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Abstract

Previous studies in neurophysiology have shown that neurons exhibit trial-by-trial correlated

activity and that such noise correlations (NCs) greatly impact the accuracy of population

codes. Meanwhile, multivariate pattern analysis (MVPA) has become a mainstream

approach in functional magnetic resonance imaging (fMRI), but it remains unclear how NCs

between voxels influence MVPA performance. Here, we tackle this issue by combining

voxel-encoding modeling and MVPA. We focus on a well-established form of NC, tuning-

compatible noise correlation (TCNC), whose sign and magnitude are systematically related

to the tuning similarity between two units. We show that this form of voxelwise NCs can

improve MVPA performance if NCs are sufficiently strong. We also confirm these results

using standard information-theoretic analyses in computational neuroscience. In the same

theoretical framework, we further demonstrate that the effects of noise correlations at both

the neuronal level and the voxel level may manifest differently in typical fMRI data, and their

effects are modulated by tuning heterogeneity. Our results provide a theoretical foundation

to understand the effect of correlated activity on population codes in macroscopic fMRI

data. Our results also suggest that future fMRI research could benefit from a closer exami-

nation of the correlational structure of multivariate responses, which is not directly revealed

by conventional MVPA approaches.

Author summary

Noise correlation (NC) is the key component of multivariate response distributions and

thus characterizing its effects on population codes is the cornerstone for understanding

probabilistic computation in the brain. Despite extensive studies of NCs in neurophysiol-

ogy, little is known with respect to their role in functional magnetic resonance imaging
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(fMRI). We characterize the effect of voxelwise NC by building voxel-encoding models

and directly quantifying the amount of information in simulated multivariate fMRI data.

In contrast to the detrimental effects of NC implied in neurophysiological studies, we find

that voxelwise NCs can enhance information codes if NC is sufficiently strong. Our work

highlights the important role of noise correlations in decipher population codes using

fMRI.

Introduction

Understanding how neural populations encode information and guide behavior is a central

question in modern neuroscience. In a neuronal population, many units exhibit correlated

activity, and this likely reflects an important feature of information coding in the brain. In

computational neuroscience, researchers have investigated the relationship between signal cor-
relation (SC), referring to the similarity between the tuning functions of two neurons, and

noise correlation (NC), referring to the correlation between two neurons’ trial-by-trial

responses evoked by repetitive presentations of the same stimulus [1–3].

Previous studies in neurophysiology have discovered that neurons that share similar tuning

functions (i.e., a positive SC) also tend to have a weak positive NC, a pervasive phenomenon

across several brain regions [4–11]. In this paper, we denote this type of NC as tuning-compati-
ble noise correlation (TCNC) because the sign and the magnitude of the NC are systematically

related to the SC between a pair of neurons. A bulk of theoretical and empirical work has

shown that NCs have a substantial impact on population codes. For example, the seminal

study by Zohary, Shadlen [12] demonstrated that TCNCs limit the amount of information in a

neural population as the noise is shared by neurons and cannot be simply averaged out. Later

on, researchers realized that this detrimental effect of TCNC is mediated by other factors, such

as the form of NC, heterogeneity of tuning functions, and its relevance to behavior [2, 13–16].

The study of NCs in the brain has been historically impeded by technical barriers to mea-

suring simultaneously the activity of many neurons in neurophysiological experiments. In

contrast, functional magnetic resonance imaging (fMRI) naturally measures the activity of

many neural populations throughout the entire brain. Imaging scientists often use multivariate

pattern analysis (MVPA) to assess the accuracy of population codes [17, 18]. However, above-

chance decoding performance in MVPA does not specify the detailed representational struc-

ture underlying multivariate voxel responses. For example, Fig 1 illustrates a simple two-voxel

Fig 1. A two-voxel scenario in MVPA. The pool consists of two responsive voxels and the two color disks represent the trial-by-trial response distributions evoked by two

different stimuli. Panel A illustrates the original state of the population responses. Decoding performance can be improved via either a bigger separation of the mean

population response (panel B) or changes in the covariance structure (panel C). Representational structures in panels B and C indicate improved population codes but

have distinct underlying mechanisms. Panel D illustrates that certain covariance changes can worsen decoding.

https://doi.org/10.1371/journal.pcbi.1008153.g001
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scenario in multivariate decoding. The decoding accuracy in the original state (Fig 1A) can be

improved (e.g., by attention, learning) via either the further separation of mean responses (Fig

1B) or the changes to the covariance geometry (Fig 1C). This example highlights the impact of

the shape of the response distribution on population codes and these effects cannot be easily

disentangled by the conventional MVPA approach [19].

The magnitude and the structure of NCs in fMRI data still remain largely unknown. It has

been shown that NCs influence MVPA accuracy and that certain types of classifiers can com-

pensate for NCs [20]. But the precise nature of NCs has not yet been thoroughly characterized.

There have been a few recent investigations of NCs. A study by Ryu and Lee [21] evaluated the

impact of three factors—retinotopic distance, cortical distance, and tuning similarity—on vox-

elwise NCs in early visual cortex, and found that tuning similarity is the major determinant for

voxelwise NCs. Furthermore, van Bergen and Jehee [22] systematically evaluated voxelwise

NCs in human V1 to V3 and showed that the magnitude of NCs monotonically increases as

tuning similarity increases. Furthermore, one recent study found that a multivariate classifier

can exploit voxelwise NCs to decode population information [23]. Our recent work showed

that the voxelwise noise correlations in general enhance the amount of information in a lim-

ited pool in human early visual cortex [24]. These results provide specific evidence supporting

the existence of voxelwise TCNC, and suggest that a deeper understanding of how NC mani-

fests in fMRI data is critical for studying probabilistic neural computation using multivariate

fMRI data [22, 25].

In the present study, we combine MVPA and the voxel-encoding modeling approach to

assess how the magnitude and form of NCs impact population codes in fMRI data. Similar to

prior theoretical work in neurophysiology, we aim to derive the theoretical bound of the effects

of voxelwise NCs on population codes in multivariate voxel responses. We assess the accuracy

of population codes by MVPA and information-theoretic analyses. The voxel-encoding model

used in this study allows us to systematically manipulate response parameters (i.e., voxel tun-

ing) so as to examine NCs in different scenarios [26]. We first assess the quantitative relation-

ship between decoding accuracy and the strength of NCs. We then directly calculate the

amount of information as a function of NCs in a voxel population. Both methods demonstrate

that the accuracy of population codes in fMRI data follows a U-shaped function as the strength

of TCNC increases. Notably, all these analyses in voxel populations are compared against clas-

sical findings in neuronal populations. We show that the effects of NCs on population codes

are strongly mediated by tuning heterogeneity in voxel populations.

Materials and methods

Previous endeavors of brain decoding generally fall into two broad categories: classification of

stimuli into discrete categories [27] and estimation of a continuous stimulus variable [28]. We

thus evaluated the effect of NC in brain decoding in two tasks—a stimulus-classification task

and a stimulus-estimation task. We will first introduce the simulation on a neuronal popula-

tion and then specify the voxel-encoding model used to generate simulated responses of a

voxel population (see Fig 2).

Assessment of effects of noise correlations in neuronal populations

Neuron-encoding model. The neuron-encoding model assumes a pool of orientation-

selective neurons whose preferred orientations are equally spaced between [1˚, 180˚]. We

manipulated the number of neurons in our simulations. Similarly, all orientations throughout

the entire paper are angles in degrees within [1˚, 180˚]. Tuning curves of the neurons can be

PLOS COMPUTATIONAL BIOLOGY Noise correlations and multivariate responses in fMRI

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008153 August 18, 2020 3 / 29

https://doi.org/10.1371/journal.pcbi.1008153


described as:

gk sð Þ ¼ aþ b � eg� cos p
90

s� φkð Þð Þ� 1ð Þ ð1Þ

where gk(s) is the tuning function of the k-th neuron. s is the stimulus. φk indicates the pre-

ferred orientation of the k-th neuron. α is the baseline firing rate, β controls the response

range, and γ controls the width of the tuning curve. We set the parameter values α = 1, β = 19,

and γ = 2, resulting in a tuning curve with the maximum firing rate at 20 spikes per second.

Fig 2. Neuron- and voxel-encoding models. The neuron-encoding model (panel A) proposes a neuronal population with orientation-selective tuning curves. Each

neuron has Poisson-like response variance and the noise correlation between two neurons can be specified with different structures and strength (see Materials and

Methods). The voxel-encoding model proposes a similar neuronal population and the response of a single voxel is the linear combination of the responses of multiple

neurons. The noise correlation between two voxels can be specified using similar methods (see Materials and Methods). Note that voxelwise NCs can come from the

response variability at both neuronal and voxel levels (see Fig 6). Using the neuron- and the voxel-encoding models, we can generate many trials of neuronal and voxel

population responses and perform conventional MVPA on the simulated data. The goal is to examine multivariate decoding performance as a function of the NC structure

and strength between either neurons or voxels.

https://doi.org/10.1371/journal.pcbi.1008153.g002
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This tuning curve is consistent with previous theoretical work [29] and empirical measure-

ments in the primary visual cortex in primates [5].

Based on this setting, the mean of neuronal population responses given stimulus s can be

represented by G(s) = [gk(s)]. However, empirically measured neuronal responses vary trial-

by-trial. We posit that the mean of trial-by-trial population responses is G(s). We will detail the

covariance in the following section.

Noise correlation and covariance. We proposed three types of NCs for neuronal data

(see Table 1): angular-based tuning compatible noise correlation (aTCNC), curve-based tun-

ing compatible noise correlation (cTCNC) and shuffled noise correlation (SFNC).

Several theoretical studies assume the NC between a pair of neurons is an exponential func-

tion of the angular difference between their preferred orientations, here defined as angular-

based tuning compatible noise correlation (aTCNC):

raTCNC
ij ¼ eð�

jφi � φj j
L �90

p Þ ð2Þ

raTCNC
ij is the NC between the i-th and the j-th neurons. φi and φj are their preferred orienta-

tions. This equation specifies that the NC between two neurons diminishes as their preferred

orientations are farther apart. The parameter L controls the magnitude of such decay. We

denote the correlation matrix as RcTCNC. Here we set L = 1 for simplicity. Ecker, Berens [29]

has shown that the parametric form of NC and the value of L does not qualitatively change the

result of the simulation, as long as the generated correlation matrix is positive definite. Note

that by this definition aTCNCs are always positive (i.e., range 0~1, also see Fig 3A).

The second type is the curve-based tuning compatible noise correlation (cTCNC). In this

case, the NC between a pair of neurons is proportional to their SC (i.e., correlation of their ori-

entation tuning curves):

rcTCNC
ij ¼ ð1 � dijÞ � corrðgiðSÞ; gjðSÞÞ þ dij; ð3Þ

where δij is the Kronecker delta (δij = 1 if i = j and δij = 0 otherwise). S indicates all possible ori-

entations between [1˚, 180˚], and rcTCNC
ij is the NC between the i-th and the j-th neurons. gi(S)

and gj(S) are their tuning curves (see Eq 1). We denote RcTCNC as the correlation matrix. Note

Table 1. List of symbols.

Symbol Meaning

NC Noise correlation

SC Signal correlation

fMRI
MVPA

Functional magnetic resonance imaging

Multivariate pattern analysis

TCNC Tuning-compatible noise correlation

aTCNC Angular-based tuning-compatible noise correlation

cTCNC Curve-based tuning-compatible noise correlation

SFNC Shuffled noise correlation

RcTCNC Angular-based tuning-compatible noise correlation matrix

RaTCNC Curve-based tuning-compatible noise correlation matrix

RSFNC Shuffled noise correlation matrix

cneuron Noise correlation coefficient between neurons

cvxs Noise correlation coefficient between voxels

chomo voxel tuning heterogeneity coefficient

W Linear weighting matrix from neuronal to voxel responses

https://doi.org/10.1371/journal.pcbi.1008153.t001
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that unlike aTCNCs, cTCNCs can be negative (see Fig 3B). Also, the key difference between

cTCNC and aTCNC is that cTCNC does not rely on the functional form of tuning curves. In

other words, cTCNC can be computed given irregular tuning curves, whereas aTCNC can be

only computed from unimodal tuning curves. This is important for specifications of voxelwise

NCs (see below).

Fig 3. Example noise correlation matrices simulated in a neuronal (panels A-C) and a voxel population (D, E). In the neuronal population (180 neurons), the angular-

based TCNC matrix, the curve-based TCNC matrix, and the SFNC matrix are illustrated from left to right. Neurons are sorted according to their preferred orientation

from 1 to 180˚. In the voxel population (180 voxels), the curve-based TCNC matrix and the SFNC matrix are illustrated. Note that we do not sort the voxels according to

their tuning preferences. The NC coefficients (cneuron or cvxs) are set to 1 in matrices from A-E. Panels F-H illustrate the cTCNC matrices with NC coefficient (cneuron)

values 0, 0.5 and 1, respectively. Note that panels B and H are identical.

https://doi.org/10.1371/journal.pcbi.1008153.g003
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In the third case, we shuffled the NCs between all pairs of neurons in RcTCNC such that the

rows and columns are rearranged in the same randomized order but the diagonal of the matrix

is kept intact (Fig 3C). We term this type of NC as shuffled noise correlation (SFNC) since the

correlation is no longer necessarily related to the neuronal tuning relations. We want to espe-

cially emphasize that here shuffling refers to untangling any relationships (e.g., linear relation-

ship in aTCNC Eq 2 or cTCNC Eq 3) between noise correlations and tuning similarity (i.e.,

signal correlation), but noise correlations still exist. This is different from some studies in

which multivariate responses data are shuffled across trials to completely eliminate noise cor-

relations between voxels (i.e., all off-diagonal elements in a covariance matrix are 0) [30, 31].

Our case is similar to the situation that we randomly inject some noise correlations between

voxels regardless of their tuning similarity. The correlation matrix of SFNCs is denoted as

RSFNC. RSFNC can serve as a comparison for RcTCNC since shuffling does not alter the overall dis-

tribution of NCs in a neuronal population.

Furthermore, we assumed Poisson noise of spikes such that the response variance of a neu-

ron is equal to the mean activity evoked by a stimulus.

t2

kðsÞ ¼ gkðsÞ ð4Þ

where t2
kðsÞ is the response variance of the k-th neuron triggered by the stimulus s. Note that in

this case the response variance is stimulus-dependent. The covariance between neurons i and j
(qneuronij as below) can be expressed as:

qneuronij ¼ ð1 � dijÞ�cneuron � rij � titj þ dij � titj ð5Þ

where cneuron is a parameter that controls the strength of the neuronal NC. τi and τj are the

standard deviation of responses of the two neurons (see Eq 4), respectively. δij is the Kronecker

delta. Given the covariance matrix Qneuron, we can express the population response noise dis-

tribution as:

e � Nð0;QneuronÞ; ð6Þ

Data simulation and multivariate pattern analysis

Stimulus-classification task. In the stimulus-classification task, we attempted to deter-

mine which of two stimuli were presented, based on the simulated neuronal population

responses. We manipulated two independent variables: population size (i.e., the number of

neurons) and NC strength (i.e., cneuron in Eq 5). We built a linear discriminant using the

Matlab function classify.m. The linear discriminant assumes that the conditional probability

density functions p (b | s = s1) and p (b | s = s2) are both normally distributed with the same

covariance and estimates the means and covariance from the training data. Here b is the vector

of a population response in one trial (also see Eq 7). The classifier was trained on half of the

data and tested on the other half.

For the neuronal populations, we attempted to classify two stimuli: s1 = 92˚, s2 = 88˚. The

two stimuli were chosen to control the overall task difficulty (i.e., avoid ceiling and floor effects

in classification accuracy). We set six pool size levels (i.e., 10, 20, 50, 100, 200, and 400 neu-

rons) and six NC strength levels (i.e., cneuron = 0, 0.1, 0.3, 0.5, 0.8, and 0.99). For each combina-

tion of a pool size and a cneuron value and for each form of NC, we performed 100 independent

simulations and then averaged classification accuracy values across simulations. To compen-

sate for potential overfitting as the pool size increases, we set the number of trials for each stim-

ulus to be 100 times the pool size. All data were equally divided into two independent parts for

training and testing.
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Stimulus-estimation task. In the stimulus-estimation task, neuronal responses in a trial

were simulated for an orientation randomly chosen within [1˚, 180˚], and then a maximum likeli-

hood estimator (MLE) was used to reconstruct the orientation value. Formally, given a population

response pattern b in a trial, we attempted to find the stimulus s that maximizes the likelihood:

argmaxx2ð1;180�pðbjsÞ ð7Þ

Note that the likelihood function has been introduced above as the neuron-encoding model (see

noise distribution in Eqs 5 & 6). We numerically evaluated the likelihood of a pattern response b

for each of 180 integer stimulus orientations (i.e., 1˚–180˚) and chose the orientation that yielded

the maximum likelihood value. It is worth noting that, in contrast to classification, the MLE

method does not involve any model training, and estimations were directly performed based on

the known generative neuron-encoding model. We randomly sampled 1000 stimuli (i.e., 1000 tri-

als) from [1˚,180˚] for decoding. The same pool size and cneuron settings as in the stimulus-classifi-

cation task were used. For each combination of a pool size and a cneuron value, we calculated the

mean circular squared errors (MSEcirc) across all trials between the estimated stimuli (̂si) and the

true stimuli (si) across all trials:

MSEcirc ¼
1

1000

P1000

i¼1
ð̂si � siÞ

2
; ð8Þ

where ŝi is the estimated stimulus and si is the true stimulus in the i-th trial. We took the inverse

of the MSEcirc as the estimation efficiency (see Figs 4 and 5). A higher estimation efficiency value

indicates a more accurate estimation.

Assessment of effects of noise correlations in voxel populations

Voxel-encoding model. The voxel-encoding model uses the same pool of orientation-

selective neurons (i.e., 180 neurons with tuning curves defined in Eq 1) as in the neuron-

encoding model. We further assume that the response of a voxel is the linear combination of

all neurons in the neuronal population:

hiðsÞ ¼
P180

k¼1
wkigkðsÞ; ð9Þ

where hi(s) is the tuning function of the i-th voxel. wki is the connection weight between the k-

th neuron to the i-th voxel. We sampled wki from a uniform distribution:

wki � uniformð0; 0:01Þ; ð10Þ

This range was used so that generated fMRI responses typically range between 0 and 10, and can

be viewed as approximating units of percent blood-oxygen-level-dependent (BOLD) change. This

is also consistent with the range of empirically measured fMRI responses in most studies.

The mean of voxel population response given stimulus s can be represented by H(s) =

[hi(s)]. To express the trial-by-trial variation of voxel responses, we specify:

b ¼ HðsÞ þ e; ð11Þ

Here, b represents the observed response across voxels on a trial (as might be obtained from a

general linear model applied to fMRI data) and e represents the multivariate normal noise dis-

tribution:

e � Nð0;QvxsÞ; ð12Þ

where Qvxs is the covariance matrix between voxels, which will be detailed in the following sec-

tion. It is noteworthy that we only calculate the voxel tuning curves as the weighted sum of the
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neuronal pool (Eq 9), but the voxel response variability does not only originate from neuronal

response variability. If all voxel activities (including variability) are completely determined by

a weighted sum of neuronal activities, the H(s) in Eq 11 should also be a random variable.

However, in realistic fMRI data there are also other sources of voxel-level noise (e.g., thermal

noise, head motion, see discussion) whose quantitative influences on voxel activity are difficult

to delineate. Thus, we do not treat H(s) as a variable and instead assume an independent

Gaussian noise (Eq 12).

Noise correlation and covariance. We evaluate two types of NCs for simulated fMRI

data: cTCNC and SFNC. Note that we cannot evaluate aTCNC for voxel populations because

voxel tuning curves here are irregular and not unimodal.

In the first case, we defined cTCNC using a similar method as Eq 3:

rcTCNC
ij ¼ ð1 � dijÞ � corrðhiðSÞ; hjðSÞÞ þ dij; ð13Þ

Fig 4. TCNCs impair population codes in a neuronal population. The multivariate classification accuracy (panels A-C) and maximum likelihood estimation efficiency

(panels D-F) are depicted as a function of the magnitude of the aTCNC (panels A, D), TCNC (panels B, E) and the SFNC (panels C, F). Both classification accuracy and

estimation efficiency decline as the strength of aTCNC and cTCNC increases. Conversely, increasing the strength of SFNC improves decoding accuracy.

https://doi.org/10.1371/journal.pcbi.1008153.g004

PLOS COMPUTATIONAL BIOLOGY Noise correlations and multivariate responses in fMRI

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008153 August 18, 2020 9 / 29

https://doi.org/10.1371/journal.pcbi.1008153.g004
https://doi.org/10.1371/journal.pcbi.1008153


where rcTCNC
ij is the NC between voxels i and j. Note that the cTCNC here is based on the tuning

curves of two voxels (i.e., hi(S) and hj(S)), not two neurons. δij is the Kronecker delta.

Fig 5. Decoding accuracy as U-shaped functions of cTCNCs in a voxel population. The multivariate classification accuracy (panels A, B) and estimation efficiency

(panels C, D) are depicted as a function of the magnitude of cTCNCs (panels A, C) and SFNCs (panels B, D). Decoding accuracy exhibits U-shaped functions as cTCNCs

increase. Similar to a neuronal population, SFNCs always improve decoding accuracy.

https://doi.org/10.1371/journal.pcbi.1008153.g005
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In the second case, SFNCs were generated using a similar method as in the neuron-encod-

ing model—shuffling the rows and columns in RcTCNC, which is obtained in Eq 13.

We assume the response variances for different voxels (e.g., t2
k for the k-th voxel) follow a

Gamma distribution:

t2

k � Gammaðu; vÞ; ð14Þ

where u = 9, v = 0.33 are the scale and the shape parameters corresponding to a Gamma distri-

bution with mean = 3 and variance = 1. Given the response variance of individual voxels and

the NC between them, we can calculate the covariance between the i-th and the j-th voxels as:

qvxsij ¼ ð1 � dijÞ�cvxs � rij � titj þ dijtiti; ð15Þ

where cvxs is the parameter that controls the strength of the voxelwise NCs. τi and τj are the

standard deviation of responses of the two voxels (from Eq 14), respectively. δij is the Kro-

necker delta. Given the covariance matrix Qvxs, we can finally generate voxel population

responses using Eqs 11 & 12. Note that Eq 14 describes the variability of the response variance

across voxels. The distribution of voxel population responses still follows a multivariate Gauss-

ian distribution (Eq 12).

Data simulation and multivariate pattern analysis

Stimulus-classification task. In the voxel-encoding model, we reduced the task difficulty

and set the two stimuli as s1 = 80˚, s2 = 100˚. The motivation for changing task difficulty is to

compensate for the higher noise level in voxel responses and avoid ceiling or floor effects in

classification. We set six pool size levels (i.e., 10, 20, 50, 100, 200, and 500 voxels) and eight NC

strength levels (i.e., cvxs = 0, 0.01, 0.03, 0.1, 0.3, 0.5, 0.8, and 0.99). 10 independent simulations

were performed. In each simulation, we assessed the classification accuracy for each combina-

tion of a pool size and a cvxs value. Since the voxel tuning curves are determined by the linear

weighting matrix W, in each simulation, we generated a new W for a given pool size. This

ensures that we generated a new set of voxels in every simulation such that our conclusion is

not biased by a particular choice of W. The W was kept constant across different cvxs values

such that classification accuracy values are directly comparable across different cvxs values. For

each stimulus, we simulated 1000, 1000, 1000, 1000, 2000, and 5000 trials for the correspond-

ing pool sizes, respectively. We increased the number of trials for large pool sizes to avoid

overfitting.

Stimulus-estimation task. In the stimulus-estimation task, we used the same pool size

and NC strength settings as in the neuron-encoding model. We also performed 10 indepen-

dent simulations and generated simulated responses to 1000 stimuli between [1˚, 180˚] in each

simulation. Similar to above, for each simulation and each pool size, we recreated a linear

weight W to create a new set of voxels, and kept the same W across cvxs values. Similar to neu-

ronal populations, the inverse of circular mean square error (Eq 8) was calculated to indicate

the estimation efficiency. The estimation efficiency values were averaged across the 10

simulations.

Simultaneously manipulating neuronal and voxelwise noise correlations

In previous simulations, we either only manipulated the neuronal NCs in the neuron-encoding

model or the voxelwise NCs in the voxel-encoding model. However, in realistic fMRI

responses, voxel responses will inherit NCs from the neural level and will also include other

sources of NC (such as head motion). To examine the interaction between neuron-level and

voxel-level NCs on decoding accuracy, we simultaneously manipulated both neuronal and
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voxelwise NCs in the voxel-encoding model (Fig 6). In this simulation, we kept the same set-

tings as the simulations above in the voxel-encoding model except for the following changes.

First, we fixed the pool size to 200 voxels and manipulated the cTCNCs at the neuron level.

We set eight cTCNC strength levels at the neuron level (same as in the neuron-encoding

model). Second, in every trial of classification or estimation, we first generated a neuronal pop-

ulation response (i.e., responses for 180 neurons). Note that this generation takes into account

neuron-level NCs. We then linearly transformed the neuronal population response into a

voxel population response using the linear weighting matrix W (10 different W for 10 inde-

pendent simulations), which yields the mean of the voxel population response. Finally, to gen-

erate the voxel population response observed on a given trial, we added voxel-level cTCNCs to

the mean voxel population response, as we did in previous simulations.

Differences between the neuron- and the voxel-encoding models

In this section, we summarize three key differences between the two encoding models pro-

posed above. The biggest difference is that decoding is performed directly on simulated neuro-

nal responses in the neuron-encoding model, but is performed on simulated voxel responses,

which are linear combinations of the underlying neuronal responses, in the voxel-encoding

model. Second, the NCs we manipulate are between neurons in the neuron-encoding model.

In the voxel-encoding model, we either only manipulate the NCs at the voxel level (Fig 5) or

the NCs in both neuron and voxel stages (Fig 6). In empirical fMRI studies, neuronal NCs are

inaccessible; thus, the former case is more pertinent to realistic fMRI data analysis while the

latter case provides theoretical insights. Third, we assume Poisson-like response variance for

individual neurons in the neuron-encoding model, which is consistent with the previous theo-

retical work and empirical findings [1]. In this regime, the magnitude of response variance of

individual neurons is stimulus-dependent. In the voxel-encoding model, we assume stimulus-

independent additive Gaussian noise for voxels, consistent with one recent computational

study [22].

Fig 6. The impacts of neuronal and voxelwise cTCNCs on stimulus classification (A) and estimation (B). In both tasks, decoding performance exhibits U-shaped

functions of the strength of voxelwise cTCNCs (i.e., cvxs). Neuronal cTCNCs (i.e., cneuron) have small impacts on classification accuracy, because the voxel-level

noise primarily limits information. Neuronal cTCNCs have a more prominent detrimental effect in the estimation task. These results are consistent with the

results when two levels of cTCNCs are manipulated independently.

https://doi.org/10.1371/journal.pcbi.1008153.g006
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Information-theoretic analyses

We calculated Fisher information in the stimulus-estimation task (Fig 7) as it is one of the

standard methods to quantify information in computational neuroscience [32]. Specifically,

we used linear Fisher information and can be expressed as:

IðsÞ ¼ f0ðsÞT �Q� 1ðsÞ � f0ðsÞ; ð16Þ

where f0(s) is the derivative of the mean population responses with respect to stimulus s and Q

(i.e., Qneuron or Qvxs) is the covariance matrix given stimulus s. Note that linear Fisher informa-

tion can be calculated from both simulated neuron- and voxel-encoding models as long as the

tuning curves and the covariance matrix are known. Notably, in neuronal data, complete

Fisher information is stimulus-dependent because of the assumed Poisson noise distribution

and the covariance matrix Q varies across stimuli. Note that linear Fisher information per se
does not require the assumption of Gaussian variability and is suitable for any response distri-

bution belongs to exponential family with linear sufficient statistics [30, 33]. But given the lim-

ited number of neurons or voxels recorded and the limited number of trials in empirical

studies, the direct application of Eq 16 may contain bias and the analytical solution to correct

the bias requires Gaussian assumption [31]. In the simulated voxel data, we assumed additive

Gaussian noise and thus the covariance matrix Q is identical for all orientations (i.e., stimulus-

invariant) and thus linear Fisher information is equivalent to complete Fisher information. In

this paper, we simply denote both as “information”. We computed the averaged linear Fisher

Fig 7. Amount of information in neuronal and voxel populations with diverse forms and strength of NCs. The upper and the bottom rows depict the amount of

information as a function of increasing strength of NCs and the increasing number of units in the population, respectively. Panels A-C and F-H illustrate the amount of

information in a neuronal population and correspond to Fig 4. Panels D-E and I-J illustrate the amount of information in a voxel population and correspond to Fig 5.

Note that here we only illustrate the information in the stimulus-estimation task. We consider three types of NC—aTCNC (panels A, F), cTCNC (panels B, G), and SFNCs

(panels C, H) in the neuronal population, as already shown in Fig 4. Similar treatments are performed for the voxel population, as shown in Fig 5. The calculation of

information largely mirrors the decoding results shown in Fig 4 and Fig 5. Critically, the amount of information in the voxel population exhibits U-shaped functions of

increasing strength of cTCNCs (panel D) and cTCNCs do not limit information as the number of voxels increases (panel I). These results clearly differ from the effects of

aTCNCs (panels A, F) and cTCNCs (panels B, G) in the neuronal population.

https://doi.org/10.1371/journal.pcbi.1008153.g007
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information for all 180 discrete orientations:

I ¼
1

180

P180

s¼1
IðsÞ; ð17Þ

where s is the stimulus. Note that theoretically linear Fisher information above only applies to

the stimulus-estimation task or a fine-discrimination task. For a general classification task (i.e.,

classify two stimuli s1 and s2), especially for a coarse discrimination task, Eq 16 can be rewrit-

ten as the discrete format:

I ¼ ðDfÞT �Q� 1 � Df; ð18Þ

where Δf = f(s1)−f(s2) is the population response difference for two stimuli and Q ¼ Qðs1ÞþQðs2Þ
2

is the covariance matrix. This metric by definition is not Fisher information and typically

called “linear discriminability” [34]. To avoid confusion in terminologies, we denoted both

metrices as “information” in this paper as they indicate the quality of population codes in the

two tasks respectively. In the main text, we only show the information in the stimulus-estima-

tion task (Fig 6).

Fisher information can be converted into a stimulus discrimination threshold Δθ.

Dy ¼ 2 �
Φ� 1ðPCÞ

ffiffi
I
p ð19Þ

where I is information, PC is percent of correct with respect to the threshold, and F−1 is the

inverse cumulative normal function.

Varying voxel tuning heterogeneity

To illustrate the effect of tuning heterogeneity, we performed an additional analysis on the

voxel-encoding model (Fig 8). In this analysis, we calculated the amount of information in the

stimulus-estimation task after making the following modifications. First, we fixed the voxel

pool size to 500. Second, we introduced the heterogeneity coefficient (chomo) that controls the

voxel tuning heterogeneity. The key to manipulating heterogeneity is to adjust the linear

weighting W from neuronal to voxel responses. For each voxel, we first randomly selected one

neuron from all 180 neurons and assigned chomo as the linear weight for this neuron. The

Fig 8. Interaction between cTCNC and tuning heterogeneity on population codes. 500 voxels were simulated (see Materials and Methods). A larger value of chomo
indicates more homogeneous voxel tuning curves. Note that the simulated voxel tuning curves are identical to neuronal tuning curves when chomo = 1. Panel A illustrates

some sample tuning curves of the simulated voxels. Due to the uncertain neuron-to-voxel connections (i.e., linear weighting matrix W), the endowed voxel tuning curves

also exhibit irregular forms. Panels B and C illustrate the raw and normalized amount of information as a function of cTCNC under different tuning heterogeneity levels.

The raw information is normalized to the condition when cvxs = 0 (panel C). As voxel tuning homogeneity increases, the shape of the functions changes from U-shaped to

monotonically decreasing. Panel D illustrates sample voxel tuning curves with different heterogeneity levels.

https://doi.org/10.1371/journal.pcbi.1008153.g008
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weights for other neurons were then assigned by random numbers between 0~1 scaled by (1-

chomo) (i.e., (1- chomo)�rand in Matlab). For example, if chomo = 1, the voxel tuning curve is

homogeneous and identical to the neuronal tuning curve chosen in the first step; if chomo = 0,

the voxel tuning curves are heterogeneous as it is the linear combination of all other neurons

with random weights (see Fig 8A). Third, one might speculate that differences in results across

neuronal and voxel simulations might due to the absolute response range. In the neuron-

encoding models, the response range of neuronal tuning curves is between [1, 20] spikes per

second whereas the voxel tuning curves are smaller than 10. To control this absolute difference

in the response ranges, we normalized the range of voxel tuning curves to [1, 20] (see Eq 1,

also see scaled voxel tuning curves in Fig 8D compared to Fig 8A). Note that in this case voxel

response amplitude is larger than that in the previous voxel simulation (<10). Larger response

amplitudes will result in overall higher information, we thus also scaled the voxel variance 40

times (i.e., the mean of Gamma distribution in Eq 14) to keep the comparable signal-to-noise

levels in voxel responses.

Simulating noise correlations based on real fMRI data

We also simulated noise correlations based on measurements from real fMRI data. van Bergen

and Jehee [22] found that, in an orientation fMRI experiment, noise correlations between vox-

els is an exponential function of their signal correlations:

rcTCNC
ij ¼ a � ebðcorrðhiðSÞ;hjðSÞÞ� 1Þ þ l; ð20Þ

where α = 0.14, β = 1.99, λ = 0.09. These values are drawn from the curve fit in ref. [22]. Note

that this equation specifies that the magnitude of voxelwise NC is between [0.09, 0.23]. We

repeated the voxel encoding model simulation by replacing Eq 13 with Eq 20. To test the

effects of the magnitude of NC, we also set α = 0.9, such that the maximal NC can reach 0.99

and rerun the simulation.

Code availability

All code is available at https://github.com/ruyuanzhang/noisecorrelation

Results

1. Effects of noise correlation in neuronal and voxel populations on both

stimulus estimation and classification

In the first part, we will show the effects of noise correlation on population codes in both neu-

ronal and voxel populations. We simulated multivariate responses with three and two forms of

noise correlation in neuronal and voxel populations respectively. We performed two brain

decoding tasks—a stimulus-classification task and a stimulus-estimation task. In the stimulus-

classification task, a linear classifier was trained to categorize evoked population responses

into one of two discrete orientation stimuli. In the stimulus-estimation task, a maximum likeli-

hood estimator (MLE) was used to reconstruct the continuous orientation value based on the

population response in a trial. Both tasks are two routinely used forms of MVPA in the litera-

ture [17, 18, 27].

1.1 Tuning-compatible noise correlations between neurons impair decoding accuracy

in multivariate neuronal responses. Before examining the effect of TCNC in a voxel popula-

tion, we first attempted to replicate the classical findings in a standard neuronal population. In

the simulation of neuronal population responses, all neurons shared the same tuning curve

except that their preferred orientations were equally spaced in the continuous orientation

PLOS COMPUTATIONAL BIOLOGY Noise correlations and multivariate responses in fMRI

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008153 August 18, 2020 15 / 29

https://github.com/ruyuanzhang/noisecorrelation
https://doi.org/10.1371/journal.pcbi.1008153


space (Fig 2A, also see Materials and Methods). We manipulated three types of NCs between

neurons—angular-based tuning-compatible noise correlation (aTCNC), curve-based tuning-

compatible noise correlation (cTCNC), and shuffled noise correlation (SFNC). The first one is

also called ‘limited-range correlation’ in neurophysiological literature [3, 12]. aTCNCs are

based on the angular difference between the preferred orientations of two neurons (Fig 3A).

Specifically, we defined that the strength of NC between two neurons follows an exponential

decay function (Eq 2) of the absolute angular difference between their preferred orientations.

This approach has often been used to establish population coding models [12, 29, 35]. The sec-

ond type, cTCNC, is based on the similarity between the tuning curves (i.e., SC) of two neu-

rons (Fig 3B). We defined that the sign and magnitude of cTCNCs are the same as and

proportional to the SC between two neurons. This is consistent with empirical measurement

in electrophysiology [12, 29, 35]. Note that both aTCNC and cTCNC are related to the tuning

similarity between two neurons since the larger angular difference between the two neurons’

preferred orientations, the less their tuning curves are correlated. SFNCs served as a control

condition and were generated by randomly shuffling the cTCNCs between neurons (Fig 3C,

see Materials and Methods) such that they had no relationship with the tuning properties of

neurons.

We manipulated two variables of the neuronal population—the pool size (i.e., the number

of neurons) and the strength of NCs between neurons (i.e., cneuron, see Fig 3F, 3G and 3H). For

every combination of pool sizes and NC strength levels, we simulated population responses in

many trials and performed the MVPA decoding (i.e., classification and estimation) on the sim-

ulated population responses.

Results indeed replicated the findings from previous theoretical work [12]. aTCNCs and

cTCNCs impaired decoding performance in both tasks: the classification accuracy (Fig 4A and

4B) and the efficiency of the MLE (Fig 4D and 4E) declined as the strength of aTCNCs and

cTCNCs increased. The only exception is that the overall decoding accuracy is a U-shaped

curve for small pool size (N = 10). This is consistent with the information analyses below.

Decoding performance always rose as the strength of SFNCs increased. This result is similar to

the finding in [36]. We will explain this phenomenon in the later sections.

Note that in real experiments, one cannot easily manipulate the generative structure of

voxel activity. The manipulation of SFNC here should be seen as a data analysis method that

removes the relationship of NC to tuning similarity while keeping the marginal distributions

of NCs identical (i.e., the items in the SFNC matrix are identical to those in the TCNC matrix

but rearranged across rows and columns). Also, here we explore properties of a population

containing either pure TCNCs or pure SFNCs, two extreme cases in theoretical modeling. The

correlation structure in empirical data is likely in between these two extremes.

1.2 Decoding accuracy as U-shaped functions of tuning-compatible noise correlations

in multivariate voxel responses. We next turned to examine the impact of NC on popula-

tion codes in fMRI data. We simulated responses of a voxel population using a voxel-encoding

model (Fig 2B) and attempted to perform the classification and estimation tasks.

We again manipulated two types of NCs—cTCNC (Fig 3D) and SFNC (Fig 3E). The

cTCNCs here are similar to above except that they are between voxels rather than neurons.

Similarly, cTCNCs here are defined with respect to the similarity of their orientation tuning

curves. SFNCs were also generated by randomly shuffling the cTCNCs between voxels (see

Materials and Methods). Note that we cannot parametrically derive aTCNCs for voxels as we

did for neurons since unlike unimodal orientation tuning curves of cortical neurons, orienta-

tion tuning curves of voxels might be irregular (i.e., multimodal) due to the mixing of multiple

neural populations in a voxel’s activity (see Eq 9 and Fig 8A). We will return to this point in a

later section.
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We found that the decoding performance exhibited U-shaped functions of the increasing

amount of cTCNCs: both classification accuracy (Fig 5A) and estimation efficiency (Fig 5C)

first declined and then rose in both tasks. This is puzzling since the predominant view in

neurophysiology regards cTCNCs as detrimental but here we demonstrated that cTCNCs

improve population codes. SFNCs in general improved the decoding accuracy, similar to the

effect observed in a neuronal population.

Note that the manipulation of the strength or structure of noise correlations in simulated

data is only an approach in theoretical modeling, suggesting no feasible means that can be

used to manipulate realistic data.

1.3 Simultaneously varying neuronal and voxelwise noise correlations. In empirical

fMRI studies, we can only measure voxelwise NCs but the sources of these NCs are unclear.

One important source might be neuronal NCs because neuronal NCs could propagate to the

voxel level if voxel responses are believed to be the aggregation of neuronal responses. How-

ever, fMRI data might also involve other MRI-specific noises (hemodynamic fluctuations,

thermal noise, head motion, etc.). It is thus reasonable to assume that voxel-level NCs reflect

the combinations of neuronal and other voxel-level NCs. Systematically disentangling these

factors would be a useful direction for future experimental studies, but here we can at least

derive some theoretical expectations using our analytical framework. In previous analyses, we

only manipulated either the NCs between neurons or the NCs between voxels. We next

manipulate both neuronal and voxelwise cTCNCs in the voxel-encoding model.

We repeated the classification and the estimation tasks on a voxel population (see Materials

and Methods for details). Results showed that increasing neuronal-level cTCNCs had a small

impact on classification accuracy and the change in the classification accuracy values was pri-

marily determined by voxel-level cTCNCs. This is because we attempted to decode two stimuli

(s1 = 80˚, s2 = 100˚) based on simulated fMRI responses. But this is a very easy task if we clas-

sify the two stimuli directly from neuronal responses (i.e., reach 100% correct ceiling, also see

Materials and Methods). Thus, classification accuracy here is primarily bottlenecked by the

noise at the voxel level not the neural level. Note that these results are contingent on the noise

structure and strength assumed at both processing stages.

In the stimulus-estimation task, neuronal cTCNCs dampened estimation efficiency and

voxelwise cTCNCs impact estimation efficiency as U-shaped functions. Both results are con-

sistent with the previous results when two levels of NCs were manipulated independently. Our

results provide a theoretical demonstration to our knowledge that how both neuron-level and

voxel-level noises manifest in fMRI data.

2. Results of information-theoretic analyses explain the effects of noise

correlation on population codes

In the second part, we will show how to use information-theoretic analyses to support the sim-

ulation results above. Especially, we want to highlight the unit tuning heterogeneity as a media-

tor for the effect of NCs in a population. Unit tuning heterogeneity also acts as the key factor

to explain the differential effects of cTCNC in neuronal and voxel populations.

2.1 Amount of information echoes decoding accuracy in population codes. Above anal-

yses focused on assessing the population codes from the decoding perspective (i.e., MVPA),

the approach that almost all previous fMRI decoding studies used. Here, we propose an alter-

native approach—directly calculate the amount of Fisher information for the stimulus-estima-

tion task or linear discriminability for the stimulus-classification task. They have been used as

the standard metric for information coding in computational neuroscience [32, 37]. For the

estimation task, Fisher information indicates the minimal amount of variance that any
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unbiased decoder can possibly achieve. For the classification task, linear discriminability mea-

sures the magnitude of separation of two multivariate response distributions. It is also called a

variant of linear Fisher information for a classification task [1]. For simplicity, we termed both

metrics as “information” as they both indicate the accuracy of population codes with respect to

the two tasks.

The analysis of information has three major advantages over the conventional MVPA

approach. First, in theory two approaches might lead to consistent results as more information

in a population usually leads to a higher decoding accuracy. But their relationship is nonlinear.

Classification accuracy can reach the floor (e.g., 50% for binary classification) and ceiling (i.e.,

100%) but the amount of information has a relatively broad range thus more sensitive to popu-

lation codes. For example, as we will show, information in a standard neuronal population sat-

urates as a function of pool size given the presence of aTCNCs and cTCNCs but not SFNCs

(Fig 7F, 7G and 7H). Information in a voxel population keeps increasing as the pool size

increases (Fig 7F–7J). These conclusions cannot be easily derived from decoding analyses per

se. Second, here we used the optimal Bayesian decoder for the stimulus-estimation task and

the linear discriminant for the stimulus-classification task. In most classification studies,

researchers used some machine learning methods, such as support vector machine, logistic

regression, linear regression. It still remains unclear whether these decoders are statistically

optimal. The decoding results above might due to the particular decoders we use. In contrast,

the assessment of information is not related to the assumptions or efficacy of any particular

decoder. Third, most decoding methods so far employed discriminative modeling approach.

Calculation of information here takes into account data generative processes. As such, calcula-

tion of information should be a more principled way to assess the accuracy of population

codes.

We calculated the amount of information in both the neuronal and the voxel populations

(see Materials and Methods) as functions of pool size and NC strength. Results largely mir-

rored the previous decoding results. In the neuronal population, we replicated the key signa-

tures of detrimental effects of TCNCs: the amount of information saturated as the pool size

increased given the presence of aTCNCs (Fig 7F) and cTCNCs (Fig 7G) but not SFNCs (Fig

7H). Also, the amount of information declined as the magnitude of aTCNCs (Fig 7A) and

cTCNCs increased (Fig 7B). The only exception is the curves as a slight U-shaped function for

small pool size (N = 10, Fig 7A and 7B). This pool size is very rare in realistic data. Note that

the different curves in Fig 7A and 7B will converge when NC coefficient is 1, indicating that

the information saturate very quickly as pool size increases (Fig 7F and 7G). The overall declin-

ing pattern was reversed as the magnitude of SFNCs increased (Fig 7C). In the voxel popula-

tion, the amount of information always increased as the pool size expanded in both cTCNCs

(Fig 7I) and SFNCs (Fig 7J) conditions. Similar to the decoding results, the amount of infor-

mation exhibited U-shaped functions as the magnitude of cTCNCs (Fig 7D) increased and

always grew as the magnitude of SFNCs (Fig 7E) increased.

The overall amount of information in voxels are much lower than that in neurons, because

of the difference in signal-to-noise ratio of the two measurements. This is consistent with

empirical finding that the sensitivity of a single neuron can predict or even surpass behavior

but decoding accuracy in fMRI is always lower than behavioral performance. Fisher informa-

tion can also be converted into an orientation discrimination threshold. For example, the lin-

ear Fisher information of 100 neurons is 1.5 deg-2 when cTCNC is 0 (Fig 7B). This is

equivalent to 1.1 deg threshold corresponding to 75% accuracy (Eq 19). This threshold is close

to the behavioral threshold reported in ref. [38]. Similarly, the threshold is 20.1 deg for 100

voxels when cTCNC is 0. This is also consistent with the coarse orientation discrimination

task in fMRI [27].
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2.2 Voxel tuning heterogeneity and pool sizes explain the effect of tuning-compatible

noise correlations on population codes. Why do TCNCs manifest differently in neuronal

and voxel populations? We reason that the neuron-to-voxel transformation (i.e., linear weight-

ing W) might be the key factor that alters the effect of TCNCs. Unlike the homogeneous neu-

ronal tuning curves (i.e., same width, amplitude, and baseline, and only preferred orientations

vary), voxel tuning curves might be heterogeneous or have diverse tuning widths and ampli-

tudes (Fig 8A). This is due to the uncertain distribution (i.e., the weighting matrix W in Eq 9)

of orientation-selective neurons within a voxel. Even though individual neurons follow a uni-

form bell-shape tuning property, the aggregation of them can produce tuning functions with

diverse forms. Because of the tuning heterogeneity, TCNCs do not limit information anymore.

The effect of tuning heterogeneity has been studied in some previous theoretical work [16, 29,

36] (see more details in discussion).

To further substantiate the interaction effect between tuning heterogeneity and NCs on

population codes, we manipulated the degree of voxel tuning heterogeneity and the strength of

cTCNCs in the voxel population. The amount of information was calculated as a function of

these two variables (Fig 8B and 8C). Results showed that the amount of information follows U-

shaped functions if voxel tuning is highly heterogeneous (i.e., chomo = 0.03 in Fig 8). However,

as the voxel tuning becomes progressively homogeneous (i.e., chomo increases to 1), cTCNCs

become more and more detrimental for information coding, which is consistent with the

results obtained in a standard neuronal population (Fig 7B). These results suggest that the

cases of cTCNCs and SFNCs in neurons represent two extreme cases where NCs impair or

enhance information. But there exists a continuum of possible scenarios that could lead to

mixture of detrimental and beneficial effects. The observed U-shaped function is one example.

Fig 9. The detrimental effects of TCNCs and the beneficial effects of tuning heterogeneity. Panel A illustrates the scenario of homogeneous tuning curves of two

units. Panels B and C depict the cases of classifying stimuli a and b and stimuli c and d, respectively. In both panels B and C, the noise correlation is detrimental. The dots

or squares on the x- and y-axes indicate the mean responses of the two units towards the two stimuli. Panels D-F are similar to Panels A-C but illustrate the scenario of

heterogeneous tuning curves. The noise correlation between the two units is detrimental to the classification of stimuli a and b, but beneficial to the classification of

stimuli c and d. Panels D-F show how tuning heterogeneity can mitigate the detrimental effect of TCNC.

https://doi.org/10.1371/journal.pcbi.1008153.g009
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It is likely that the tuning-compatible NCs indeed impose detrimental effects to some extent,

but the effects are mitigated by tuning heterogeneity. If tuning functions become more heter-

ogenous, the two antagonistic effects together produce a U-shaped function.

We provide an intuitive example that illustrates the detrimental effects of TCNC and the

beneficial effects of tuning heterogeneity in Fig 9. If the tuning curves of two units are homoge-

nous and similar (Fig 9A), by definition they should also have a high positive NC (i.e., TCNC).

Because of high tuning similarity, the signal vectors (the red vectors in Fig 9B and 9C) connect-

ing the mean of responses towards the two stimuli always align with the direction of noise cor-

relation (i.e., the directions of the distribution ellipses). This type of noise correlation has been

termed “differential correlation” and been shown to be detrimental because a decoder cannot

well differentiate signal and noise. If the tuning curves are heterogeneous (Fig 9D), there can

still exist a positive noise correlation between the two units (i.e., TCNC). The positive NC

impairs the classification of stimuli a and b in Fig 9E. However, the positive NC is actually ben-

eficial when classifying stimuli c and d, which is markedly different from the case in Fig 9C.

We can imagine that the more heterogeneous tuning curves are, the higher the likelihood that

the scenario of Fig 9F will occur.

Our results also highlight the complexity of quantifying information in a population and

suggests that the influences of NCs must be systematically probed using a wide and systematic

range of parameters. Taken together, we demonstrated that unit tuning heterogeneity is at

least one of the key factors that mediates the contribution of cTCNCs in both neuronal and

voxel populations.

2.3 Simulating noise correlations based on realistic fMRI data. We next attempted to

simulate voxel responses based on the relationship between SC and NC measured from realis-

tic fMRI data. van Bergen and Jehee [22] found that the noise correlation between two voxels

follow an exponential function of their signal correlation (the magenta line in Fig 10A). We

used the exponential function estimated from that dataset to simulate our results (see Materials

and Methods for details). We found that increasing voxel noise correlation coefficient reduces

the amount of information. We speculate this is because the maximal noise correlations can

only reach ~0.23 even if cvxs reaches 1 such that only the declining part of the U-shaped func-

tions is observable. To test this, we amplified the exponential function (the blue line in

Fig 10. Simulation of voxel population responses based2 on realistic fMRI data. A. noise correlation as an exponential function of signal correlation. The magenta

curve is estimated from van Bergen and Jehee [22] and we scale it to increase the magnitude of noise correlations (i.e., the blue curve). B,C. simulated effects of noise

correlations in the regimes of the magenta and the blue curves, respectively. Noise correlations reduce the amount of information because the overall magnitude is

relatively week (i.e., the magenta curve). We again observe U-shaped functions if the overall magnitude of noise correlations are large (i.e., the blue curve).

https://doi.org/10.1371/journal.pcbi.1008153.g010
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Fig 10A) and set maximal noise correlations to ~0.99 (see Materials and Methods). We again

found the U-shaped functions consistent with the results above. This result also suggests that

systematic theoretical analysis can reveal the full spectrum of possible consequences induced

by noise correlations in population codes, which might be difficult to obtain by looking at indi-

vidual datasets.

As shown in these simulations, the effects of NCs might be highly dependent on the choices

or exact values of parameters (tuning width, NC strength etc.) in the data. Whether NCs in

realistic data improve or impair information is still an open question and to-date there lacks

direct evidence in this field. Our recent work found that the voxelwise NCs indeed enhance

information in human V1 [24]. Future studies need to further test the effects of NCs in other

stimulus features and cognitive tasks.

2.4 The dominance of a fraction of good noise correlations explains the effect of shuf-

fled noise correlations on population codes. Besides the beneficial effect of TCNCs, we turn

to another interesting finding—SFNCs improve population codes in both neuronal and voxel

populations. At first glance, this seems surprising since it suggests that decoding accuracy can

be improved by, if possible, randomly creating some NCs between voxels. Here we want to

highlight an intuitive explanation—some beneficial NCs might override the effects of detri-

mental NCs and disproportionally enhance decoding accuracy in the conventional multivari-

ate analysis.

We simulated a simple three-voxel scenario for a classification task to illustrate this effect

(Fig 11). The NC between voxels X and Y improves classification (Fig 11A), while the NC

between voxels Y and Z impairs classification (Fig 11B). The correlation between X and Y, and

the correlation between Y and Z are identical in magnitude but with opposite signs. However,

when all three voxels are aggregated, the contributions of the two opposite NCs do not cancel

out each other and the overall decoding performance is still improved by the positive NC

between X and Y, regardless of the negative NC between Y and Z. Importantly, classification

accuracy on X, Y, and Z with NCs is higher than the scenario in which there are no noise cor-

relations. These results demonstrate that, as long as there exists some voxels whose NCs are

beneficial, these good NCs may dominate in the contribution to information. In other words,

the most informative units may disproportionally enhance population codes and override the

negative effects of other “bad” NCs (Fig 11). Note that this example only illustrates a possible

scenario that the effects of good NCs can override bad NCs, but does not suggest this finding

always holds. Precise estimations of effects of NCs require formal calculations of information.

This principle provides an intuitive explanation for the effects of SFNCs on decoding. In

the scenario of SFNCs, the NC between a pair of voxels bears no resemblance to their tuning

similarity. Given many voxels in a population, the NCs could be beneficial for some voxels

(e.g., Fig 11A) or detrimental (e.g., Fig 11B) for others. The total information is the aggregation

of both beneficial and detrimental effects. As we show in Fig 11, given the presence of both

beneficial and detrimental NCs, the former type may persist, since a decoder can adjust its

weights to fully utilize the beneficial NCs and minimize the effects of detrimental NCs. As the

pool size increases, it becomes increasingly likely that a small fraction of units are assigned

NCs that benefit decoding, resulting in overall enhanced decoding performance for the entire

population.

Discussion

Characterizing the effect of noise correlation on population codes has attracted much attention

in the past years as it is related to several key topics (e.g., probabilistic computation, uncer-

tainty) in neuroscience research [1, 25]. But the majority of relevant studies are confined to the
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Fig 11. A three-voxel simulation illustrating the disproportional benefits of good covariance in multivariate decoding. Panel A illustrates the trial-by-trial responses

of voxels X and Y towards two stimuli. The covariance structure of X and Y enhances classification accuracy. Similarly, panel B illustrates that the covariance structure of

voxels Y and Z impairs classification. Voxels X and Z have no systematic NC (panel C). Panel D depicts the classification accuracy based on population responses of X and

Y, Y and Z, X and Z, and all three units. We also include a situation where we set all NCs among three units to 0 and keep other settings the same (i.e., X, Y&Z without

NC). We add this condition because in most empirical scenarios we are interested in comparing a population code with and without NCs. The beneficial and detrimental

effects of the covariance structures in panels A and B do not cancel each other if all three voxels are combined.

https://doi.org/10.1371/journal.pcbi.1008153.g011
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field of neurophysiology. On the other hand, fMRI can measure many responsive units in the

brain but most prior fMRI studies only employed MVPA to evaluate population codes. MVPA

accuracy, however, is merely a coarse description of population codes and the precise quantita-

tive relationship between the voxelwise NCs and population codes still remains unclear. Here,

we conducted a series of theoretical analyses to systematically examine how NCs with different

forms and strength influence MVPA accuracy and the amount of information in multivariate

fMRI responses. We made two major observations: (1) decoding accuracy and the amount of

information follow U-shaped functions of cTCNCs in a voxel population and this effect is

mediated by voxel tuning heterogeneity and pool sizes; (2) assuming that the sign and magni-

tude of NCs between voxels are irrelevant to voxel tuning similarity, increasing the NCs will in

general improve population codes. These results suggest that tuning heterogeneity of voxels

helps distribute information across voxels and such that noise can be averaged out by increas-

ing voxel number in a pool (i.e., information will not be limited as pool size increases). Fur-

thermore, the comparisons against a standard neuronal population demonstrate that the effect

of NC in both neuronal and voxel populations can be understood within a unified computa-

tional framework related to tuning heterogeneity.

Noise correlation in neural processing

The effects of NC on the capacity of the neural population codes have been investigated in var-

ious studies over the past two decades [14–16, 29], leading to somewhat mixed results. Early

results in neurophysiology suggest that cTCNCs could be detrimental [12], but later studies

suggest that the results may be more complicated, depending on the detailed configurations of

neural codes. There are regimes where the cTCNCs could be beneficial [16, 29, 36]. Wilke and

Eurich [36] found that making the magnitude of the positive correlations irrelevant to tuning

similarity benefits neural codes. They further provided an intuitive argument on why noise

correlations that have no direct relationship to unit tuning might increase coding capacity.

Their results are consistent with our findings on the benefit of SFNCs. We would like to

emphasize that the results of theoretical work on this issue highly depend on the detailed speci-

fications of the correlation structure in a population. For example, we can add a small term

proportional to the outer product of the tuning curve derivative (i.e., so-called ‘differential cor-

relations’) in Eq 5. Differential correlations have been shown to limit information in a popula-

tion [30]. But the existence and amount of differential correlations in human fMRI data still

need to be further explored. We can only conclude that our findings hold true in our simulated

correlation structures.

The assumption of homogeneous tuning curves in early theoretical work is apparently not

realistic because in the primate brain it has been known that the shape of tuning curves varies

drastically across neurons. Such tuning heterogeneity removes TCNCs’ limitation on informa-

tion. This theoretical implication has been also corroborated by an empirical study on orienta-

tion decoding in primate V1 [39]. Most importantly, the principle of tuning heterogeneity

applies both neuronal and voxel populations.

Ecker, Berens [29] derived a mathematical foundation for the effects of tuning heterogene-

ity, pool size, and TCNC on population codes, built up the earlier work by Sompolinsky, Yoon

[15]. In some recent work, the effects of NCs can be understood by investigating the projec-

tions of signals on each eigenvectors of the covariance matrix. The signature of so-called “dif-

ferential correlations” appears as the large projections on the first few eigendimensions [38,

40]. Here, we extend previous work and demonstrate several novel aspects of NC in both neu-

ronal and voxel populations. First, previous theoretical work in neurophysiology primarily

focused on estimation tasks (but see [30]) while the majority of neuroimaging research focused
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on classification tasks. We compared both tasks in both populations. Second, previous work

only analyzed one type of TCNC (i.e., aTCNC in theoretical work) and we systematically com-

pared three types of NC in both populations. Third, we manipulated cTCNC at both neuronal

and voxel activity stages to approximate more realistic interactions between neuronal and

fMRI responses. These efforts not only enrich existing work in neurophysiology, but also pro-

vide a theoretical foundation to understand the effects of NCs in multivariate fMRI data.

Quantifying information in fMRI data

In this paper, we focused on two routinely used perceptual tasks—the stimulus-estimation task

and the stimulus-classification task. Stimulus estimation is equivalent to a very fine-discrimi-

nation task as it needs to discriminate the true stimulus value from nearby stimuli in the fea-

ture pace. It is primarily determined by Fisher information. Binary classification is more

similar to coarse discrimination as it depends on the distance of the representations of two sti-

muli. In classification tasks, linear discriminability is a better measure than Fisher information

[34, 41–43].

Given our finding that voxelwise noise correlations have substantial influence on popula-

tion codes, it may be informative to measure the magnitude and form of noise correlations in

empirical fMRI measurements. This is for three reasons. First, noise correlations must be

taken into account in order to build an optimal decoder. From the Bayesian perspective, a sta-

tistically optimal decoder must have the full knowledge of how data are generated so that the

generation process can be inverted (also see next section). Second, if the goal in a given fMRI

study is to maximize decoding accuracy, it is an open question whether noise correlations

should be kept or removed (e.g., whitening) in fMRI preprocessing. Because Fisher informa-

tion is a U-shaped function of the strength of noise correlations, cognitive processes (e.g.,

attention, learning) that reduce noise correlations can either improve or impair decoding,

depending on the exact structure of noise correlations in empirical data. Thus, reduced voxel-

wise NCs does not necessarily imply better population codes in fMRI. One still needs to either

directly assess decoding accuracy or stimulus information (e.g., Fisher information).

Third, if the goal is to understand the effect of some modulatory factors (e.g., attention) on

population codes, noise correlations might reflect important aspects of how this modulation is

achieved by the brain [44].

Towards a generative understanding of multivariate fMRI responses

In contrast to the enthusiasm for characterizing generative processes of stimulus-evoked

responses in neurophysiology, only a few studies have performed generative modeling on

fMRI data [22, 45]. Conventional neuroimaging approaches use MVPA to decode information

from fMRI data [17, 18]. However, in recent years, people have increasingly realized the limita-

tions of MVPA as a discriminative modeling approach, in which one seeks to estimate the

probability p(stimulus | response). Rich representational information might be buried by

merely examining decoding accuracy [19].

From a probabilistic modeling perspective, understanding the generative computation in

the brain is equivalent to deriving the joint probability p(response, stimulus), which is equiva-

lent to calculating to p(response | stimulus) × p(stimulus) according to Bayes’ theorem. Cur-

rent voxel-encoding modeling approaches seek to characterize the mean of the likelihood

term, p(response | stimulus), in the sense of characterizing the computations by which a stimu-

lus produces population responses in the brain. However, the full likelihood function p
(response | stimulus) also requires characterizing the covariance between voxels. Calculating
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the full likelihood or joint distribution of responses and stimuli can provide important insight

into the probabilistic computation in the human brain [45].

The nature of noise correlations in fMRI data

Although fMRI can naturally measure the activity of many units in the brain, the investigation

of NCs in fMRI data has just begun recently. Exploring this issue in fMRI data is, however,

non-trivial and we summarize the related issues as follows.

First, the definition of “noise correlation” in fMRI research is still under debate. The well-

accepted definition of “noise correlation” in electro-physiology is the correlation of trial-by-

trial responses between two neurons given the repeated presentation of the same stimulus.

This definition emphasizes stimulus-evoked responses. In this paper, we strictly follow this

definition and assume voxel responses as trial-by-trial responses estimated from the standard

general linear model. This is also called “beta series correlation” in some fMRI literature [46].

In contrast, one recent study defined the noise correlation between two voxels as their resting-

state functional connectivity or background functional connectivity during a task [23]. In the-

ory, these definitions deviate from the conventional definition in computational neuroscience

and their quantitative relationship remains unclear. Only one recent study suggested that rest-

ing-state functional connectivity is highly correlated with the trial-by-trial response correlation

at the whole-brain level [47]. Future studies need to examine the relations between resting-,

task-based functional connectivity, and trial-by-trial variation of responses at the individual

voxel level.

Second, the sources of noise correlations in fMRI data are still unclear. On one hand, the

conventional term “noise correlation” itself is somewhat misleading since, as shown in this

paper, response variability can contain a substantial amount of stimulus information. In other

words, response variability is not purely “noise” and might reflect some critical aspects of how

neurons process stimulus or task structure [48].

In this paper, we assume the existence of tuning-compatible noise correlations between

voxels. While the existence of such correlations has found some support [22], it is less clear

what the causes of such correlations are. There are at least three types of factors that could con-

tribute to such trial-by-trial variation of voxel activity. First, the variability of underlying neu-

ronal activity can propagate to the voxel level, causing variations in voxel BOLD signals. For

example, it has been shown that fMRI orientation decoding can be explained by coarse-scale

orientation preference maps [49] and neuronal noise correlations are presumably present in

this scenario. A second type of factor consists of global brain/cognitive signals, such as arousal,

wakefulness, etc. These factors have been shown to modulate noise correlations in primates

[3]. A third type of factor is non-neural noise arising in MRI data acquisition processes, such

as cardiac- and respiratory-related noise, head motion, image reconstruction artifacts, etc.

These types of noise should be carefully considered and ideally removed in data pre-process-

ing, as they may otherwise lead to incorrect neuroscientific interpretations. Perhaps the most

pernicious type of noise is head motion, which, due to its nature, may induce spatially struc-

tured noise and confer noise correlations between voxels that may share similar tuning pro-

files. How to best model and control for the influences of head motion is still an active topic in

fMRI research. In addition, it remains a challenge for future studies to develop procedures for

identifying and differentiating the effects of different types of noise.

We would like to offer two practical suggestions for empirical fMRI studies. First, although

TCNC can improve stimulus information and noise in acquisition procedures might produce

TCNC, this does not mean that noise is good: fMRI researchers should still make concerted

efforts to minimize the magnitude of non-neural noise during data acquisition and pre-
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processing. Second, although researchers cannot directly manipulate neuronal noise correla-

tions in conventional human experiments, researchers can readily manipulate cognitive states

(e.g., attention) and quantify their effects on noise correlations. This approach has not yet been

extensively applied in human studies, but may reveal unique neural mechanisms of cognitive

processing that cannot be addressed by the conventional MVPA approach.
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