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Abstract

EWS/FLI is a master regulator of Ewing’s sarcoma formation. Gene expression studies in A673 Ewing’s sarcoma cells have
demonstrated that EWS/FLI downregulates more genes than it upregulates, suggesting that EWS/FLI, and/or its targets,
function as transcriptional repressors. One critical EWS/FLI target, NKX2.2, is a transcription factor that contains both
transcriptional activation and transcriptional repression domains, raising the possibility that it mediates portions of the EWS/
FLI transcriptional signature. We now report that microarray analysis demonstrated that the transcriptional profile of NKX2.2
consists solely of downregulated genes, and overlaps with the EWS/FLI downregulated signature, suggesting that NKX2.2
mediates oncogenic transformation via transcriptional repression. Structure-function analysis revealed that the DNA binding
and repressor domains in NKX2.2 are required for oncogenesis in Ewing’s sarcoma cells, while the transcriptional activation
domain is completely dispensable. Furthermore, blockade of TLE or HDAC function, two protein families thought to mediate
the repressive function of NKX2.2, inhibited the transformed phenotype and reversed the NKX2.2 transcriptional profile in
Ewing’s sarcoma cells. Whole genome localization studies (ChIP-chip) revealed that a significant portion of the NKX2.2-
repressed gene expression signature was directly mediated by NKX2.2 binding. These data demonstrate that the
transcriptional repressive function of NKX2.2 is necessary, and sufficient, for the oncogenic phenotype of Ewing’s sarcoma,
and suggest a therapeutic approach to this disease.
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Introduction

Ewing’s sarcoma is an aggressive bone and soft tissue tumor of

adolescents and young adults [1]. The treatment of this disease

involves multimodal therapy and is associated with significant

morbidity and mortality. Even with intensive therapies, overall cure

rates are approximately 50% at 5 years [2]. More effective, and less

toxic, therapies are needed, and are likely to be identified through

an improved understanding of the biology of the disease [3].

A recurrent somatic chromosomal translocation,

t(11;22)(q24;q12), is present in approximately 85% of Ewing’s

sarcoma cases, and encodes the EWS/FLI fusion protein [4,5].

EWS/FLI expression is necessary for the oncogenic phenotype of

Ewing’s sarcoma cells, and is sufficient to mediate oncogenic

transformation of heterologous NIH3T3 cells [6,7,8]. Approaches

targeting EWS/FLI have been shown to be effective against

Ewing’s sarcoma in preclinical models [6,8,9,10,11]. However,

only one of these approaches is currently in clinical trials in

humans with the disease [11].

EWS/FLI contains a carboxy-terminal ETS-family DNA

binding domain contributed by the FLI portion, and an amino-

terminal domain contributed by EWS [4]. The EWS portion

functions as a strong transcriptional activation domain, and is

required for transformation in heterologous NIH3T3 immortal-

ized mouse embryo fibroblasts [7,12]. Indeed, in this heterologous

system, engineered proteins in which the EWS domain in EWS/

FLI is replaced with other strong transcriptional activation

domains are also oncogenic [13]. These data suggest that EWS/

FLI functions as a transcriptional activator to mediate oncogenesis

in Ewing’s sarcoma. In contrast to the heterologous cell data,

however, analysis of the EWS/FLI transcriptional profile in A673

Ewing’s sarcoma cells revealed that the fusion protein downreg-

ulated more genes than it upregulated [8,14,15].

We recently demonstrated that expression of the transcription

factor NKX2.2 is upregulated by EWS/FLI in Ewing’s sarcoma and

is required for the oncogenic phenotype of the disease [8,15,16,17].

In addition to its DNA binding homeodomain (HD), NKX2.2

harbors both transcriptional activation and repression domains, the

presence of which suggests that NKX2.2 acts as a transcriptional

activator in some contexts, and as a transcriptional repressor in

others (Figure 1A; refs. 18,19). Because a role for NKX2.2 in

oncogenesis has only recently been reported, we now report on its

molecular mechanism in Ewing’s sarcoma development.

Results and Discussion

To determine the mechanism by which NKX2.2 contributes to

oncogenic transformation in Ewing’s sarcoma, we analyzed a
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series of NKX2.2 mutants (Figure 1A) using a ‘‘knockdown/

rescue’’ approach. Endogenous NKX2.2 was knocked down in

either A673 or SK-N-MC patient-derived Ewing’s sarcoma cells

using a retrovirally-encoded short hairpin RNA (shRNA) directed

against the 39 UTR of the transcript (NKX-RNAi; ref. 8). Wild

type or mutant NKX2.2 cDNAs containing 3xFLAG epitope tags

were introduced using retroviral vectors. These cDNAs did not

contain the endogenous 39 UTR, and thus were unaffected by the

shRNA. Knockdown of endogenous NKX2.2 results in a severe

diminution of oncogenic transformation (Figure 1B; ref. 8).

Expression of 3xFLAG wild-type NKX2.2 rescued the loss of

transformation (Figure 1B) as efficiently as non-tagged wild-type

protein (data not shown).

We found that introduction of a point mutation (N178Q) into

the HD DNA binding domain, deletion of the transcriptional

repression domain (DTN), or deletion of the specific domain

(DSD), each resulted in a loss of oncogenic rescue activity following

knockdown of endogenous NKX2.2. However, a mutant lacking

the transcriptional activation domain (DTAD) completely rescued

transformation. All mutants were expressed at levels equal to the

wild-type protein (Figure 1C), and were appropriately localized to

the nucleus (Figure S1A). In addition, we found that all mutant

constructs maintained their ability to bind DNA, except the

N178Q DNA binding domain mutant which showed significantly

reduced DNA binding as demonstrated by electrophoretic

mobility shift assays (EMSA; Figure S1B; ref. 18). Importantly,

we observed no significant differences in growth characteristics of

cells expressing these NKX2.2 mutants in comparison to wild-type

controls (Figure S1C). Based on these data, the TN, HD and SD

domains of NKX2.2 are required for oncogenic transformation in

Ewing’s sarcoma, while the TAD domain is dispensable.

The importance of the transcriptional repression and DNA

binding domains suggests a critical role for NKX2.2-mediated

transcriptional repression in the pathogenesis of Ewing’s sarcoma.

However, the additional importance of the specific domain (SD)

for transformation was more difficult to reconcile with this model

of NKX2.2 function. The SD lies adjacent to the TAD and blocks

its function (Figure 1A; ref. 18). Removal of the SD then allows for

expression of the transcriptional activation function of TAD.

Therefore, we hypothesized that NKX2.2-mediated transcription-

al activation is deleterious to oncogenic transformation. In support

of this hypothesis, additional deletion of TAD when the SD is

absent results in a mutant (DSD/DTAD; Figure 1A) that has full

oncogenic function (Figure 1B).

We next asked if the TN transcriptional repression domain was

sufficient for NKX2.2-mediated transformation. An NKX2.2

mutant construct was developed containing only the TN and

HD domains (TN-HD fusion; Figure 2A). This mutant was fully

functional in the oncogenic transformation rescue assay

(Figure 2B). As with the other NKX2.2 mutant constructs, TN-

HD was expressed (Figure 2C), localized to the nucleus, bound

DNA appropriately, and displayed normal growth in tissue culture

(Figure S2A-S2C). Thus, the DNA binding and transcriptional

repression domains are necessary and sufficient for the oncogenic

function of NKX2.2.

EWS/FLI downregulates a greater number of genes than it

upregulates [8,14]. The structure-function data presented here

raises the possibility that at least a portion of the EWS/FLI

downregulated signature is indirectly mediated by NKX2.2. To

test this hypothesis explicitly, we determined the transcriptional

profile of NKX2.2. Triplicate polyclonal populations of A673

Ewing’s sarcoma cells were prepared harboring the NKX-RNAi

retroviral construct, or a control luc-RNAi construct. An

additional set of cells was prepared which contained the NKX-

Figure 1. Transcriptional repression and DNA binding domains
are required for NKX2.2-mediated Ewing’s sarcoma cell
oncogenic transformation. (A) Schematic of wild type and 3x-FLAG
tagged NKX2.2 constructs. The positions of the transcriptional repressor
domain (TN), the homeodomain (HD), the NK2-specific domain (SD),
and the transcriptional activation domain (TAD) are shown. (B) Soft agar
colony formation of A673 cells infected with the indicated RNAi and
cDNA constructs. Error bars indicate standard deviations of duplicate
assays. (C) Western blot analysis of A673 cells infected with the
indicated RNAi and cDNA constructs, using anti-NKX2.2 antibody (to
determine the expression of endogenous NKX2.2 following knockdown
using the NKX-RNAi construct), anti-FLAG (to assess the expression of
cDNA constructs), or anti-tubulin (as a loading control). The positions of
endogenous NKX2.2 (end. NKX2.2) and of the exogenous NKX2.2
constructs (exog. NKX2.2) are indicated.
doi:10.1371/journal.pone.0001965.g001

NKX2.2 in Ewing’s Sarcoma
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RNAi knockdown construct with either the wild-type 3xFLAG-

tagged NKX2.2 cDNA, or an empty vector control. Thus, two

classes of samples were defined: (1) ‘‘NKX2.2-expressed’’ (luc-

RNAi and NKX-RNAi/NKX2.2 cDNA rescue cells) and (2)

‘‘NKX2.2-knockdown’’ (NKX-RNAi and NKX-RNAi/‘‘empty-

vector’’ rescue). The transcriptional profile was determined using

Affymetrix U133plus2 microarrays. The signal-to-noise metric and

permutation testing at the 99% confidence level were used to

identify genes whose expression depended on NKX2.2. Consistent

with our hypothesis that it functions as a transcriptional repressor,

we found that NKX2.2 downregulated 159 probesets (i.e., genes),

but none were upregulated by the protein.

To determine whether the NKX2.2 signature contributes to the

EWS/FLI downregulated transcriptional profile, we compared

these data. To facilitate a direct comparison between these profiles

using the same microarray platform, we prepared A673 Ewing’s

sarcoma cells consisting of ‘‘EWS/FLI-expressed’’ (luc-RNAi and

EF-2-RNAi/EWS/FLI cDNA rescue cells) or ‘‘EWS/FLI-knock-

down’’ (EF-2-RNAi and EF-2-RNAi/‘‘empty-vector’’ rescue)

classes, and analyzed them on Affymetrix U133plus2 microarrays.

As with the NKX2.2 dataset, we used the signal-to-noise metric

and permutation testing at the 99% confidence level. We found

that only 469 genes were upregulated by EWS/FLI, while 3075

genes were downregulated. This ratio of up- to downregulated

genes was similar to what has been previously published, and

therefore provides an independent validation of the data we, and

others, have reported [8,14].

Chi square analysis was used to compare the NKX2.2 and

EWS/FLI datasets. We found that 72 of the 159 NKX2.2

downregulated genes were also downregulated by EWS/FLI

(p,0.00001; Figure 3A, Table S1). To evaluate these data using a

different statistical approach, gene set enrichment analysis (GSEA;

ref. 20) was used to compare these datasets. GSEA measures the

enrichment of one gene list against a second rank-ordered dataset

using a running sum statistic called the normalized enrichment

score. This analysis demonstrated that EWS/FLI downregulated

genes were highly enriched for the NKX2.2 downregulated

geneset (NES = 21.7; p,0.001; Figure 3B). Thus, both approach-

es demonstrate that NKX2.2 mediates a statistically significant

portion of the EWS/FLI downregulated transcriptional signature.

These data suggest a model whereby EWS/FLI upregulates

NKX2.2, which then mediates a subset of the EWS/FLI

downregulated transcriptional signature.

We next sought to determine the mechanistic basis for NKX2.2-

mediated transcriptional repression in Ewing’s sarcoma oncogen-

esis. During neural tube and pancreatic b-cell development,

NKX2.2 functions primarily as a transcriptional repressor through

recruitment of TLE corepressors [19,21]. The transcripts for TLEs

1, 2, 3 and 4 are all expressed in Ewing’s sarcoma cell lines (data

not shown). To determine if TLE family members participate in

Ewing’s sarcoma oncogenic transformation, we used a naturally

occurring TLE dominant-negative protein, amino-terminal en-

hancer of split (AES; ref. 22). AES was expressed in SK-N-MC

Ewing’s sarcoma cells using a retroviral construct (Figure 4A).

While AES expression did not affect the tissue culture growth

characteristics of the cells, oncogenic transformation was dimin-

ished as compared with controls (Figure 4B–4C). These data

suggest that TLE activity is required for Ewing’s sarcoma

oncogenic transformation, supporting its role as a corepressor for

NKX2.2 in this disease.

TLE family members mediate transcriptional repression, in part,

through recruitment of histone deacetylases (HDACs; ref. 23).

Indeed, HDACs are recruited to NKX2.2-dependent promoters

involved in oligodendrocyte development [24]. To determine if

NKX2.2-mediated oncogenic transformation requires HDAC

function, we used a clinically-approved HDAC inhibitor, vorinostat

(ZolinzaTM, formerly suberoylanilide hydroxamic acid, SAHA), in

transformation assays. Inclusion of vorinostat effectively prevented

Ewing’s sarcoma cell growth in tissue culture, and colony formation

in soft-agar, in a dose-dependent manner (Figure 5A–5B). These

data complement recently published work demonstrating that

multiple HDAC inhibitors are effective against Ewing’s sarcoma in

preclinical studies including murine xenografts [25,26,27].

HDAC inhibitors are likely to block oncogenic transformation

through multiple transcriptional repressors, and evidence of their

efficacy is not sufficient to suggest that they mediate their activities

by blocking NKX2.2 function. To address this question directly,

we analyzed the transcriptional profile of A673 Ewing’s sarcoma

cells treated with a concentration of vorinostat sufficient to induce

histone acetylation, yet minimally affect growth in tissue culture

(Figure 5C and data not shown).

Figure 2. The TN and HD domains are sufficient to rescue
NKX2.2-mediated Ewing’s sarcoma oncogenic transformation.
(A) Schematic diagram of the 3xFLAG-tagged TN-HD fusion protein. (B)
Soft agar colony formation of A673 cells infected with the indicated
RNAi and cDNA constructs demonstrate that the TN-HD fusion rescues
oncogenic transformation as efficiently as wild-type (wt) NKX2.2. Error
bars indicate standard deviations of duplicate assays. (C) Western blot
analysis of A673 cells infected with either control luc-RNAi, or NKX-RNAi,
constructs, and the TN-HD fusion, or wild-type NKX2.2, using anti-
NKX2.2 antibody (to determine the expression of endogenous NKX2.2
following knockdown using the NKX-RNAi construct), anti-FLAG (to
assess the expression of cDNA constructs), or anti-tubulin (as a loading
control).
doi:10.1371/journal.pone.0001965.g002

NKX2.2 in Ewing’s Sarcoma
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We used GSEA to compare the transcriptional profiles of A673

Ewing’s sarcoma cells treated with vorinostat to the same cells in

which NKX2.2 was knocked down. The gene expression data

from vorinostat-treated cells were rank ordered using the signal-to-

noise statistic. The 159 genes downregulated by NKX2.2 were

found to be enriched among the genes that were upregulated by

vorinostat (NES = 1.71; p,0.001; Figure 5D). Thus, vorinostat

reverses the NKX2.2-mediated transcriptional signature. Similar-

ly, when this analysis was performed using the 72 genes found to

be downregulated by both EWS/FLI and NKX2.2, we found

these genes to cluster equally strongly with genes that were

upregulated by vorinostat (NES = 1.68; p,0.001; Figure 5E). This

strongly suggests that HDAC-mediated gene repression is involved

in the transcriptional function of NKX2.2 in Ewing’s sarcoma.

Taken together, these data suggest that NKX2.2 mediates

repression of its targets by directly binding to their promoters. To

test this hypothesis, we performed whole genome localization

studies (ChIP-chip). Antibodies against endogenous NKX2.2 did

not function well in our initial experiments. Therefore, we used

A673 Ewing’s cells in which endogenous NKX2.2 was knocked

down using the NKX-RNAi construct, and a 3xFLAG-tagged

NKX2.2 was subsequently expressed. These cells represent our

NKX2.2 ‘‘knockdown/rescue’’ condition, which was fully func-

tional with respect to oncogenic transformation in Ewing’s

sarcoma (Figure 1B). Cross-linked DNA/protein complexes were

immunoprecipitated using an anti-FLAG antibody and recovered

DNA was hybridized to Agilent 244k promoter microarrays. Using

this approach, we identified approximately 600 genes that were

directly bound by NKX2.2 (data not shown). GSEA comparison

of directly bound targets with the NKX2.2 knockdown/rescue

microarray dataset revealed a statistically significant enrichment of

NKX2.2 bound targets with NKX2.2 repressed genes

(NES = 21.4; p,0.001; Figure 5F). These data suggest that

NKX2.2 represses gene expression through direct binding to

Figure 3. NKX2.2 downregulated target genes are enriched in the EWS/FLI downregulated dataset. (A) Venn diagram representation of
the overlap between EWS/FLI downregulated genes and NKX2.2 downregulated genes. The Chi square-determined p-value is indicated. (B) Gene set
enrichment analysis (GSEA) using EWS/FLI-regulated genes as the rank-ordered dataset and NKX2.2 downregulated genes as the geneset. EWS/FLI-
regulated genes are shown on the x-axis, with upregulated genes toward the left, and downregulated genes toward the right. The positions of genes
that were downregulated by NKX2.2 are indicated by the black vertical lines in the center portion of the panel. Ranking metric scores are shown in
the bottom portion of the panel. The normalized enrichment score (NES) and p-value are shown.
doi:10.1371/journal.pone.0001965.g003

Figure 4. Role of TLE corepressors in NKX2.2-mediated gene repression. (A) Western blot showing retroviral-mediated expression of
dominant-negative TLE (AES) in A673 Ewing’s sarcoma cells as compared to an empty vector control (‘‘none’’). Tubulin is shown as a loading control.
(B) Tissue culture growth of A673 Ewing’s sarcoma cells expressing AES was unchanged as compared to empty vector control bearing cells (‘‘none’’).
These data are a representative example from multiple experimental replicates. (C) Colony formation of A673 Ewing’s sarcoma cells in soft agar was
inhibited by AES expression, as compared to empty vector control infected cells (‘‘none’’). Error bars indicate standard deviations of duplicate assays.
doi:10.1371/journal.pone.0001965.g004

NKX2.2 in Ewing’s Sarcoma
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promoters and recruitment of TLE and HDAC family members in

the majority of its targets. It should be noted that in some cases

NKX2.2 could function by competing with the recruitment of

positively-regulating transcription factors. Additional work at

specific promoters will be required to evaluate this possibility.

Transcriptional repression is central to the pathogenesis of

several types of cancers, including both acute myelogenous

leukemias (AML) and acute lymphoblastic leukemias (ALL). For

example, acute promyelocytic leukemia (APML), is associated with

the t(15;17)(q24;q21) encoding the PML-RARa fusion product.

PML-RARa acts as a transcriptional repressor to block retinoic

acid responsive genes in the absence of ligand due to its interaction

with HDACs [28]. All-trans retinoic acid (ATRA) reverses the

repressive activity of PML-RARa, and thereby alters its oncogenic

function, making it an important therapeutic agent for patients

with APML. The addition of HDAC inhibitors in combina-

tion with ATRA treatment has shown increased efficacy in pre-

clinical models of this disease [29,30]. Therefore, transcriptional

repressors are an important therapeutic target in hematologic

malignancies.

In contrast, evidence from solid tumor development has largely

pointed to an important role for transcriptional activation. For

example, the PAX3/FKHR fusion in alveolar rhabdomyosarco-

ma, the TLS/CHOP fusion in myxoid liposarcoma, and the

EWS/ATF1 fusion in clear cell sarcoma have all been shown to

function as transcriptional activators [31,32,33]. Similarly, evi-

dence has also suggested that EWS/FLI functions as a

transcriptional activator, and that this is required for its role in

oncogenesis [12,13]. While EWS/FLI-mediated transcriptional

activation may be important, our data suggest that transcriptional

repression plays a critical role in the pathogenesis of Ewing’s

sarcoma. This repression is attributable, in part, to the EWS/FLI

upregulated target NKX2.2, and is mediated through HDACs.

Reversal of the NKX2.2 signature by vorinostat provides

correlative data for a role of the protein in the blockade of

oncogenic transformation by the drug. These data complement

our mechanistic work and support a role for NKX2.2-mediated

transcriptional repression in Ewing’s sarcoma oncogenesis.

In summary, the EWS/FLI target protein, NKX2.2, functions

as a transcriptional repressor in Ewing’s sarcoma. This function is

Figure 5. HDACs mediate repression of NKX2.2 targets. (A) Inclusion of the indicated concentrations of vorinostat inhibited the short-term
tissue culture growth of A673 Ewing’s sarcoma cells in a dose-dependent manner. The OD595 of crystal violet staining is shown on the y-axis, and is
proportional to cell number. (B) Addition of the indicated concentrations of the HDAC inhibitor vorinostat caused a dose-dependent decrease in soft
agar colony formation of A673 Ewing’s sarcoma cells. Error bars indicate standard deviations of duplicate assays. (C) 0.6 mM of vorinostat is sufficient
to cause an increase of acetylated histone H4 in A673 Ewing’s sarcoma cells, as observed by Western blot, as compared to vehicle control. Total
histone H4 levels are shown as a loading control. (D) Gene set enrichment analysis (GSEA) using vorinostat-regulated genes in A673 Ewing’s sarcoma
cells as the rank-ordered dataset and NKX2.2 downregulated genes as the geneset. Vorinostat-regulated genes are shown on the x-axis, with
upregulated genes toward the left, and downregulated genes toward the right. The positions of genes that were downregulated by NKX2.2 are
indicated by the black vertical lines in the center portion of the panel. Ranking metric scores are shown in the bottom portion of the panel. The
normalized enrichment score (NES) and p-value are shown. (E) Gene set enrichment analysis (GSEA) using vorinostat-regulated genes in A673 Ewing’s
sarcoma cells as the rank-ordered dataset and the 72 genes downregulated by both EWS/FLI and NKX2.2 as the geneset. The normalized enrichment
score (NES) and p-value are shown. (F) Gene set enrichment analysis (GSEA) using NKX2.2-regulated genes as the rank-ordered dataset and NKX2.2
ChIP-chip targets as the geneset. The normalized enrichment score (NES) and p-value are shown.
doi:10.1371/journal.pone.0001965.g005

NKX2.2 in Ewing’s Sarcoma
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both necessary, and sufficient, for its participation in the oncogenic

phenotype of the disease. This is an important first step in

understanding the transcriptional hierarchy induced by EWS/

FLI. For example, NKX2.2 mediates a highly significant portion

of the EWS/FLI downregulated signature. However, the absolute

number of genes repressed by NKX2.2 is small, consisting of

approximately 2% of the EWS/FLI repressed signature. This

suggests that additional EWS/FLI targets, or EWS/FLI itself,

contribute to the remaining portion of the signature. In addition,

the role of HDACs as effectors of transcriptional repression in

Ewing’s sarcoma suggests that HDAC inhibitors might be a useful

therapeutic option for patients with this devastating cancer of

children and young adults.

Materials and Methods

Constructs and retroviruses
NKX-RNAi, luc-RNAi, and ERG-RNAi were previously

described [8]. The 3xFLAG tag (from p3xFLAG-CMV10; Sigma)

was introduced onto the amino-terminus of NKX2.2, and its

mutants, and the cDNAs were cloned into the pQCXIN retroviral

vector (Clontech) using standard techniques.

Cell Culture
A673 and SK-N-MC Ewing’s sarcoma cell lines were grown as

described [8,34]. Following retroviral infection, polyclonal cell

populations were prepared by growth in the appropriate selection

media (2 mg/ml for puromycin, 300 mg/ml for G418). Soft agar

and 3T5 growth assays were performed as described [8]. Crystal

violet analysis of cell growth +/2 vorinostat was performed by

seeding A673 cells at a concentration of 56106 cells in 10cm tissue

culture plates. 12 hours after plating, vorinostat, or vehicle

(methanol), was added. At various time points, cells were fixed

with 10% buffered formalin, and cell density was quantified by

crystal violet staining as described [34].

Immunodetection
The following antibodies were used: M2-anti-FLAG (Sigma F-

1804), anti-a-tubulin (Calbiochem CP06), anti-NKX2.2 (Santa

Cruz sc15015), anti-histone H4 (Upstate 07-108), Anti-acetyl-

lysine (Upstate 06-933), and anti-AES1 (Imgenex IMG-5408).

Electrophoretic mobility shift assays (EMSA)
EMSA buffers and electrophoresis conditions were previously

described [35]. Nuclear extracts were prepared from 293EBNA

cells transfected with 3xFLAG-NKX2.2 expression plasmids, or

empty vector control. Two mg of nuclear extract protein and 5 nM

[32P]-labeled NKX2.2 binding probes [18] were used in each

reaction. One hundred fold excess (500 nM) of specific (or mutant)

unlabeled competitors were used in the indicated reactions [18].

Microarray Analysis
RNA was prepared from independent triplicate samples using

RNAeasy (Qiagen) and processed for microarray hybridization as

previously described [8]. Microarray analysis was conducted using

GenePattern 2.0 (http://www.broad.mit.edu/cancer/software/

genepattern/). Microarrays were normalized using the MAS5

algorithm, and expression threshold and ceiling values were applied

as described [8]. Expression data was filtered for a 3 fold change

across samples, with a minimal ‘‘delta’’ value of 50. Samples were

rank-ordered using the signal-to-noise statistic, and significant

changes were identified using permutation testing with a p-value of

0.01 [8]. Overlaps between different genesets were analyzed using

the VennMaster program (http://www.informatik.uni-ulm.de/ni/

mitarbeiter/HKestler/vennm/doc.html). Statistical significance of

overlaps was determined using Chi square analysis. Gene set

enrichment analysis (GSEA) was performed using GSEA1.0

program (http://www.broad.mit.edu/gsea/; ref. 20).

Whole genome localization studies (ChIP-chip)
ChIP-chip was performed as described [36], except that A673

Ewing’s sarcoma cells and the M2-anti-FLAG antibody (Sigma F-

1804) were used. Two independent biologic replicates were

hybridized to Agilent 244k promoter microarrays. These micro-

arrays interrogate ,17k human promoters from 25.5 kb to

+2.5 kb relative to the transcriptional start site. Initial analysis of

the datasets was performed using the Agilent ChIP Analytics

software (version 1.3.1) to average both replicates as previously

described [36].

Supporting Information

Table S1 Genes downregulated by both EWS/FLI and

NKX2.2

Found at: doi:10.1371/journal.pone.0001965.s001 (0.09 MB

DOC)

Figure S1 NKX2.2 mutants are localized to the nucleus, bind

DNA appropriately, and have growth characteristics similar to

control. (A) Immunofluorescence of A673 cells infected with the

indicated cDNA constructs with anti-FLAG antibody demonstrate

nuclear localization of each of the NKX2.2 mutants. Nuclei are

shown by DAPI staining. (B) Electrophoretic mobility shift assays

(EMSA) using nuclear extracts from 293EBNA cells transfected

with the indicated constructs demonstrate that all of the NKX2.2

constructs, except for the N178Q homeodomain DNA binding

mutant, bind a consensus NKX2.2 DNA duplex. Supershifts were

performed using anti-FLAG antibody. Specific complexes were

competed using wild-type unlabeled competitor, while non-

specific complexes were competed using mutant unlabeled

competitor. The position of NKX2.2 bound complexes are

indicated in the first lane of each group by a red asterisk. (C)

Growth analysis using a 3T5 assay demonstrates that A673 cells

harboring the NKX2.2 mutant constructs grow similarly to cells

expressing the wild type NKX2.2 or empty vector rescue

constructs. These data are a representative example from multiple

experimental replicates.

Found at: doi:10.1371/journal.pone.0001965.s002 (7.61 MB TIF)

Figure S2 The TN-HD mutant is localized to the nucleus, binds

DNA, and has growth characteristics similar to control. (A)

Immunofluorescence of A673 cells infected with the indicated

cDNA constructs with anti-FLAG antibody demonstrate nuclear

localization of the TN-HD NKX2.2 mutants. Nuclei are shown by

DAPI staining. (B) Electrophoretic mobility shift assays (EMSA)

using nuclear extracts from 293EBNA cells transfected with the

TN-HD fusion protein demonstrates that the fusion binds a duplex

DNA containing an NKX2.2 consensus binding site. Supershift

was performed using anti-FLAG antibody. Specific complexes

were competed using wild-type unlabeled competitor, while non-

specific complexes were competed using mutant unlabeled

competitor. The position of the TN-HD-bound complex is

indicated in the first lane by a red asterisk. (C) Growth analysis

using a 3T5 assay demonstrates that A673 cells harboring the

NKX2.2 mutant TN-HD grows similarly to cells expressing the

wild type NKX2.2 or empty vector rescue constructs. These data

are a representative example from multiple experimental repli-

cates.

Found at: doi:10.1371/journal.pone.0001965.s003 (5.39 MB TIF)
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