used in this work) provides several advantages including

the learning-based extrapolation capabilities, which is noticed in the external data set evalua-

tion. However, compared to the similarity approach, the latter is simplest and easily scalable.

Even when both strategies are relatively close in terms of cross-validation, the evaluation of the

external data indicates that new chemical scaffolds will be hard to predict using the similarity

based strategy (coverage reduction). This is why better results were obtained combining both

approaches. Our results also suggest that comparison, whenever possible, between advanced

modelling techniques and the simpler strategies (in this case the direct similarity comparison)

need to be considered.

Table 2. Performance indexes across new compounds in external validation.

Model Method Compounds/ Interactions Cell lines TP TN Coverage1 TP_C2 TN_C2

1 SVM 11202 /

26135

758 0.610 0.663 100%

2 Similarity-based

(0.20)

0.572 0.574 91.76 0.617 0.551

3 Similarity-based

(0.25)

0.376 0.765 65.5 0.550 0.673

4 Similarity-based

(0.30)

0.260 0.843 47.56 0.515 0.722

5 Similarity-based

(0.20) and SVM

0.617 0.551 100%

6 Similarity-based

(0.25) and SVM

0.661 0.700 100%

7 Similarity-based

(0.30) and SVM

0.523 0.656 100%

Notes: 1) Coverage: the amount of compounds in which at least one prediction was made with similarity-based approach. 2) TP_C and TN_C are the true positive and

true negative evaluated only in the portion of compounds covered by similarity-approach.

https://doi.org/10.1371/journal.pone.0223276.t002
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The prediction of a particular property using the chemical similarity principle is sensible to

the description space used for modelling. In this research, we rely upon a comparison based

on Tanimoto similarity measured over Morgan fingerprints. If for a particular cell-line only a

small and conserved group of molecules is available, then the similarity will be small for any

other query with a new molecular scaffold. Hence, better models (using machine learning and/

or similarity-based) could be obtained including other descriptions of the molecular space

combined with feature selection algorithms.

Materials and methods

ChemBL database processing and curation

The ChemBL database version 22 [20] was filtered in order to obtain a curated database for

ligand-cell line associations (LCLA), suitable for model fitting and validation. First, the cell_-
dictionary table distributed with ChemBL v22 in MySQL format was used to extract all cell

identifiers (cell_id). Only those LCLA linked to assays reporting median inhibitory concentra-

tion (IC50), the median growth inhibitory concentration (GI50) and/or the median cytotoxic

concentration (CC50) were considered for further processing. The canonical smiles of each

compound was independently analyzed. In cases of salts or disconnected structures, only the

largest fragment was used as the input structure. Next. LCLAs established at a ligand concen-

tration lower than or equal to 10−5 M (inhibition of more than the 50% of cell growth at a con-

centration lower or equal than 10 μM) were labeled as “sensitive”, and the rest were labeled as

“resistant”. When more than one assay is reported for the same LCLA, it is removed if there is

no total agreement between assays (i.e. all assays must lead to the same sensitive or resistant

classification). Finally, any cell line sensitive to less than 10 compounds was removed from the

final database. The combination of several assay types (ex. IC50. GI50 and CC50) into a single

classification rule has been recently used by other authors in compounds-cell-lines sensitivity

prediction [1]. Moreover, it is a common strategy in the prediction of protein-compound

interaction problems [14,15].

Accordingly, the final database included 960 cell lines comprising 140114 sensitive and

147690 resistant LCLAs. Details on the cell lines included in the final database can be found in

the S1 and S2 Tables respectively.

Similarity based prediction methodology

In this work. the target fishing approach proposed in Liu et al and recently applied by Peng

et all [14,23] was adapted for cell line fishing. To be more precise, the implementation reported

in [24] was adapted for cell line fishing by considering LCLAs instead of ligand-target interac-

tions. Thus, our approach bases on ligand similarity, which assumes the similarity principle as

the rationale to infer new LCLAs. In other words, structurally similar compounds should have

identical associations with the same cell line. Therefore, the main purpose of our cell line fish-

ing approach is to identify a set of cell lines that can establish sensitive associations with a

query ligand.

To measure structural similarity, chemical structures were encoded using the Circular Mor-

gan Fingerprints (CMFP), which are equivalent to the Extended Chemical Fingerprints

(ECFP). implemented in RDKit [25]. The Tanimoto coefficient (Tc) was selected as the molec-

ular similarity metric. Accordingly, a query ligand is considered to establish a sensitive associa-

tion with a cell line if its average structural similarity with the top n closest sensitive

compounds reported in the database for that cell line is higher than a certain similarity cutoff.

In this work, we tested n = 3 based on the average molecular similarity of the top 3 closest

ligands. The efficiency of several similarity cutoffs for the CMFP defined by different radii in

Cell lines-compound sensitivity prediction
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detecting sensitive associations was also explored. The evaluated similarity cutoffs ranged from

0.2 to 0.6 with a step size of 0.05. Three different radii of the CMFP were tested: r = 2 (ECFP4).

r = 4 (ECFP8). and r = 8 (ECFP16). The effect on predictability of different similarity cutoffs

were explored. However. we should keep in mind the standard of chemical similarity estab-

lished for most cheminformatics applications: a pair of molecules is considered as structurally

similar if they share an ECFP4 Tc equals or higher than 0.55 [26].

Machine learning based methodology

Machine learning (ML) classification models were evaluated with 758 cell lines out of the initial

pool of 960 cell lines employed for target fishing. A total of 202 cell lines were excluded from

these experiments because of having less than 20 compounds in any of the sensitive or resistant

groups. The decision of a minimum of 20 compounds was based on Tropsha et al [27].

To train binary classification models, the two groups need to be balanced in the number of

compounds that each one contains. A dataset was considered unbalanced if the majority

group contained more than 1.2 times the number of compounds in the minority one. From

the 758 cell lines, 213 were balanced whereas the remaining 545 ones underwent a data balanc-

ing procedure before modeling.

The data balancing protocol aimed at reducing the majority group to a similar number of

compounds present in the minority class. The employed protocol relied in a hierarchical clus-

tering procedure to retain the data diversity present in the initial majority group. For this, the

chemical structures of the compounds in the majority group were coded using Morgan finger-

prints of radius = 8 and 1024 bits. Then, the distance matrix between all pairs of compound

belonging to the class to be reduced was computed employing the Tanimoto distance. The com-

puted distance matrix was used as input to a tree-based clustering using the linkage function

with the Ward’s minimum variance method. Clusters were defined using a cutoff height of 4.5.

If the number of clusters (Nc) was lower than the number of compounds in the minority

group (Nm), then a number of compounds was selected from each cluster, proportional to the

cluster size, until completing Nm samples. This was the case for 112 cell lines. On the other side,

if Nc> Nm, then the majority group was re-clustered to obtain Nm clusters and the centroid of

each one was selected for the reduced dataset. This procedure was applied to 443 cell lines.

The reduced datasets containing compounds coded with the Morgan fingerprints as

described above were used to train Support Vector Machine (SVM) classification models with

Radial Basis Function (RBF) kernels.

Performance measures

Several performance metrics, previously reported in Peng et all [14] for target-fishing could be

used. However, those metrics are not applicable to machine learning approaches. All those

metrics are based on the amount of targets (cell lines) recovered for compounds. This means

that the average is carried out across all compounds. The reason for this is that similarity-

based strategies only consider sensitive compounds [14]. However, when compared to

machine learning a different metric needs to be used because machine learning models where

developed on the base of sensitive/resistant compounds per cell line. Therefore, the perfor-

mance metrics are evaluated for each cell line and the average need to be computed across the

cell lines space instead of compounds one. The metrics we used to compare both strategies are:

hTPi ¼
1

Nc
PNc

j¼1

TPj

NAC
j

ðEq 1Þ
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hTNi ¼
1

Nc
PNc

j¼1

TNj

NRC
j

ðEq 2Þ

hACUi ¼
1

Nc
PNc

j¼1

TPj þ TNj

NAC
j þ NRC

j

ðEq 3Þ

Where Nc is the number of cell lines. TN and TP are the true-negative and true-positive of

compounds per cell lines (j). Moreover, Nj
AC and Nj

RC are the number of compounds reported

in the database as establishing a sensitive and resistant association respectively with cell line j.

Validation strategies

The described performance metrics were computed for two different validation strategies: 1)

the 10-fold cross-validation and 2) new compound with known sensitive/resistant annotations

in the same cell lines space.

The SVM modeling was conducted using a 10-fold cross-validation setup. On each cross-

validation cycle, 90% of the data was used to train a SVM model and the remaining 10% of it

was employed as test set. Before training, the SVM C and γ parameters of the kernel were opti-

mized by means of a grid search algorithm.

In order to get a comparative space between machine learning strategy and the similarity-

based approach, the same compounds used in each 10-fold iterations (therefore the same com-

pound in the partition) were evaluated with both prediction methods. All metrics (if not

reported otherwise) calculated for machine learning model and the similarity-based method

were computed with the initial database of 758 cell lines and 107195 compounds with 134565

sensitive and 145064 resistant LCLAs.

For the second type validation we carried on the same data treatment and filtering process

already described for ChemBL v22 to ChemBL v25. With these new data we extracted the

entire list of new compounds emerging from v22 to v25 and all their cell lines association

(from the 758 cell lines): 11266 new compounds. 20898 sensitive pairs and 5237 resistant pairs

(26135 total interactions).

Web-service implementation

Two strategies are available as a web-service in; http://bioquimio.udla.edu.ec/cellfishing.

1. The CellFishing (similarity-based strategy). All 960 cell lines are included. In this section

different Morgan’s Radius can be used.

2. The SVM models obtained in 758 cell lines.

Supporting information

S1 Table. List of cell lines and associated metadata.

(XLSX)

S2 Table. Sensitive and resistant compounds-cell lines pairs interaction database.

(ZIP)

S3 Table. Comparison between previous models and our current algorithm including cells

and compounds diversity, source databases, modeling strategy and performance metric.

(DOCX)
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