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a b s t r a c t 

Asthma, a chronic respiratory disease with a global prevalence of approximately 300 million individuals, presents 

a significant societal and economic burden. This multifaceted syndrome exhibits diverse clinical phenotypes and 

pathogenic endotypes influenced by various factors. The advent of omics technologies has revolutionized asthma 

research by delving into the molecular foundation of the disease to unravel its underlying mechanisms. Omics 

technologies are employed to systematically screen for potential biomarkers, encompassing genes, transcripts, 

methylation sites, proteins, and even the microbiome components. This review provides an insightful overview 

of omics applications in asthma research, with a special emphasis on genetics, transcriptomics, epigenomics, and 

the microbiome. We explore the cutting-edge methods, discoveries, challenges, and potential future directions 

in the realm of asthma omics research. By integrating multi-omics and non-omics data through advanced sta- 

tistical techniques, we aspire to advance precision medicine in asthma, guiding diagnosis, risk assessment, and 

personalized treatment strategies for this heterogeneous condition. 
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Asthma, a chronic respiratory disease characterized by airway
nflammation and hyperresponsiveness, encompasses diverse clinical
ymptoms including wheezing, coughing, and dyspnea. 1 , 2 Over the past
ew decades, there has been a substantial global increase in asthma
revalence across both pediatric and adult populations. 3 , 4 Current re-
earch indicates that approximately 300 million individuals worldwide
re affected by asthma. 5 The overall prevalence of asthma in chil-
ren, adolescents, and adults was estimated to be 9.1%, 11.0%, and
.6%, respectively. 2 Asthma poses a significant burden on society and
he economy due to the costs associated with medical care and the
mpact on work or school attendance. 6–10 Furthermore, severe acute
xacerbations of asthma can lead to hospitalization and even mor-
ality. 11–14 Thus, there is an urgent need for effective personalized
linical management strategies and preventive measures to mitigate
he impact of asthma, particularly in vulnerable populations such as
hildren. 

As a heterogeneous syndrome, asthma has diverse clinical pheno-
ypes and pathogenic endotypes which are influenced by multiple fac-
ors such as age, gender, and complex interactions of genetic and en-
ironmental components. 15 , 16 The traditional classification of asthma
nto allergic or non-allergic categories is deemed overly simplistic for
fficacious clinical management. 17 Allergic asthma is characterized by
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 T helper 2 (Th2) cell-mediated response in which allergen-specific
h2 cells generate type 2 cytokines (e.g., interleukin [IL]-4, IL-5, and
L-13), resulting in significant eosinophil infiltration in the airway wall
nd elevated immunoglobulin E (IgE) synthesis. 18 T cell inflammatory
athways are considered to play a vital role in the pathogenesis of
sthma. The development of novel treatments targeting type 2 inflam-
ation pathways highlights the need for clinical management strate-

ies that consider underlying asthma endotypes driving the disease in
ndividuals. 19 , 20 Previous studies have identified two main endotypes
f asthma based on the degree of type 2 inflammation, Th2-high (T2-
igh) and Th2-low (T2-low/Non-T2), each exhibiting distinct responses
o therapeutic interventions. 21–23 Omics research offers in-depth molec-
lar assessments of asthma patients, identifying biomarkers associated
ith endotypes, uncovering novel mechanisms involving genes, pro-

eins, metabolites, or microbiota in asthma progression, and facilitating
he development of precise treatment. 24 Fig. 1 illustrates how multi-
mics and non-omics data are integrated through statistical methods to
oost precision medicine in asthma, guiding diagnosis, risk assessment,
nd tailored treatments. 

Omics techniques have significantly enhanced our understand-
ng of the molecular mechanisms underlying asthma. For example,
enome-wide association studies (GWASs) have identified numer-
us asthma susceptibility loci relevant to specific populations. 25–28 

pigenome-wide association studies (EWASs) have revealed distinct
SA. 
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Fig. 1. Overview of multi-omics in asthma, which aids in assessing the risk of asthma, defining endotypes, and predicting responses to specific treatments. Figure 

was created with Biorender.com. 
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eoxyribonucleic acid (DNA) methylation patterns associated with
sthma. 29–32 During the course of asthma, levels of proteins associated
ith inflammation, cell apoptosis, and proliferation also change.
hrough analyzing protein expression, proteomics offers a deeper
nderstanding of the pathophysiological mechanisms behind bronchial
sthma. 33 The U-BIOPRED project has employed transcriptomics, pro-
eomics, lipidomics, metabolomics, and clinical phenotypes in asthma
atients to identify multiple asthma endotypes and genes that are
ssociated with inflammatory pathways. 34–36 Omics approaches have
emonstrated the capacity to provide unprecedented insights into the
dentification of asthma endotypes and associated biomarkers, which is
specially important for pediatric asthma. 

In this article, we aim to provide an overview of omics approaches
tilized in current asthma research, primarily focusing on genetics, tran-
criptomics, epigenomics, microbiome, as well as their integration. We
ummarize the state-of-the-art advances in omics for asthma research,
iscussing cutting-edge research methods, discoveries, challenges, and
otential future directions. 

enetics 

The asthma genetics studies mainly focus on the role of DNA in
isease onset, progression, drug responses, and prognosis. Genetic re-
earch samples could be obtained from any nucleated tissue, typi-
ally using blood or saliva, which are convenient to obtain. 24 Indi-
idual genotyping is typically performed using microarrays or next-
eneration sequencing (NGS) methods, such as whole-genome sequenc-
ng (WGS) and whole-exome sequencing (WES). Due to the high cost
2

f NGS, microarray-based genotyping remains the most commonly used
ethod. 37 

WASs in asthma research 

Over the past decade, GWASs have been widely employed to iden-
ify risk variants associated with complex diseases. GWASs typically use
undreds of thousands to millions of single-nucleotide polymorphisms
SNPs) as molecular genetic markers to compare the frequency of com-
on genetic variations between individuals and identify phenotype-

ssociated genetic variations through statistical methods. 38 GWASs can
elp screen high-risk individuals for disease, enhance disease predic-
ion models using genetic information, and ultimately improve patient
utcomes through early detection, prevention, or treatment. Commonly
sed software and packages include: GWAtoolbox, 39 qqman, 40 Gen-
BEL, 41 PLINK, 42 and METAL. 43 

In 2007, Moffatt et al. 25 conducted a GWAS involving 994 patients
ith childhood-onset asthma and 1243 non-asthmatics, genotyping
ver 317,000 SNPs. For the first time, they identified susceptibility vari-
nts for childhood asthma located in the chromosomal region 17q21.
he strong association between the 17q21 region and asthma has been
eplicated in multiple GWASs involving different ethnicities among both
dults and children. 44 , 45 Subsequent research expanded the focus to the
7q12-21 asthma locus, with orosomucoid like 3 ( ORMDL3 ), gasdermin
 ( GSDMB ), and post-glycosylphosphatidylinositol (GPI) attachment to
roteins phospholipase 3 (PGAP3) being identified as prime candidate
sthma genes. 46 A recent asthma GWAS based on the UK Biobank
UKB) analyzed 64,538 asthma cases and 329,321 controls, identifying
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45 asthma-associated loci, including 41 newly discovered loci. They
urther harmonized the results with GWAS summary statistics from the
rans-National Asthma Genetic Consortium (TAGC) and performed a
eta-analysis. This comprehensive investigation ultimately identified
6 previously unknown asthma-associated loci and replicated 143 out
f 146 previously known genomic regions. 47 

In addition to studying asthma susceptibility, GWAS research can
lso be used to investigate asthma disease progression and response to
rug treatment. Yan et al. 27 conducted a GWAS meta-analysis on 4010
atino youth with asthma from four independent cohorts, finding that
he SNP rs2253681 in FLJ22447 was significantly associated with se-
ere asthma exacerbations. Tantisira et al. 48 identified the SNP rs37972
hrough GWAS, which was related to the response to inhaled glucocorti-
oids in asthma. SNP rs37972 was found to be in complete linkage dise-
uilibrium with the glucocorticoid-induced transcript 1 gene ( GLCCI1 ),
evealing novel pharmacogenetic determinants of the response to in-
aled glucocorticoids. 

With the acquisition of large-scale GWAS data, significant SNPs can
e employed to construct polygenic risk score (PRS) models to esti-
ate the genetic susceptibility of asthma. Namjou et al. 49 used PRS-
S, a Bayesian regression framework method, in the summary statis-
ics from TAGC, to build childhood asthma PRS. The PRS can predict
ndividual disease risk based on genotype, identify high-risk popula-
ions, and offer early monitoring and intervention for these groups, pro-
iding an effective reference for individualized precision treatment of
sthma. 

Over the past decade, the development of high-throughput sequenc-
ng technologies, increased data availability, and the emergence of high-
erformance computational tools have greatly advanced GWASs, lead-
ng to the discovery of an increasing number of related genetic varia-
ions. Despite the identification of hundreds of genetic variations poten-
ially associated with asthma, several challenges still exist in this field.
WASs can only explain a small portion of the overall heritability for
sthma. 47 , 50 Ferreira et al. 51 found that GWAS-identified risk variations
xplained 25.6% of childhood asthma heritability and 10.6% of adult
sthma heritability. 

There are several possible explanations for the low proportion of
eritability explained by these variations. GWASs only incorporate
ommon variations, not rare variations or copy number variations. 52 

GS and WES can identify disease susceptibility structural variations
ot captured by GWASs, which potentially could address these is-
ues. Additionally, the impact of a single genetic variation on asthma
isk is low. 53 Environmental factors may play a significant role in
sthma susceptibility and progression through stable and potentially
eritable genomic modifications, which could be investigated in com-
ination with epigenetics. 54 Gene–gene and gene–environment inter-
ctions are expected to explain some of the missing genetic contri-
utions. 55 Finally, most asthma GWAS participants are from Euro-
ean populations, and more non-European GWASs or more effective
ross-ancestry prediction models are needed to decipher shared ge-
etic variations in asthma susceptibility among different populations. 56 

n summary, more asthma risk variations await discovery, requiring
arger research samples, more advanced sequencing methods, and more
ffective statistical models to explore the polygenic architecture of
sthma. 

endelian randomization 

Based on the results of GWASs, an increasing number of researchers
ave recently begun to use Mendelian randomization (MR) to inves-
igate the causal relationship between the exposure of interest and
sthma. MR studies use genetic variations (most commonly SNPs) as
nstrumental variables (IVs) to determine whether the observed associ-
tion between exposure and disease is likely to be causal. 57 IVs need to
eet three assumptions: 1 IVs are associated with exposure (relevance

ssumption); 2 IVs are related to the outcome only through the stud-
3

ed exposure (exclusion restriction assumption); and 3 IVs must not be
elated to confounders associated with both the exposure and the out-
ome (independence assumption). 58 Common MR research methods in-
lude inverse variance weighted (IVW), MR-Egger, and weighted me-
ian (WM). IVW estimates the causal effect by weighting the IVs based
n their inverse variances and works best when all IVs are valid. 59 MR-
gger considers potential horizontal pleiotropy and provides an inter-
ept term to indicate the presence of such pleiotropy. 60 WM considers
he median of the weighted IV estimates, which is robust to the presence
f invalid genetic instruments. 61 The TwoSampleMR R package is the
ost commonly used tool for MR analysis. 62 

MR analyses include methods like single-sample MR, two-sample
R, bidirectional MR, two-stage MR, and multivariable MR. Bidirec-

ional MR stands as a more in-depth approach built upon single-sample
R or two-sample MR. It operates by conducting two MR analyses, in-

erting exposures and outcomes for a given phenotypic pair, which aids
n deciphering the directionality of causality. 63 In situations where ex-
osures and outcomes might reciprocally influence each other, their in-
ertwined causal relationships can be analyzed using bidirectional MR.
or example, Sun et al. 64 initially used 73 SNPs as IVs to assess the
ausal effect of body mass index (BMI) on asthma in 56,105 adults
hrough single-sample MR. Following this, a reverse MR analysis was un-
ertaken. The study ultimately ascertained a unidirectional causal link
etween genetically determined increases in adult BMI and an elevated
isk of asthma. 

ranscriptomics 

Transcriptomics examines the complete set of RNA transcripts pro-
uced by an organism’s genome. This includes messenger RNA (mRNA),
hich carries the genetic information from DNA to the ribosomes for
rotein synthesis, as well as other types of RNA molecules such as
on-coding RNA and splice variants. 65 As second-generation sequenc-
ng technology has emerged and the cost of sequencing-based tech-
ology has decreased, research in transcriptomics has become increas-
ngly popular. This popularity can be attributed to the ability of tran-
criptomic analysis to provide comprehensive information on gene
xpression patterns and regulatory mechanisms in various biological
ystems. 

Transcriptomic analysis involves the measurement and quantifica-
ion of gene expression levels, alternative splicing events, and post-
ranscriptional modifications. Two primary techniques used for tran-
criptomic studies are microarray-based and RNA-sequencing (RNA-
eq) based. Statistical models, including differential gene expression
DE) analysis, co-expression network analysis, and pathway analysis,
re commonly employed to analyze samples. To increase the power and
eproducibility of results, it is common to replicate findings using addi-
ional independent datasets by meta-analysis. Commonly used software
ncluding DESeq2, 66 limma, 67 edgeR 

68 for DE analysis, weighted corre-
ation network analysis (WGCNA) 69 for co-expression network analysis,
nd Gene Set Enrichment Analysis (GSEA), 70 Ingenuity Pathway Anal-
sis (IPA) 71 for pathway enrichment analysis. 

During the research process, confounding factors may affect the anal-
sis. For example, ethnicity and ancestry can be controlled by selecting
he first few principal components (PCs). Batch effect introduces biases
o the analysis that also need to be addressed. Additionally, the cellular
omposition of bulk samples can be a confounding factor that affects the
nterpretation of results. To account for this, cell deconvolution methods
re used to adjust for the cellular composition. 

Most childhood asthma studies analyze samples from blood, nasal ep-
thelium, or sputum since those are readily accessible and non-invasive
ays to study the underlying mechanisms of asthma. Blood samples
rovide information on immune responses and systemic inflammation.
asal epithelial samples are useful for studying airway inflammation
nd epithelial function; some studies have suggested that nasal samples
an serve as a good surrogate for lower respiratory samples in the study
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f lung diseases. Sputum samples contain a mixture of mucus, saliva,
nd cells from the lower respiratory tract that provide a direct represen-
ation of the airway secretions and cellular components that are present
n the lungs. More invasive sampling methods such as bronchoalveolar
avage (BAL) 72 , 73 and endobronchial biopsy, 74 both of which require
ronchoscopy, have also been employed in asthma transcriptomic
esearch. During a BAL, saline is instilled through the bronchoscope
nto a lobe of the lung then collected via suctioning for analysis, while
ndobronchial biopsies involve taking small samples of tissue from the
irway lining. Detailed studies can be referenced in a review. 75 

h2/Th17 asthma subtypes 

Asthma is caused by diverse pathogenic mechanisms which con-
ribute to the variability in clinical presentation and treatment response.
h2 and Th17 immune pathways are important in the development and
rogression of asthma and are considered key endotypes of the disease.
ecently, transcriptomic analysis has been increasingly used to investi-
ate the biological mechanisms underlying the Th2 and Th17 endotypes
f asthma. This approach has yielded valuable insights into the gene
xpression patterns and signaling pathways involved in these immune
athways and has helped to identify potential therapeutic targets for
sthma treatment. 

Th2-driven inflammation is a type of immune response that is char-
cterized by the activation of Th2 cells and the production of cytokines
uch as interleukin IL-4, IL-5, and IL-13. 76 In 2006, Woodruff et al. 77 

rst defined the three Th2 gene markers, chloride channel, calcium-
ctivated, family member 1 ( CLCA1 ), serine peptidase inhibitor, clade
 (ovalbumin), member 2 ( SERPINB2 ), and periostin ( POSTN ), by us-

ng microarray from airway epithelial samples. The three genes are
ighly expressed in asthma compared to controls and are downregu-
ated by corticosteroid treatment. The presence of three Th2 markers
as confirmed by assessing 27 endobronchial biopsy samples. 78 The
h2-high and Th2-low subtypes exhibit contrasting features in relation
o eosinophilic inflammation, mucin composition, subepithelial fibrosis,
nd corticosteroid sensitivity. A similar gene expression pattern was also
ound by examination of sputum samples obtained from 104 participants
fflicted with moderate-to-severe asthma and 16 healthy volunteers. 79 

he Th2 endotype was identified in these studies, and it was established
hat it correlates with elevated eosinophil counts, fractional exhaled ni-
ric oxide (FeNO) levels, and IgE levels. 

Th17 cells are a distinctive subset of CD4+ T helper (Th) cells that
an induce neutrophilic inflammation by producing interleukin-17 (IL-
7), interleukin-22 (IL-22), and interleukin-6 (IL-6). 80 In 2008, McKin-
ey et al. 81 demonstrated the potential involvement of Th17 cells in
teroid-resistant asthma using a mouse model. The IL-17 pathway has
een associated with the expression of CXC chemokines, granulocyte
olony-stimulating factor (GCSF), and IL-6. IL-17A and IL-17F have
een shown to upregulate the expression of colony stimulating factor
 (CSF3), a hematopoietic factor that promotes neutrophil production,
nd the chemokines chemokine (C-X-C motif) ligand (CXCL) 1, CXCL2,
XCL3, and IL8, which attract neutrophils. These molecules were first
sed as a marker panel for Th17 cells. Additionally, a significant neg-
tive correlation between Th2 and Th17 gene expression has been es-
ablished. This reciprocal suppression was observed in bronchial epithe-
ial cells, where the Th2 signature transcripts were modestly suppressed
y IL-17A + TNF- 𝛼, and Th17 signature transcripts were suppressed by
L-13. It is noteworthy that Th2 and Th17 subtypes are mutually ex-
lusive in many studies, 73 , 82 , 83 but eosinophilic inflammation has been
etected in both Th2-high and Th17-high asthma. 83 

LC2 asthma subtypes 

A relatively new asthma endotype, known as the ILC2 (type 2 in-
ate lymphoid cells) asthma endotype, is garnering increasing attention
4

rom researchers. 84 Innate lymphoid cells (ILCs) generate numerous cy-
okines commonly associated with Th cells, yet they lack the cell surface
arkers linked to other immune cell lineages (referred to as lineage-
egative or Lin− ) and do not possess a T-cell receptor (TCR). In response
o allergic reactions, ILC2s rapidly produce a variety of type 2 cytokines
uch as IL-4, IL-5, IL-13, IL-9, and amphiregulin (Areg). They also en-
age in intercellular communication to regulate immune responses. In
he context of asthma, when activated by alarm cytokines released by
pithelial cells, ILC2s contribute to pulmonary inflammation by secret-
ng type 2 cytokines like IL-4, IL-5, and IL-13. 85 These cytokines fur-
her exacerbate asthma symptoms by enhancing smooth muscle contrac-
ion, mucus production, and the recruitment of inflammatory cells in the
ungs. 86 Currently, there are some challenges in the research related to
LC2. Unlike some other immune cells, ILC2s do not have widely rec-
gnized surface markers, making their identification and analysis rela-
ively challenging. Furthermore, although there has been some progress
n the study of ILC2s, there is relatively limited research in the field of
ranscriptomics. 

In summary, transcriptomics continues to evolve, and its integration
ith other omics disciplines holds promise for uncovering the molec-
lar mechanisms of asthma and advancing personalized medicine ap-
roaches. 

pigenomics 

Epigenomics is a field of study that explores the various chemi-
al modifications and molecular processes that influence gene expres-
ion and regulation. These modifications, known as epigenomic varia-
ions, have the ability to modulate gene expression without altering the
NA sequence itself. They are specific to particular cell types and tis-

ues and can respond to various environmental exposures. 87 Examples
f these modifications include DNA methylation and histone modifica-
ions. Epigenomics aims to understand how these modifications control
ene activity and play a crucial role in a wide range of biological pro-
esses, including development, aging, and environment-related asthma
athogenesis. 88 By deciphering the epigenetic landscape, researchers
an gain valuable insights into the mechanisms underlying gene reg-
lation and potentially uncover novel insights into the pathogenesis of
hildhood and adulthood asthma. 

DNA methylation is a fundamental epigenetic modification that in-
olves the addition of a methyl group to the cytosine at position 5 ′
n cytosine–phosphate–guanine (CpG) sites. 89 DNA methylation plays
 crucial role in gene regulation by influencing gene expression pat-
erns. Generally, high levels of DNA methylation in promoter regions
re associated with gene silencing, preventing the binding of transcrip-
ion factors and other regulatory proteins to the DNA. In contrast, lower
evels of DNA methylation, particularly in gene body regions, are asso-
iated with gene activation. 90 

DNA methylation is commonly assessed using DNA methylation
hips, such as the Infinium Human Methylation 450K beadchip, which
overs around 450,000 CpG sites, or the Infinium Methylation EPIC
eadchip, which extends the coverage to approximately 850,000
pG sites across the entire genome. 91 Bisulfite pyrosequencing is a
equencing-based technique commonly used to analyze DNA methyla-
ion patterns at single-nucleotide resolution. 92 Although bisulfite py-
osequencing provides high-resolution methylation data, it is a more
ostly approach compared to microarray-based technologies. Conse-
uently, the majority of epigenomics analyses have been performed us-
ng array-based methods due to their cost-effectiveness. 

In statistical analysis, the primary data format is the Beta-value,
hich represents the ratio of the methylated probe intensity to the
verall intensity (sum of methylated and unmethylated probe inten-
ities). Another commonly used data format is the M -value, calcu-
ated as the log2 ratio of the intensities of the methylated probe com-
ared to the unmethylated probe. The Beta-value method provides
 direct biological interpretation, as it represents the proportion of
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ethylation at a specific CpG site. On the other hand, the M -value
ethod is more statistically valid, particularly in differential and other

tatistical analyses, because it exhibits approximately homoscedastic
roperties. 93 

EWASs serve as a key analysis structure in the field of epigenomics. 94 

hese studies aim to identify associations between epigenetic varia-
ions and diseases or phenotypes of interest. Additionally, differential
NA methylation region analysis helps identify regions of the genome
here DNA methylation patterns differ significantly between different
roups or conditions. 95 These regions are referred to as differentially
ethylated regions (DMRs). DMRs often correspond to regulatory re-

ions, such as promoters or enhancers, and their differential methy-
ation can influence gene expression and cellular processes. Similarly,
eta-analysis among multiple studies is usually considered for consol-

dating findings. Popular statistical packages include Minfi, 96 limma, 67 

nd methylKit. 97 

As with genome studies, samples are usually from blood, airway, or
putum. Yang and Schwartz 98 conducted a study using blood samples
nd identified DMRs in genes such as IL13 , IL4 , and RUNX3 , which are
ell-established to be associated with asthma and atopy. Xu et al. 30 

dentified hypomethylated whole-blood DNA CpG sites on genes in-
olved in activating eosinophils and cytotoxic T cells. In a meta-analysis
f eight cohorts of newborns, Reese et al. 99 identified 9 specific CpG
ites and 35 genomic regions that have implications for the develop-
ent of asthma. Hoang et al. 100 found hundreds of differently methy-

ated CpG sites in blood among adults with non-atopic or atopic asthma
ompared to those without asthma or atopy. Blood methylation pat-
erns also proved to be a useful proxy for studying atopic asthma in
asal tissue, with practical research implications. Herrera-Luis et al. 101 

ound consistent DNA methylation patterns in the blood associated with
ung function in pediatric asthma among Mexican Americans and Puerto
icans. These patterns revealed population-specific associations shared
mong different Latino subgroups. Recto et al. 102 identified 490 sta-
istically significant differentially methylated CpGs associated with IgE
n adult blood samples. Thürmann et al. 103 found 158 DMRs in chil-
ren with asthma compared to controls, and 37% of these DMRs were
ssociated with eosinophil content. Their study unveiled a global hy-
omethylation pattern predominantly impacting enhancer regions re-
ponsible for regulating immune genes such as IL4 , IL5RA , and EPX .
his highlights the dysregulation of enhancer regions as a distinctive
eature of childhood asthma. In nasal epithelial tissue, an EWAS dis-
overed several DMRs associated with asthma and atopy-related genes
ncluding ALOX15 , CAPN14 , HNMT , and POSTN using nasal brush-
ngs. 104 In a nasal epithelial EWAS meta-analysis, Yan et al. 32 identi-
ed 12 genes that exhibited methylated CpG sites associated with ex-
osure to violence and chronic stress. Furthermore, these genes were
inked to childhood atopic asthma. An EWAS of Puerto Rico children
ith atopic asthma identified differentially methylated genes relevant

o epithelial barrier function, airway epithelial integrity, and immune
egulation. 105 

Future directions include single-cell epigenomics, multi-omics inte-
ration, environmental epigenomics, and epigenetic-based therapies, of-
ering promising insights into asthma’s molecular mechanisms and per-
onalized treatments. 

icrobiome and metagenomics 

While asthma has traditionally been considered primarily driven by
mmune responses to allergens and irritants, emerging evidence suggests
hat the respiratory microbiome may play a crucial role in asthma patho-
enesis and exacerbation. 106–108 The microbiome encompasses a diverse
ommunity of microorganisms residing within the human body, includ-
ng bacteria, viruses, and fungi. Metagenomics, defined as the study
f genetic material extracted directly from environmental samples, in-
olves a comprehensive analysis of this genetic material, enabling the
dentification and characterization of various microorganisms without
5

he need for cultivation. 109 , 110 Researchers have increasingly recog-
ized the potential influence of the microbiome on the development,
rogression, and exacerbation of the disease. Alterations in the compo-
ition and diversity of the airway microbiota have been linked to airway
nflammation and immune dysregulation observed in individuals with
sthma. 106 , 111–114 

Common quantification methods include 16S, 18S, and Whole
etagenome Shotgun Sequencing (WMGS). 16S sequencing targets a

onserved region of the 16S ribosomal RNA gene, a genetic marker
ound in bacteria and archaea. 115 On the other hand, 18S targets the
8S ribosomal RNA gene, commonly found in eukaryotic microorgan-
sms like fungi and protists, enabling researchers to assess the diver-
ity of these eukaryotic organisms. 116 WMGS involves sequencing all
he genetic material present in a sample, including both microbial and
ost DNA, providing a comprehensive view of the genetic diversity
nd functional potential of all microorganisms present. Most asthma
tudies have focused on the gut and respiratory tract samples, in-
luding BAL, sputum, bronchial biopsies, or nasal swabs/lavage. Ex-
ensive research has demonstrated that an imbalance in the gut mi-
robiota, known as dysbiosis, significantly enhances susceptibility to
sthma. This phenomenon, termed the “gut–lung axis, ” underscores
he pivotal role of the gut microbiome in the realm of respiratory
ilments. 117 

These microbiome studies, challenging traditional views that fo-
used solely on immune responses, hold the potential to uncover novel
iomarkers, therapeutic targets, and interventions that could better
anage and treat asthma. Further research is needed to unravel the in-

ricate interactions between the respiratory microbiome, host immune
esponses, and the pathogenesis of asthma, ultimately leading to im-
roved diagnostic and therapeutic strategies for this complex respiratory
ondition. 

ntegrative omics analysis 

The integration of multi-omics sequencing data provides a compre-
ensive framework for understanding the molecular regulatory mech-
nisms of asthma. As is shown in Fig. 2 , starting from the identifica-
ion of genetic variations like SNPs, we delve deeper into their func-
ional implications. Expression quantitative trait loci (eQTL) has been
eveloped to explore the associations between genomics and transcrip-
omics, 29 while methylation quantitative trait loci (mQTL) associates
hese SNPs to specific methylation patterns. One particularly reveal-
ng approach within this context is expression quantitative trait methy-
ation (eQTM), which associates methylation patterns with transcript
evels. 

In a previous study we conducted, eQTL analysis was employed to
xamine genomic and transcriptomic associations in whole blood from
21 Puerto Rican children. This study led to the discovery of several
sthma-related genes influenced by specific genetic variations, such as
CGB3A1 , IPO8 , CHURC1 , and FAM118A . 118 By connecting genomics to
ranscriptomics, researchers can gain deeper insights into how genetic
ariations influence gene expression, potentially unraveling the molecu-
ar mechanisms driving the complex disease process of asthma. 119 Simi-
arly, mQTL analysis can be used to identify genetic loci associated with
ite-specific DNA methylation of CpGs. 120 

Parallelly, eQTM studies can be used to explore the distant epige-
etic regulation of gene expression in asthma. 121 eQTM refers to the
ssociation between DNA methylation patterns and gene expression lev-
ls. It aims to identify DNA methylation sites (often CpG sites) that are
orrelated with gene expression levels and provide insights into the reg-
latory mechanisms underlying gene expression directly. There are two
ain types of eQTM analysis, defined by the gene–CpGs distance. Cis -

QTM refers to the association between DNA methylation at genetic loci
ear a gene. It focuses on DNA methylation sites within the vicinity of
he target gene, typically within a certain genomic distance, such as the
romoter region or nearby cis -regulatory elements. In contrast, trans -
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Fig. 2. Multi-omics integration enables a comprehensive understanding of asthma. Figure was created with Biorender.com. eQTL: Expression quantitative trait loci; 

eQTM: Expression quantitative trait methylation; EWAS: Epigenome-wide association study; GWAS: Genome-wide association study; mQTL: Methylation quantitative 

trait loci; SNP: Single-nucleotide polymorphism; TWAS: Transcriptome-wide association study. 
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QTM examines the relationship between DNA methylation at genetic
oci distant from a gene and the expression of that gene. Trans -eQTM
nalysis identifies associations between DNA methylation and gene ex-
ression that occur across chromosomes. 

Kim et al. 121 utilized nasal epithelium samples and identified a to-
al of 16,867 significant pairs of methylation-gene expression associ-
tions. Notably, the majority of these associations were characterized
s trans -eQTM signals. They also identified 5934 paths that represent
otential pathways connecting the effects of methylation markers on
ene expression to the development of atopic asthma through mediation
nalysis. 

To further integrate multiple layers of information, colocalization
tudies can be utilized to integrate multi-omics data, such as combining
WAS with eQTL and mQTL, to investigate the regulatory effects of
sthma risk variants. 122 These approaches hold promise for providing
ew insights into the regulatory mechanisms of asthma. 

ummary and prospects 

As the field of asthma omics research continues to advance rapidly,
here are several promising directions for future exploration. To our
nowledge, most of the current asthma omics research is based on bulk
equencing, such as bulk RNA-seq, which detects the average expres-
ion level of genes at the tissue level, thereby masking cellular het-
rogeneity. Single-cell sequencing offers the possibility of identifying
olecular variances exclusively associated with specific cell types, en-

bling the detection of rare cell subsets and key cellular processes in-
olved in disease development, which is crucial for studying the mecha-
isms of asthma. 123 For example, Tibbitt et al. 124 conducted single-cell
NA sequencing (scRNA-seq) on Th cells isolated from BAL samples in
ouse models of allergic airway inflammation and identified previously
ndescribed Th cell subpopulation. Liu et al 125 conducted scRNA-seq
nalysis on mouse lung immune cells and identified Creb5 and CD11b-
Cs as regulatory factors in asthma exacerbation. These studies demon-

trate the successful application of single-cell sequencing in asthma
esearch. 

Moreover, recent developments in single-cell omics technologies
uch as CITE-seq (cellular indexing of transcriptomes and epitopes
y sequencing) 126 and DOGMA-seq, an adaptation of CITE-seq for
easuring gene activity across the central dogma of gene regulation, 127 

nable multi-modalities measurements for the same cell at the genome,
ranscriptome, or epigenome scale, which are anticipated to provide
nprecedented insight and resolution for asthma research. In addition,
6

he emerging spatial transcriptomics technology, capable of providing
hole transcriptome data with spatial information, offers opportunities

or investigating the spatial location of asthma immune cells in the
uture. 128 , 129 

Table 1 presents a curated list of publicly available genomics datasets
elated to asthma. These datasets serve as vital foundations for sci-
ntists, clinicians, and researchers worldwide, offering valuable infor-
ation for us to deepen our understanding of this chronic respiratory

ondition. Researchers can leverage these resources to identify novel
iomarkers, unveil intricate disease mechanisms, and develop person-
lized treatment strategies. Although advancements in high-throughput
equencing technologies have generated increasingly high-dimensional
ulti-omics data, the integration of multi-omics analyses in asthma re-

earch remains in the primary stage. The future challenge will involve
nalyzing and integrating these multi-omics datasets, requiring more
fforts to develop various multi-omics integration analysis methods, in-
luding machine learning and deep learning approaches, to gain deeper
nd more comprehensive insights into the molecular processes underly-
ng asthma pathogenesis and progression. 75 , 130 

Omics has immense potential to become a precision medicine tool
sed in the clinical care of individuals with asthma. Despite the abun-
ance of knowledge derived from asthma omics research, asthma omics
pproaches are not yet routinely employed in the clinical setting. 75 , 131 

or omics testing to translate to clinical practice, ideally, testing should
e inexpensive, non-invasive, readily available, and indicated for spe-
ific clinical questions (e.g., for asthma diagnosis, phenotyping, moni-
oring, or therapeutic decision-making), and results should be simple to
nterpret in the context of the clinical question and should impact medi-
al decision-making. Because asthma control fluctuates in an individual
atient, short wait time for results would also greatly enhance the feasi-
ility of employing omics testing for disease monitoring or therapeutic
ecision-making. High sensitivity, specificity, accuracy, and precision
re also ideal qualities of tests routinely employed in clinical practice.
urther research will be needed to establish which specific omics ap-
roaches can and should be applied in the routine clinical care of indi-
iduals with asthma. 

In sum, our understanding of asthma, a highly complex and preva-
ent disease, has been greatly enhanced through omics techniques ex-
mining the genome, transcriptome, and epigenome. Ongoing omics
esearch, including studies that utilize emerging technologies such
s scRNA and multi-omics approaches, has immense potential to
urther elucidate valuable information on asthma pathogenesis and
rogression. 
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Table 1 

Public available genomics datasets of asthma. 

Study Data type Sample Sample Size GSE/EGA ID 

Genes-environments & Admixture in Latino Americans (GALAII) Gene expression (RNA-seq) Nasal brushes 695 GSE152004 

University of Chicago Asthma & COPD Center Gene expression (RNA-seq) Airway epithelial cells 

(AECs) 

85 GSE85568 

Prevention and Incidence of Asthma and Mite Allergy (PIAMA) Gene expression (RNA-seq) Nasal brushes 186 EGAD00001008767 

Chronic Rhinosinusitis Integrative Studies Program (CRISP) Gene expression (RNA-seq) AECs 190 GSE172367 

Severe Asthma Research Program (SARP) Gene expression (Microarray) Bronchial biopsy 108 GSE43696 

Mechanistic Indicators of Asthma (MICA) Gene expression (Microarray) Peripheral blood 131 GSE35571 

AllerGen Clinical Investigator Collaborative (CIC) Gene expression (Microarray) Peripheral blood 28 GSE40240 

GSE41649 Gene expression (Microarray) Bronchial biopsy 8 GSE41649 

The Nationwide Study on Problematic Severe Asthma in Sweden Gene expression (Microarray) White blood cells 54 GSE27011 

GSE18965 Gene expression (Microarray) AECs 112 GSE18965 

GSE16032 Gene expression (Microarray) Peripheral blood 

mononuclear cells 

(PBMCs) 

50 GSE16032 

Mechanisms of Acute Viral Respiratory Infection in Children 

(MAVRIC) 

Gene expression (Microarray) Nasal swab specimen 106 GSE103166 

The Unbiased Biomarkers for the Prediction of Respiratory Disease 

Outcomes (U-BIOPRED) 

Gene expression (Microarray) Blood 216 GSE123750 

Inner City Asthma Consortium (ICAC) Gene expression (Microarray) PBMCs 194 GSE40736 

Swedish Abbreviation for Children, Allergy, Milieu, Stockholm, 

Epidemiology (BAMSE) 

Gene expression (Microarray) Whole blood 256 GSE141623 

INfancia y Medio Ambiente (Environment and Childhood) (INMA) Gene expression (Microarray) Whole blood 201 GSE141631 

Inner City Asthma Consortium (ICAC) DNA methylation (Microarray) PBMCs 194 GSE40736 

University of Chicago Asthma & COPD Center DNA methylation (Microarray) AECs 115 GSE85568 

GSE109446 DNA methylation (Microarray) Nasal epithelial cells 

(NECs) 

29 GSE109446 

Chronic Rhinosinusitis Integrative Studies Program (CRISP) DNA methylation (Microarray) AECs 206 GSE172365 

Genes-environments & Admixture in Latino Americans (GALAII) DNA methylation (Microarray) Whole blood 573 GSE77716 

Prevention and Incidence of Asthma and Mite Allergy (PIAMA) DNA methylation (Microarray) Nasal brushes 696 EGAD00010002263 

COPD: Chronic obstructive pulmonary disease; RNA-seq: RNA-sequencing. 
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