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Abstract

The classical Hodgkin-Huxley (HH) model neglects the time-dependence of ion concentrations in spiking dynamics. The
dynamics is therefore limited to a time scale of milliseconds, which is determined by the membrane capacitance multiplied
by the resistance of the ion channels, and by the gating time constants. We study slow dynamics in an extended HH
framework that includes time-dependent ion concentrations, pumps, and buffers. Fluxes across the neuronal membrane
change intra- and extracellular ion concentrations, whereby the latter can also change through contact to reservoirs in the
surroundings. Ion gain and loss of the system is identified as a bifurcation parameter whose essential importance was not
realized in earlier studies. Our systematic study of the bifurcation structure and thus the phase space structure helps to
understand activation and inhibition of a new excitability in ion homeostasis which emerges in such extended models. Also
modulatory mechanisms that regulate the spiking rate can be explained by bifurcations. The dynamics on three distinct
slow times scales is determined by the cell volume-to-surface-area ratio and the membrane permeability (seconds), the
buffer time constants (tens of seconds), and the slower backward buffering (minutes to hours). The modulatory dynamics
and the newly emerging excitable dynamics corresponds to pathological conditions observed in epileptiform burst activity,
and spreading depression in migraine aura and stroke, respectively.
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Introduction

In this paper we study ion dynamics in ion-based neuron

models. In comparison to classical HH type membrane models this

introduces dynamics on much slower time scales. While spiking

activity is in the order of milliseconds, the time scales of ion

dynamics range from seconds to minutes and even hours

depending on the process (transmembrane fluxes, glial buffering,

backward buffering). The slow dynamics leads to new phenomena.

Slow burst modulation as in seizure-like activity (SLA) emerges

from moderate changes in the ion concentrations. Phase space

excursions with large changes in the ionic variables establish a new

type of ionic excitability as observed in cortical spreading

depression (SD) during stroke and in migraine with aura [1,2].

Such newly emerging dynamics can be understood from the phase

space structure of the ion-based models.

Mathematical models of neural ion dynamics can be divided

into two classes. On the one hand the discovery of SD by Leão in

1944 [3]—a severe perturbation of neural ion homeostasis

associated with huge changes in the potassium, sodium and

chloride ion concentrations in the extracellular space (ECS) [4]

that spreads through the tissue—has attracted many modelling

approaches dealing with the propagation of large ion concentra-

tion variations in tissue. In 1963 Grafstein described spatial

potassium dynamics during SD in a reaction-diffusion framework

with a phenomenological cubic rate function for the local

potassium release by the neurons [5]. Reshodko and Burés

proposed an even simpler cellular automata model for SD

propagation [6]. In 1978 Tuckwell and Miura developed a SD

model that is amenable to a more direct interpretation in terms of

biophysical quantities [7]. It contains ion movements across the

neural membrane and ion diffusion in the ECS. In more recent

studies Dahlem et al. suggested certain refinements of the spatial

coupling mechanisms, e.g., the inclusion of nonlocal and time-

delayed feedback terms to explain very specific patterns of SD

propagation in pathological situations like migraine with aura and

stroke [8,9].

On the other hand single cell ion dynamics were studied in HH-

like membrane models that were extended to include ion changes

in the intracellular space (ICS) and the ECS since the 1980s. While

the first extensions of this type were developed for cardiac cells by

DiFranceso and Noble [10,11], the first cortical model in this spirit

was developed by Kager, Wadman and Somjen (KWS) [12] only

in 2000. Their model contains abundant physiological detail in
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terms of morphology and ion channels, and was in fact designed

for seizure-like activity (SLA) and local SD dynamics. It succeeded

spectacularly in reproducing the experimentally known phenom-

enology. An even more detailed model was proposed by Shapiro at

the same time [13] who—like Yao, Huang and Miura for KWS

[14]—also investigated SD propagation with a spatial continuum

ansatz. Another model of SD investigated Ca2z transmission

along an astrocyte lane [15], where glutamate released from

neurons that acts on metabotropic receptors of astrocytes

determines the characteristics.

HH-like models of intermediate complexity were developed by

Fröhlich, Bazhenov et al. to describe potassium dynamics during

epileptiform bursting [16–18]. The simplest HH-like model of

cortical ion dynamics was developed by Barreto, Cressman et al.

[19–21] who describe the effect of ion dynamics in epileptiform

bursting modulation in a single compartment model that is based

on the classical HH ion channels. Interestingly, in none of these

models, which are considerably simpler than, for example,

Shapiro’s model and the KWS model, extreme ion dynamics like

in SD or stroke was studied. To our knowledge the only exception

is a study by Zandt et al. who describe in the framework of

Cressman et al. what they call the ‘‘wave of death’’ that follows the

anoxic depolarization after decapitation as measured in experi-

ments with rats [22].

In this study we systematically analyze the entire phase space of

such local ion-based neuron models containing the full dynamical

repertoire ranging from fast action potentials to slow changes in

ion concentrations. We start with the simplest possible model for

SD dynamics—a variation of the Barreto, Cressman et al.

model—and reproduce most of the results for the KWS model.

Our analysis covers SLA and SD.

Three situations should be distinguished: isolated, closed, and

open systems, which is reminiscent of a thermodynamic viewpoint

(see Fig. 1). An isolated system without transfer of metabolic

energy for the ATPase-driven Naz=Kz pumps will attain its

thermodynamic equilibrium, i.e., its Donnan equilibrium. A closed

neuron system with functioning pumps but without ion regulation by

glial cells or the vascular system is generally bistable [23]. There is a

stable state of free energy-starvation (FES) that is close to the Donnan

equilibrium and coexists with the physiological resting state. The ion

pumps cannot recover the physiological resting state from FES.

We will now develop a novel phase space perspective on the

dynamics in open neuron systems. We describe the first slow-fast

decomposition of local SD dynamics, in which the ion gain and

loss through external reservoirs is identified as the crucial quantity

whose essential importance was not realized in earlier studies.

Treating this slow variable as a parameter allows us to derive

thresholds for SD ignition and the abrupt, subsequent repolari-

zation of the membrane in a bifurcation analysis for the first time.

Moreover we analyze oscillatory dynamics in open systems and

thereby relate SLA and SD to different so-called torus bifurcations.

This categorizes SLA and SD as genuinely different though they

are ‘sibling’ dynamics as they both bifurcate from the same

‘parent’ limit cycle in a supercritical and subcritical manner,

respectively, which also explains the all-or-none nature of SD. In

contrast, SLA is gradual.

Model

Local ion dynamics of neurons has been studied in models of

various complexity. Reduced model types consist of an electrically

excitable membrane containing gated ion channels and ion

concentrations in an intra- and an extracellular compartment

[19–22]. Transmembrane currents must be converted to ion fluxes

that lead to changes in the compartmental ion concentrations.

Such an extension requires ion pumps to prevent the differences

between ICS and ECS ion concentrations that are present under

physiological resting conditions from depleting.

We consider a model containing sodium, potassium and

chloride ions. The simulation code is available from ModelDB

[24], the accession number is 167714. The HH-like membrane

dynamics is described by the membrane potential V and the

potassium activation variable n. The sodium activation m is

approximated adiabatically and the sodium inactivation h follows

from an assumed functional relation between h and n. The ICS

and ECS concentrations of sodium, potassium and chloride ions

are denoted by Nai=e, Ki=e and Cli=e, respectively.

In a closed system mass conservation holds, i.e.,

ioni
:vizione

:ve~const: ð1Þ

with ion [ fNaz, Kz, Cl{g and the ICS/ECS volumes vi=e.

Together with the electroneutrality of ion fluxes across the

membrane, i.e.,

Qi : ~KizNai{Cli~const: , ð2Þ

only two of the six ion concentrations are independent dynamical

variables. The full list of rate equations then reads

dV

dt
~{

1

Cm

(INazzIKzzICl{zIp) , ð3Þ

dn

dt
~w

n?{n

tn

, ð4Þ

dKi

dt
~{

c

vi

(IKz{2Ip) , ð5Þ

Author Summary

The classical theory by Hodgkin and Huxley (HH) describes
nerve impulses (spikes) that manifest communication
between nerve cells. The underlying mechanism of a
single spike is excitability, i.e., a small disturbance triggers
a large excursion that reverts without further input to the
original state. A spike lasts a 1/1000 second and, even
though during this period ions are exchanged across the
nerve cell membrane, the change in the corresponding ion
concentrations can become significant only in series of
such spikes. Under certain pathological conditions, chang-
es in ion concentrations become massive and last minutes
to hours before they recover. This establishes a new type
of excitability underlying communication failure between
nerve cells during migraine and stroke. To clarify this
mechanism and to recognize the relevant factors that
determine the slow time scales of ion changes, we use an
extended version of the classical HH theory. We identify
one variable of particular importance, the potassium ion
gain or loss through some reservoirs provided by the nerve
cell surroundings. We suggest to describe the new
excitability as a sequence of two fast processes with
constant total ion content separated by two slow
processes of ion clearance (loss) and re-uptake (gain).

Slow Ion Dynamics in Hodgkin-Huxley Model
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dCli

dt
~z

c

vi

ICl{ : ð6Þ

They are complemented by six constraints on gating variables

and ion concentrations:

Nai~Na0
i z(K0

i {Ki){(Cl0
i {Cli) , ð7Þ

Nae~Na0
ez

vi

ve

(Na0
i {Nai) , ð8Þ

Ke~K0
e z

vi

ve

(K0
i {Ki) , ð9Þ

Cle~Cl0
e z

vi

ve

(Cl0
i {Cli) , ð10Þ

m~m? , ð11Þ

h~1{
1

1z exp ({6:5(n{0:35))
: ð12Þ

Superscript 0 indicates ion concentrations in the physiological

resting state. Unless otherwise stated K0
i and Cl0

i are used as initial

conditions in the simulations. Constrained ion concentrations (Eqs.

(7)–(10)) then also take their physiological resting state values.

These ion concentrations, the membrane capacitance Cm, the gating

time scale parameter w, the conversion factor c from currents to ion

fluxes, and the ICS and ECS volumes vi=e are listed in Tab. 1. The

conversion factor c is an expression of the membrane surface area

Am and Faraday’s constant F (both given in Tab. 1, too):

c~
Am

F
ð13Þ

We remark that all parameters in Tab. 1 are given in typical units of

the respective quantities. The numerical values in these units can

directly be used for simulations. Time is then given in msec, the

membrane potential in mV and ion concentrations in mM.

The electroneutrality of the total transmembrane ion flux as

expressed in Eqs. (2) and (7) is a consequence of the large time

scale separation between the membrane dynamics and the ion

dynamics (cf. Ref. [23] and the below discussion of time scales).

This constraint is the reason why the thermodynamic equilibrium

of the system must be understood as a Donnan equilibrium. This is

the electrochemical equilibrium of a system with a membrane that

is impermeable to some charged particles, which can be reached in

an electroneutral fashion, i.e., without separating charges. We do

not include this impermeant matter explicitly, because it does not

influence the dynamics as long as osmosis is not considered. One

Figure 1. Neural tissue as a composite system with walls and surroundings. The ion–based model describes a system, comprising
extracellular and intracellular compartments separated by a membrane, and the surroundings of the system. The latter provides an energy source
and, if the system is not closed, also an ion reservoir.
doi:10.1371/journal.pcbi.1003941.g001
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should however keep in mind that the initial ion concentrations in

Tab. 1 do not imply zero charge in the ICS or ECS and hence

impermeant matter to compensate for this must be present.

The gating functions n?, tn and m? are given by

n?~
an

anzbn

, ð14Þ

tn~
1

w(anzbn)
, ð15Þ

m?~
am

amzbm

: ð16Þ

Here n? and m? are the asymptotic values and tn is potassium

activation time scale. They are expressed in terms of the Hodgkin-

Huxley exponential functions [19–21]

am~
0:1(Vz30)

1{ exp ({(Vz30)=10)
, ð17Þ

bm~4 exp ({(Vz55)=18) , ð18Þ

an~
0:01(Vz34)

1{ exp ({(Vz34)=10)
, ð19Þ

bn~0:125 exp ({(Vz44)=80) : ð20Þ

The three ion currents are

INaz~(gl
Nazg

g
Nam3h):(V{ENa) , ð21Þ

IKz~(gl
Kzg

g
K n4):(V{EK ) , ð22Þ

ICl{~gl
Cl
:(V{ECl) : ð23Þ

Table 1. Parameters for ion–based model.

Name Value & unit Description

Cm 1 mF/cm2 membrane capacitance

w 3/msec gating time scale parameter

gl
Na 0.0175 mS/cm2 Naz leak cond.

g
g
Na 100 mS/cm2 max. gated Naz cond.

gl
K 0.05 mS/cm2 Kz leak cond.

g
g
K 40 mS/cm2 max. gated Kz cond.

gl
Cl 0.02 mS/cm2 Cl{ leak cond.

Na0
i

25.23 mM initial ICS Naz conc.

Na0
e

125.31 mM initial ECS Naz conc.

K0
i

129.26 mM initial ICS Kz conc.

K0
e

4 mM initial ECS Kz conc.

Cl0
i

9.9 mM initial ICS Cl{ conc.

Cl0
e

123.27 mM initial ECS Cl{ conc.

E0
Na

39.74 mV initial Naz Nernst potential

E0
K

292.94 mV initial Kz Nernst potential

E0
Cl

268 mV initial Cl{ Nernst potential

vi 2,160 mm3 ICS volume

ve 720 mm3 ECS volume

F 96485 C/mol Faraday’s constant

Am 922 mm2 membrane surface area

c
9.556e–2 mm3 mM

msec

cm2

mA

conversion factor

r 6.8 mA/cm2 max. pump current

�kk1 5e–5/sec=(mM) buffering rate

k1 5e–5/sec backward buffering rate

l 3e–2/sec diffusive coupling strength

Kbath 4 mM Kz conc. of extracell. bath

B0 500 mM initial buffer conc.

doi:10.1371/journal.pcbi.1003941.t001
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They are given in terms of the leak and gated conductances g
l,g
ion

(with ion[fNaz, Kz, Cl{g) and the Nernst potentials Eion which

are computed from the (dynamical) ion concentrations ioni=e:

Eion~
26:64

zion

ln (ione=ioni) , ð24Þ

zion denotes the valence of the particular ion species.

The pump current modelling the ATPase-driven exchange of

intracellular sodium with extracellular potassium at a 3=2-ratio is

given by

Ip(Nai,Ke)~r(1z exp (
25{Nai

3
)){1

(1z exp (5:5{Ke)){1 ,

ð25Þ

where r is the maximal pump rate [21]. The pump current

increases with Nai and Ke. The values for the conductances and

pump rate are also given in Tab. 1. Let us remark that in

comparisons with Ref. [23], we have mildly increased the maximal

pump rate and decreased the chloride conductance to obtain a SD

threshold in agreement with experiments (see Sect. Results).

Eqs. (3)–(12) describe a closed system in which ion pumps are

the only mechanism maintaining ion homeostasis and in which

mass conservation holds for each ion species. A remark on

terminology is due at this point: a ‘closed’ system refers exclusively

to the conservation of the ion species that we model. We do not

directly model other mass transfer that occurs in real neural

systems. Yet it is indirectly included. The ion pumps use energy

released by hydrolysis of ATP, a molecule whose components

(glucose and oxygen or lactate) therefore have to pass the system

boundaries. In thermodynamics, it is customary to call systems

that exchange energy but not matter with their environment

closed. Since ATP is in this framework only considered as an

energy source, we can describe the system as closed, if ions cannot

be transferred across its boundaries.

As mentioned above the closed system is bistable. Super-

threshold stimulations cause a transition from physiological resting

conditions to FES. To resolve this and change the behaviour to

local SD dynamics it is necessary to include further regulation

mechanisms [23]. Since SD is in particular characterized by an

extreme elevation of potassium in the ECS we will only discuss

potassium regulation.

If ECS potassium ions are subject to a regulation mechanism

which is independent of the membrane dynamics, then the

symmetry between ICS and ECS potassium dynamics is broken

and Eq. (9) for the potassium conservation does not hold. Let us

represent changes of the potassium content of the system by a

variable ~KKe which is defined by the following relation:

Ke~K0
e z

vi

ve

(K0
i {Ki)z ~KKe ð26Þ

Changes of the potassium content, i.e., changes of ~KKe, can be of

different physiological origin. If glial buffering is at work the

potassium content will be reduced by the amount of buffered

potassium Kb. An initial potassium elevation DK0
e simply leads to

an accordingly increased ~KKe:

~KKe~DK0
e {Kb : ð27Þ

For the coupling to an extracellular potassium bath or to the

vasculature ~KKe is a measure for the amount of potassium that

has diffused into (positive ~KKe) or out of (negative ~KKe) the

system.

We are going to discuss two regulation schemes—coupling to an

extracellular bath and glial buffering. They could be implemented

simultaneously, but for our purpose it will suffice to apply only one

scheme at a time. In the second subsection of Sect. Results, the

dynamics of ~KKe is given by glial buffering, while in the third

subsection we will discuss the oscillatory regimes one finds for bath

coupling with elevated bath concentrations. To implement glial

buffering we assume a phenomenological chemical reaction of the

following type [12,25]:

KezB'
k2

k1

Kb ð28Þ

The buffer concentration is denoted by B. We are using the buffer

model from Ref. [12] in which the potassium-dependent buffering

rate k2 is given as

k2~
�kk1

1z exp ({(Ke{15)=1:09)
: ð29Þ

The parameter �kk1 is normally assumed to have the same

numerical value as the constant backward buffering rate k1 which

is hence an overall parameter for the buffering strength. However,

the parameters should be denoted differently as they have different

units (cf. Tab. 1). This chemical reaction scheme together with the

mass conservation constraint

B0~KbzB , ð30Þ

where B0 is the initial buffer concentration, leads to the following

differential equation for Kb:

dKb

dt
~k2Ke(B0{Kb){k1Kb ð31Þ

Eq. (27) the implies the following rate equation for ~KKe

d ~KKe

dt
~{k2Ke(B0{Kb)zk1Kb ð32Þ

where Kb and Ke are given by Eqs. (27) and (26), respectively.

To model the coupling to a potassium bath one normally

includes an explicit rate equation for the ECS potassium

concentration

dKe

dt
~{

vi

ve

dKi

dt
zJdiff , ð33Þ

where the diffusive coupling flux

Jdiff ~l(Kbath{Ke) ð34Þ

is defined by its coupling strength l and the potassium bath

concentration Kbath. Eq. (26) implies that Eq. (33) can be rewritten

in terms of ~KKe as follows:

d ~KKe

dt
~Jdiff ð35Þ

Slow Ion Dynamics in Hodgkin-Huxley Model

PLOS Computational Biology | www.ploscompbiol.org 5 December 2014 | Volume 10 | Issue 12 | e1003941



Note that we have chosen to formulate ion regulation in terms of
~KKe rather than Ke which would be completely equivalent. This is

crucial, because the dynamics of ~KKe happens on a time scale that is

only defined by the buffering or the diffusive process, while Ke

dynamics involves transmembrane fluxes and reservoir coupling

dynamics at different time scales (cf. the last paragraph of this

section). This can be seen from Eq. (33).

Both regulation schemes—glial buffering given by Eq. (32) and

coupling to a bath with a physiological bath concentration as in

Eq. (35)—can be used to change the system dynamics from

bistable to ionically excitable, i.e., excitable with large excursions

in the ionic variables. Like all other system parameters the

regulation parameters k1 and l are given in Tab. 1. They have

been adjusted so that the duration of the depolarized phase is in

agreement with experimental data on spreading depression.

Note that the parameters we have chosen are up to almost one

order of magnitude lower than intact brain values like the ones

used in Refs. [12,25–27]. While this does not affect the general

time scale separation between glial or vascular ion regulation and

ion fluxes across the cellular membrane, the duration of SD

depends crucially on these parameters. However, during SD

oxygen deprivation will weaken glial buffering, and the swelling of

glial cells and blood vessel constriction will restrict diffusion to the

vasculature. Such processes can be included to ion-based neuron

models and make ion regulation during SD much slower [12,25–27].

For our purpose it is however sufficient to assume smaller values

from the beginning. We remark that the ion regulation schemes in

our model only refer to vascular coupling and glial buffering.

Lateral ion movement between the ECS of nearby neurons is a

different diffusive process that determines the velocity of a

travelling SD wave in tissue. This is not described in our

framework. In the following section we will demonstrate in detail

how ~KKe can be understood as the inhibitory variable of this

excitation process.

The above presented model is indeed the simplest ion-based

neuron model that exhibits local SD dynamics. Model simplicity is

an appealing feature in its own right, but one might doubt the

physiological relevance of such a reduced model. Our hypothesis is

that it captures very general dynamical features of neuronal ion

dynamics, and to confirm this we will compare the results obtained

with the reduced model to the physiologically much more detailed

KWS model [12]. This detailed model contains five different gated

ion channels (transient and persistent sodium, delayed rectifier and

transient potassium, and NMDA receptor gated currents) and has

been used intensively to study SD and SLA. In fact, one

modification is required so that we can replicate the results

obtained from the reduced model. The KWS model contains an

unphysical so-called ‘fixed leak’ current

Ileak, f ~gleak, f
:(Vz70) ð36Þ

that has a constant reversal potential of {70 mV and no

associated ion species. This current only enters the rate equation

for the membrane potential V .

The effect on the model dynamics is dramatic. To see this note

that the electroneutrality constraint Eq. (8) reflects a model

degeneracy

Cm
_VV~

vi

c
( _KKiz _NNai{ _CCli) ð37Þ

that occurs when Nai is modelled explicitly with Nai~

{c=vi(INazz3Ip) (for details see Ref. [23]). With a fixed leak

current Eq. (37) becomes

Cm
_VV~

vi

c
( _KKiz _NNai){Ileak, f , ð38Þ

which implies that V~{70 mV is a necessary fixed point

condition for the system.

In other words, the type of bistability with a second depolarized

fixed point that we normally find in closed systems is ruled out by

this unphysical current. If we, however, replace it with a chloride

leak current as in our model (cf. Eqs. (6) and (23)), i.e., a current

with a dynamically adjusting reversal potential by virtue of Eq.

(24), we find the same type of bistability for the closed system and

monostability for the system that is buffered or coupled to a

potassium bath. The morphological parameters (compartmental

volumes vi=e and membrane surface area Am) are the same as for

the reduced model.

In fact in Ref. [14] the KWS model was used without additional

ion regulation for a reaction-diffusion study of SD, and the only

recovery mechanism of the local system seems to be this

unphysical current. Theoretically SD could be a travelling wave

in a reaction-diffusion system with bistable local dynamics, but

unpublished results show that the propagation properties in the

bistable system are dramatically different from standard SD

dynamics with wave fronts and backs travelling at different

velocities. We hence suppose that a local potassium clearing

mechanism is crucially involved in SD.

We conclude this section with a discussion of the time scales of

the model. To this end, it is helpful to keep in mind that the

phenomenon of excitability requires a separation of time scales.

We have electrical and ionic excitability and these dynamics

themselves are separated by no fewer than three orders of magnitude.

Dynamics of V happens on a scale that is faster than

milliseconds. This follows from the gating time scale tn which is

given explicitly in Eq. (15) and the time scale of tV of V which can

be computed from the membrane capacitance Cm (given in

Tab. 1) and the resistance Rm of the ion channels (for details see

Ref. [28]):

tV ~CmRm ð39Þ

with

Rm~(gl
Nazg

g
Nam3hzgl

Kzg
g
K n4zgl

Cl)
{1 : ð40Þ

If we approximate the products of gating variables in the above

expression with 0.1 this gives tV&0:07 msec. Dynamics of n
happens on a scale in the order of milliseconds.

The time scale of ion dynamics is more explicit in the Goldman-

Hodgkin-Katz (GHK) formalism than in the Nernst formalism

used in this paper. The Nernst currents in Eqs. (21)–(23) are an

approximation of the physically more accurate GHK currents, but

in Ref. [23] we have shown that ion dynamics of GHK models

and Nernst models are very similar. That is why the latter may be

used for studies like this. For time scale considerations, however,

we will now switch to the GHK description. The GHK current of

ions with concentrations ioni=e across a membrane is given by

Iion~PionzFj:
ione exp ({j){ioni

exp ({j){1
, ð41Þ

where Pion is the permeability of the membrane to the considered

ion species and j~V=Vc is the dimensionless membrane potential

Slow Ion Dynamics in Hodgkin-Huxley Model
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with

Vc~
RT

zF
~

1

z
:26:64 mV : ð42Þ

This expression contains the ideal gas constant R, the temperature

T , ion valence z and Faraday’s constant F . If we now write down

the GHK analogue of the ion rate Eqs. (5) and (6) we obtain

dioni

dt
~

Am

vi

Pionz:j:
ione exp ({j){ioni

exp ({j){1
: ð43Þ

For the conversion factor c we have inserted the expression Eq.

(13). The fraction term is of the order of the ion concentrations, j
is a dimensionless quantity and hence of order one. With the ion

dynamics time scale

tion~
vi

AmPionz
: ð44Þ

we can thus group the parameters as follows

dioni

dt
~

1

tion

:j:
ione exp ({j){ioni

exp ({j){1
: ð45Þ

Permeabilities of ion channels can be found in Refs [14,23,29].

Similar as for the resistance Rm the permeability Pion of a gated

channel involves a product of gating variables. Approximating

such terms again with 0.1 a typical value for the permeability is

Pion&5 mm=sec. Together with the values for the membrane

surface area and the cell volume from Tab. 1 the time scale of

transmembrane ion dynamics is tion&0:5 sec.

The slowest time scales are related to potassium regulation, i.e.,

to ~KKe dynamics. The glia scheme from Eq. (28) and Eq. (32) contains

a forward buffering process that reduces ~KKe at a time scale

tfw
buff ~(�kk1B0){1 ð46Þ

and a backward buffering process with time scale

tbw
buff ~

1

k1

: ð47Þ

With the parameters from Tab. 1 this leads to tfw
buff &40 sec and

tbw
buff &5 h. So backward buffering is much slower. This is an

important property, because in the following section we will see that

recovery from FES requires a strong reduction of the potassium

content. If buffering and backward buffering would happen on the

same time scale the required potassium reduction would not be

possible. Backward buffering could well happen at a considerably

faster scale than Eq. (47), but as soon as tfw
buff is comparable to tbw

buff

the buffer cannot re-establish physiological conditions after FES.

The glia scheme here is phenomenological. A more biophysi-

cally detailed model would describe a glial cell as a third

compartment. An elevation of ECS potassium leads to glial

uptake. Spatial buffering, i.e., the fast transfer of potassium ions

between glial cells with elevated concentrations to regions of lower

concentrations maintains an almost constant potassium level in the

glial cells. In SD potassium in the ECS is strongly elevated during

an about 80 sec lasting phase of FES and is continuously cleared

during this time. After 80 sec the concentration quickly recoveres

to even slightly less than the normal physiological level. Still there

is a huge potassium deficit in the system and what we call

backward buffering, i.e., the release of potassium from the glial

cells, sets in. It is much slower than the uptake, because it is driven

by a far smaller deviation of the potassium concentration from

normal physiological resting level.

Similar to the above explanation of slow backward buffering in

the glia scheme, an extremely slow backward time scale follows

naturally in diffusive coupling. For diffusion the potassium content

is reduced at a time scale

tdiff ~
1

l
&35 sec ð48Þ

if extracellular potassium is greater than Kbath. Backward diffusion,

however, only occurs in the final recovery phase that sets in after

the neuron has returned from the transient FES state and is

repolarized. While Ki is still far from the resting state level, Ke is

comparable to normal physiological conditions (see the below

bifurcation diagrams in Figs. 2b and 3b) and hence the driving

force (Kbath{Ke) during the final recovery phase is very small for

a bath concentration close to the resting state level. Consequently

backward diffusion is much slower than forward diffusion.

Note that this argument for different slow regulation time scales

relies exclusively on the almost constant values of the ECS

potassium concentration along the physiological fixed point

branch (see Figs. 2b and 3b). It is not a feature of the particular

regulation scheme we apply.

Results

The results are presented in three parts that describe (i) the

stability of closed models, where we treat the change ~KKe of the

potassium content as a bifurcation parameter, (ii) open models,

i.e., ~KKe becomes a dynamical variable, with glial buffering and (iii)

oscillations in ion concentrations in open models for bath coupling

with the bath concentration Kbath as a bifurcation parameter.

Stability of closed models
At first we will not treat the change ~KKe of the potassium content

as a dynamical variable, but as a parameter whose influence on the

system’s stability we investigate. So the model we consider is

defined by the rate Eqs. (3)–(6) and the constraint Eqs. (7), (8),

(10)–(12) and (26). Its stability will be important for the full system

with dynamical ion exchange between the neuron and a bath or

glial reservoir to be discussed in the next two subsections. The

phenomenon of ionic excitability as in SD only occurs for

dynamical ~KKe. We will see that a slow-fast decomposition of ionic

excitability is possible. The fast ion dynamics is governed by the

transmembrane dynamics that we discuss now and happens at the

time scale tion&0:5 sec. The dynamics of ~KKe is much slower

(t
fw
buff &40 sec and tbw

buff &5 h). Fast ion dynamics of the full system

can hence be understood by assuming ~KKe as a parameter that

determines the level at which fast (transmembrane) ion dynamics

occurs. This implies a direct physiological relevance of the closed

system bifurcation structure with respect to potassium content

variation for transition thresholds in the full (open) system.

The bifurcation diagram of the reduced model is presented in

Fig. 2. It is shown in the ( ~KKe,V )-plane (Fig. 2a) and in the ( ~KKe,Ke)-
plane (Fig. 2b) to display membrane and ion dynamics, respec-

tively. A pair of arrows pointing in the direction of extracellular

potassium changes only due to fluxes across the membrane

Slow Ion Dynamics in Hodgkin-Huxley Model
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(vertical ‘m’ direction) and only due to exchange with a reservoir

(diagonal ‘r’ direction) is added to Fig. 2b.

The fixed point continuation yields a branch (black line) where

fully stable sections are solid and unstable sections are dashed.

Stability changes occur in saddle-node bifurcations (also called

limit point bifurcation, LP) and Hopf bifurcations (HB). In a LP

the stability changes in one direction (zero-eigenvalue bifurcation),

in a HB it changes in two directions and a limit cycle is created

(complex eigenvalue bifurcation). A limit cycle is usually represented

by the maximal and minimal value of the dynamical variables.

However, the oscillation amplitude of the ionic variables is almost

zero for the limit cycles in our model. Maximal and minimal values

Figure 2. Bifurcation diagram. Bifurcation diagram of the reduced model for ~KKe as the bifurcation parameter (purely transmembrane dynamics)
showing (a) the membrane potential of fixed points (FP) and limit cycles (LC), and (b) potassium concentrations. The fixed point continuation yields
the black curves. Solid sections are fully stable, dashed sections are unstable. The stability of the fixed point changes in HBs and LPs. The initial
physiological condition is marked by a black square. The limit cycle is represented by the extremal values of the dynamical variables during one
oscillation. The continuation yields the green lines with the same stability convention for solid and dashed sections. The stability of the limit cycle
changes either in a LPlc or in a period–doubling bifurcation (PD). In (b) the maximal and minimal extracellular potassium concentration of the limit
cycle never differs by more than 0:1 mM. The values can hence not be distinguished on the scale of this figure and therefore only the maximal value
is drawn. The bifurcations are marked by full circles and labelled by the type, i.e., HB, LP or LPlc, and a counter (cf. also the insets with blow–ups, in
particular the rightmost one showing LP5lc and LP6lc on a very small horizontal scale). The vertical and diagonal arrows labelled ‘m’ and ‘r’ indicate

the direction of extracellular potassium changes due to ion fluxes across the membrane (‘m’) and changes only due to ~KKe , i.e., because of ion
exchange with a reservoir (‘r’). Note that along the horizontal directions only the ICS potassium concentration changes by a precise mixture of fluxes
across the membrane and ion exchange with a reservoir.
doi:10.1371/journal.pcbi.1003941.g002
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cannot be distinguished on the figure scale. Hence in the ( ~KKe,Ke)-
plane the limit cycle continuation appears only as a single line

(green). Stability changes of limit cycles occur in saddle-node

bifurcations of limit cycles (LPlc). The limit cycles in our model

disappear in homoclinic bifurcations. In this bifurcation a limit cycle

collides with a saddle. When it reaches the saddle it becomes a

homoclinic cycle of infinite period.

As a reference point the initial physiological condition is marked

by a black square. We will call the entire stable fixed point branch

that contains this point the physiological branch Bphys, because the

conditions are comparable to the normal functioning physiological

state—in particular, action potential dynamics is possible when the

system is on this branch.

Let us discuss the bifurcation diagram starting from this

reference point and follow the fixed point curve in the right

direction, i.e., for increasing ~KKe. The physiological fixed point loses

its stability in the first (supercritical) Hopf bifurcation (HB1) at
~KKHB1

e ~28:7 mM. The extracellular potassium concentration is

then at KHB1
e ~6:7 mM. In other word, much of the added

potassium has been taken up by the cell.

The limit cycle associated with HB1 loses its stability in a

period-doubling bifurcation (PD) and remains unstable. Finally it

disappears in a homoclinic bifurcation shortly after its creation (cf.

right inset in Fig. 2a). The stable limit cycle emanating from the

PD point becomes unstable in a LPlc and vanishes in a homoclinic

bifurcation, too. The parameter range of these bifurcations is

Figure 3. Bifurcation diagram. Bifurcation diagram of the model from Kager et al. (cf. last paragraph of Sect. Models). Like in Fig. 2 panel (a) shows
the membrane potential and panel (b) shows the extracellular potassium concentration of the invariant sets, i.e., fixed points and limit cycles. The line
style convention (solid for stable, dashed for unstable) and bifurcation labels are the same as in Fig. 2. Note the similar shape to Fig. 2, but also the
different scale of the two figures.
doi:10.1371/journal.pcbi.1003941.g003
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extremely small ( ~KKLP6lc
e { ~KKHB1

e v0:03 mM). Such fine parameter

scales will not play a role for the interpretation of ion dynamics.

Ion concentrations are stationary and physiological up to ~KKLP6lc
e ,

but for practical purposes it is irrelevant if we identify ~KKHB1
e or

~KKLP6lc
e as the end of the physiological branch Bphys.

The first HB is followed by four more bifurcations (LP1, HB2,

LP2, HB3) that all neither restore the fixed point stability nor

create any stable limit cycles. The limit cycles for HB2 and HB3

are hence not plotted either. It is only the fourth Hopf bifurcation

(HB4) at ~KKHB4
e ~{43:5 mM in which the fixed point becomes

stable again and in which a stable limit cycle is created. The limit

cycle branch loses its stability in LP1lc and regains it in LP2lc. It

becomes unstable again and even more unstable in LP3lc and

LP4lc. Shortly after that (not resolved on the scales in Fig. 2) it

ends in a homoclinic bifurcation with the saddle between HB1 and

LP2. At HB4 the stable free energy-starved branch BFES begins. It

is generally characterized by a strong increase in the ECS

potassium compared to physiological resting conditions (Fig. 2b),

and a significant membrane depolarization (Fig. 2a). Correspond-

ing to the extracellular elevation intracellular potassium is

significantly lowered. This goes along with inverse changes of

the compartmental sodium concentrations (all not shown). BFES is

hence characterized by largely reduced ion gradients and strong

membrane depolarization. In fact, at this membrane potential the

sodium channels are inactivated which is normally called

depolarization block in HH-like membrane models without ion

dynamics. Depolarization block is, however, only one feature of

FES. The closeness of FES to the thermodynamic equilibrium of

the system is more importantly manifested in the reduced ion

gradients. On BFES no more bifurcations occur and it remains

stable for increasing ~KKe.

The interpretation of this bifurcation diagram should be as

follows. The end of Bphys defines the maximal potassium content

compatible with a physiological state of a neuron. For larger ~KKe it

will be inevitably driven to the FES. In other words the end of

Bphys marks the threshold value for a slow, gradual elevation of the

potassium content to cause the transition from physiological

resting conditions to FES. In a buffered system it is the threshold

for SD ignition. On the other hand stable FES-like conditions

require a minimal potassium content which marks the end of

BFES. It is given by ~KKLP1lc
e ~{44:4 mM. Below this value the only

stable fixed point is physiological. Again there is a narrow range,

namely ~KKe between ~KKLP1lc
e and ~KKHB4

e ~{43:5 mM, in which

stable oscillations can occur.

When glial buffering is at work the end of BFES defines the

threshold for potassium buffering, i.e., for the potassium reduction

that is required to return from FES to physiological conditions (cf.

Eq. (27)). In the second subsection of Sect. Results, we will see that

this is exactly how ion regulation facilitates recovery in SD models.

There is another way the bifurcation diagram in Fig. 2b can be

read. As we have remarked above the limit cycles of the model are

characterized by large oscillation amplitudes in the membrane

variables n (not shown) and V , but almost constant ionic variables

Ki=e, Nai=e and Cli=e (only Ke shown). So Fig. 2b tells us which

extracellular potassium concentrations can possibly be stable and

which ones cannot. Values below the end of Bphys at KHB1
e ~6:7

mM, values between KLP3lc
e ~10:2 mM and KLP2lc

e ~17:8 mM

and finally concentrations in the range of BFES starting at

KLP1lc
e ~21:1 mM can be stable. Any other extracellular potassium

concentration is unstable and the system will evolve towards a

stable ion configuration that is present in the phase space. The

highest stable potassium concentration below FES values is KLP2lc
e .

If potassium in the ECS is increased instantaneously, this value

indicates the threshold for SD ignition or the transition to FES.

Performing the same type of bifurcation analysis with the

physiologically more detailed model from Kager et al. [12,14] (cf.

last paragraph of Sect. Models) leads to the diagram in Fig. 3. It

has been shown before that also in this model there is stable FES

[23]. We do not find the same bifurcations as in the reduced

model, but only two LPs and one HB. However, the physiological

implications are very similar. Like in the reduced model there is an

upper limit of the potassium content ~KKe for stable physiological

conditions ( ~KKHB1
e ~7:5 mM) and a lower limit for stable FES

( ~KKLP1lc
e ~{75:4 mM). Also the downward snaking and the

stability changes of the limit cycle that starts from HB1 are very

similar to Fig. 2. This leads to the same type of conclusion

concerning possible stable extracellular potassium concentrations.

While numerical values of the stability limits in terms of ~KKe are

specific to each model, the topological similarity of the bifurcation

diagrams suggests a generality of results: there is a stable

physiological branch Bphys that ends at some maximal value ~KKe

of the potassium content. Beyond this point the neuron cannot

maintain physiological conditions, but will face FES. On the other

hand the stable FES branch BFES ends for a sufficiently reduced

potassium content the neuron will return to physiological

conditions.

The new bifurcation diagrams presented in this section confirm

our results from Ref. [23]: Neuron models whose ionic homeo-

stasis is only provided by ATPase-driven pumps, but without

diffusive coupling or glial buffering, will have a highly unphysi-

ological fixed point that is characterized by free energy-starvation

and membrane depolarization. However, the presented bifurca-

tion diagrams here contain additional information of great

importance. Using the new bifurcation parameter ~KKe crucially

extends our results from Ref. [23] by uncovering the threshold

concentrations in extracellular potassium concentration. These are

completely novel insights.

In the next subsection the bifurcation diagrams of the

unbuffered (closed) systems shall facilitate a phase space under-

standing of the activation and inhibition process of ionic

excitability as observed in SD in the buffered (open) systems. We

are aiming for an interpretation of ionic excitability where

neuronal discharge and recovery are fast dynamics that are

governed by the bistable structure discussed above, whereas

additional ion regulation takes the role of slowly changing ~KKe.

However, only the gated ion dynamics, i.e., dynamics of

sodium and potassium is fast compared to that of ~KKe, chloride

is similarly slow. Due to the enforcement of electroneutrality this

means that the overall concentration of positively charged ions

in the ICS, i.e., the sum of sodium and potassium ion con-

centrations changes on the same slow time scale as the chloride

concentration.

To describe this slow process not dynamically but—like ~KKe—in

terms of a parameter we simply investigate the stability for a given

distribution of non-dynamic, i.e., impermeant chloride. To

determine this stability we set the chloride current to zero and

vary Cli in a certain range (from 8 to 32 mM for the reduced

model, and from 9 to 33 mM for the detailed model). This affects

the system only through the electroneutrality constraint Eq. (7)

which sets the intracellular charge concentration to be shared by

sodium and potassium.

For each value of Cli we perform a fixed point continuation as

in Figs. 2 and 3 which yields similarly folded s-shaped curves.

The result is shown in Fig. 4. For our analysis of SD it is only

relevant where BFES ends. That is why the plot does not contain
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the whole fixed point curve, but only BFES and a part of the

unstable branch for a selection of Cli values. As a reference the

diagrams also contain the fixed point curves from Figs. 2 and 3

which include chloride dynamics. The FES branches in Fig. 4

end in Hopf bifurcations. The bifurcation points for different

chloride concentrations yield the blue Hopf line. It marks the

threshold for recovery from FES when dynamics of chloride and
~KKe is slow.

Open models with glial buffering
In the previous subsection we have analyzed the phase space

structure of ion-based neuron models without contact to a

reservoir, i.e., without glial buffering or diffusive coupling. These

models have only transmembrane ion dynamics and obey mass

conservation of each ion species. Hence they describe a closed

system. The bistability of a physiological state and FES that we

found in these closed models is not experimentally observed,

because real neurons are always open systems not merely in the

sense that they consume energy—a necessary prerequisite for

being far from thermodynamic equilibrium—but they also can

lose or gain ions through reservoirs or buffers. We will now include

glial buffering and show how it facilitates recovery from FES, a

condition which in contrast to the physiological state is close to a

thermodynamic equilibrium, namely the Donnan equilibrium (cf.

Ref. [23]).

When glial buffering is at work, ~KKe becomes a dynamical

variable whose dynamics is given by the buffering rate Eq. (32). In

a previous subsection we have explained that the bifurcation

diagrams in Figs. 2 and 3 imply thresholds for an elevation of

extracellular potassium to trigger the transition from physiological

resting conditions to FES. This is in agreement with computational

and experimental SD studies in which high extracellular potassium

concentrations are often used to trigger SD. Another physiolog-

ically relevant way of SD ignition is the disturbance or temporary

interruption of ion pump activity. As we have shown in Ref. [23]

there is a minimal pump rate required for normal physiological

conditions in a neuron. Below this rate the neuron will go into a

FES state and remain in that state even when the pump activity is

back to normal.

For the simulations in Fig. 5 we have interrupted the pump

activity for about 10 sec in the reduced model, and we have

elevated the extracellular potassium concentration by DKe~7:5
mM in the detailed model to trigger SD. Both stimulation types

work for both models, but only the two examples are shown. The

phase of pump interruption (Fig. 5a and 5c) is indicated by the

shaded region in the plots, the time of potassium elevation is

marked by the vertical grey line. The dynamics of the two models

is very similar: in response to the stimulation the neuron strongly

depolarizes and remains in that depolarized state for about 70 sec

(Fig. 5a and 5b). After that the neurons repolarize abruptly and

asymptotically return to their initial state. In addition to the

membrane potential (black curve) the potential plots also contain

the Nernst potentials for sodium (red line), potassium (blue line)

and chloride (green line) that change with the ion concentrations

according to the definition of the Nernst potentials in Eq. (24). In

Fig. 5c and 4d we see that the potential dynamics goes along with

great changes in the ion concentrations. In particular, extracellular

potassium is strongly increased in the depolarized phase. These

conditions are very similar to the type of FES states discussed in

the previous subsection. The recovery of ion concentrations sets in

with the abrupt repolarization, but it is a very slow asymptotic

process that is not shown in Fig. 5.

In both models the neuron is capable of producing spiking

activity again right after the repolarization. All these aspects of ion

dynamics during SD are well-known from several studies [12,14].

We remark that the time series are almost identical if glial

buffering is replaced by the coupling to a potassium bath. Both,

the strength of glial buffering and of diffusive coupling have been

adjusted so that the depolarized phase lasts about 70 sec which is

the experimentally determined time. We will focus on bath

coupling in last subsection of Sec. Results. If neither buffering nor

a potassium bath is included the neuron does not repolarize (for

time series plots of terminal transitions to FES see Ref. [23]).

The time series in Fig. 5 are useful to confirm that the neuron

models we investigate have the desired phenomenology and

indeed show SD-like dynamics. Yet the nature of the different

phases of this ionic excitation process—the fast depolarization, the

prolonged FES phase and the abrupt repolarization—remains

enigmatic [12,14,29,30]. In a phase space plot the picture becomes

much clearer and the entire process can be directly related to the

two stable branches, Bphys and BFES, that we found for the closed

and therefore pure transmembrane models in the previous

subsection. In Fig. 6 the time series from Fig. 5 for a simulation

time of 50 min are shown in the ( ~KKe,V )- and the ( ~KKe,Ke)-plane.

The parts of the trajectories during the stimulation (pump

interruption and potassium elevation) are dashed. In the chosen

planes vertical lines belong to dynamics of constant potassium

contents that can be understood in terms of the models we

analyzed in the previous subsection. That is why Fig. 6 contains

the fixed point curves from Fig. 4 as shaded lines as a guide to the

eye. In Fig. 6c and 6d buffering dynamics is diagonal as indicated

by the pair of arrows added to the plot.

For both trajectories the stimulation is followed by a vertical

activation process that leads to the transition from Bphys to BFES.

The verticality means that this is a process almost purely due to

transmembrane dynamics. It is governed by the bistable phase

space structure that we discussed in the previous section and also

in Ref. [23]. Buffering dynamics is too slow to inhibit the

activation. The types of stimulation we applied are related to

bifurcations of the transmembrane system: the potassium elevation

is beyond the end of Bphys which is marked by the first Hopf

bifurcation (HB1) in Fig. 2. The interruption of pump activity

means that we go below a pump rate threshold that is defined by a

saddle-node bifurcation (cf. Ref. [23]). More generally, to initiate

an ionic excitation it is necessary to stimulate the system until it

enters the basin of attraction—derived in the unbuffered system—

of the FES state. The activation is followed by a phase of both,

slow transient transmembrane dynamics mostly due to chloride,

and potassium buffering. It is the latter that bends the trajectories

in the diagonal direction so that they go along the FES branches

from Fig. 4. The trajectories slowly approach the repolarization

threshold given by the Hopf line. The duration of this FES phase is

determined by how long it takes the system to reach the Hopf line.

This process is a mixture of buffering and transient transmem-

brane dynamics for the reduced model and more buffering-

dominated in the detailed model. The duration of the FES phase is

consequently a result of both types of dynamics. However, the

main insight we gain from this plot is: glial buffering is the

necessary inhibitory mechanism that takes the system to the Hopf

line so that it can repolarize. We remark that the time series and

phase space plots for bath coupling instead of buffering are almost

identical and the same interpretation holds. The more general

conclusion is then: ion dynamics beyond transmembrane processes

is necessary to take the system to the Hopf line so that it can

repolarize. This can, of course, be a combination of bath coupling

and buffering. When the Hopf line is reached that neuron

repolarizes abruptly which is the second almost purely vertical

process. The repolarization is followed by slow asymptotic
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Figure 4. Fixed point continuation. Fixed point continuations for a range of impermeant intracellular chloride concentrations Cli in (a), (b) the

( ~KKe,V )–plane and (c), (d) the ( ~KKe,Ke)–plane. The black curves are the stable FES branches that lose their stability in Hopf bifurcations (black circles).
Starting from the leftmost fixed point curves the fixed Cli values are 8, 12, 16, 20, 24, 28 and 32 mM for the reduced model and 9, 13, 17, 21, 25, 29
and 33 mM for the detailed model. The Hopf bifurcations for different chloride concentrations lead to the blue Hopf line. As a reference the fixed
point curves from Figs. 2 and 3 are also included in the diagram and drawn in grey.
doi:10.1371/journal.pcbi.1003941.g004

Figure 5. Time series. Time series for single SD excursions in (a), (c) the reduced and in (b), (d) the detailed model. In the reduced model SD is
triggered by an interruption of the pump activity for about 10 sec (shaded region). In the detailed model the extracellular potassium concentration is
increased by DKe~7:5 mM after 20 sec (vertical line). In (a) and (b) the time series of the membrane potentials (black lines) are shown. Nernst
potentials for all ion species are included to the diagrams as a reference. Ion dynamics are shown in (c) and (d) where extracellular ion concentrations
are in lighter color.
doi:10.1371/journal.pcbi.1003941.g005
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recovery dynamics of ion concentrations that takes the neuron

back to the initial state which is at ~KKe~0 mM. The neuron regains

the electrical excitability that is lost during FES already right after

the repolarization. So the system is back to physiological function

long before the ion gradients are fully restored.

Let us summarize the results from this subsection. By relating

the SD time series from Fig. 5 to the bifurcation structure of the

unbuffered models from the first subsection of Sect. Results and in

particular to the two stable branches Bphys and BFES we have

succeeded to understand ionic excitability as a sequence of

different dynamical phases. The initial depolarization and the later

repolarization are membrane-mediated fast processes that obey

the bistable dynamics of unbuffered systems. The FES phase is

buffering-dominated and lasts until buffering has taken the system

to a well-defined repolarization threshold. The recovery phase is

dominated by backward buffering. The full excursion time is the

sum of the durations of each phase. For the de- and repolarization

process this duration mainly depends on the time scale of the

transmembrane dynamics and is hence comparably short. The

duration of the FES phase is a result of both, the transient

transmembrane dynamics and glial ion regulation at a much

slower time scale. The final recovery phase is mainly backward

buffering dominated which is the slowest process. Hence the

duration of an SD excursion is mainly determined by the slow

buffering and backward buffering time scales. This conclusion that

relies on our novel understanding of the different thresholds

involved in SD is in fact in agreement with recent experimental

data suggesting vascular clearance of extracellular potassium as the

central recovery mechanism in SD [31,32].

Ionic oscillations for bath coupling
The dynamics of excitable systems can often be changed to self-

sustained oscillations by a suitable parameter variation. The type

of bifurcation that leads to the oscillations and the shape of the

limit cycle in the oscillatory regime determine excitation properties

like threshold sharpness and latency [28]. The oscillatory

dynamics that is related to ionic excitability can be obtained for

bath coupling with an elevated bath concentration Kbath. So in this

section we replace the buffering dynamics for ~KKe with the diffusive

coupling given by Eq. (35). This coupling is used in experimental

in-vitro studies of SD [33] and has also been applied in

computational models that are very similar to our reduced one

[19–21].

Depending on the level of the bath concentration, we find three

qualitatively different types of oscillatory dynamics that are shown

in Fig. 7. The top row (a) shows the time series of seizure-like

activity for Kbath~8:5 mM. It is characterized by repetitive

bursting and low amplitude ion oscillations. The other types of

oscillatory dynamics are tonic firing at Kbath~12 mM with almost

constant ion concentrations (Fig. 7b) and periodic SD at

Kbath~15 mM with large ionic amplitudes (Fig. 7c). We see that

SLA and periodic SD exhibit slow oscillations of the ion

concentrations and fast spiking activity, which hints at the toroidal

nature of these dynamics. Below we will relate SLA and periodic

SD to torus bifurcations of the tonic firing limit cycle.

The examples in Fig. 7 show that our model contains a variety

of physiologically distinct and clinically important dynamical

regimes. A great richness of oscillatory dynamics, in fact, under the

simultaneous variation of Kbath and the glial buffering strength has

already been reported in Refs. [19–21] for a very similar model. In

Figure 6. Phase space plots. Phase space plots of the simulations in Fig. 5. As in Fig. 4 panels (a) and (b) contain plots of the membrane potentials,
in panels (c) and (d) extracellular potassium is shown. (a) and (c) are for the reduced model, (b) and (d) for the detailed model. The trajectories of the
reduced model are represented as red curves, those of the detailed model are magenta. The sections of the trajectories that belong to times before
and during the stimulation are dashed. The fixed point curves from Fig. 4 are added on the plots as shaded lines whereas the fixed point
continuations for the unbuffered models with dynamical chloride are slightly darker. The pair of arrows in the extracellular potassium plots indicates
the direction of pure transmembrane (vertical) and pure buffering dynamics (diagonal).
doi:10.1371/journal.pcbi.1003941.g006
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Ref. [19,20] the authors even give a bifurcation analysis of ionic

oscillations for Kbath elevation.

To investigate dynamical changes and the transitions between

the dynamical regimes in our model we perform a similar

bifurcation analysis and vary Kbath, too. Two important differences

should be noted though. First, Ref. [19,20] uses an approximation

of the multi-time scale model in which the fast spiking dynamics is

averaged over time, while our analysis does not rely on such an

approximation. Second, our analysis covers a bigger range of Kbath

values which allows us to compare SLA and SD, while Ref.

[19,20] exclusively deals with SLA.

Fig. 8 shows the bifurcation diagram for Kbath variation in the

(Kbath,V )-plane and in the (Kbath,Ke)-plane. In addition to fixed

points (black) and limit cycles (green) also quasiperiodic torus

solutions (blue) are contained in the diagram. In comparison to

Fig. 2 this model contains a new type of bifurcation, namely a

torus bifurcation (TR). A torus bifurcation is a secondary Hopf

bifurcation of the radius of a limit cycle in which an invariant torus

is created. If this torus is stable, nearby trajectories will be

asymptotically bound to its surface. However, we cannot follow

such solutions with standard continuation techniques, because

these require an algebraic formulation in terms of the oscillation

period. This is not possible for torus solutions, because on a torus

the motion is quasiperiodic, i.e., characterized by two incommen-

surate frequencies. We can hence only track the stable solutions by

integrating the equations of motion and slowly varying Kbath. It is

due to this numerically expensive method that in this section we

will only analyze oscillatory dynamics of the reduced HH model

with time-dependent ion concentrations.

The result of this bifurcation analysis in Fig. 8 shows us that

there is a maximal level KHB1
bath of the bath concentration

compatible with physiological conditions. It is identified with the

subcritical Hopf bifurcation HB1 in which the fixed point loses its

stability. The related limit cycle is omitted, because it stays

unstable and terminates in a homoclinic bifurcation with the

unstable fixed point branch. The fixed point undergoes further

Figure 7. Time series. Time series for three types of oscillatory dynamics in the bath coupled reduced model. In the left panels (a), (c) and (e) the
membrane potential and the three Nernst potentials are shown. Ion concentrations are shown in the right panels (b), (d) and (f). The color code is as
in Fig. 5. (a) and (b), (c) and (d), and (e) and (f) are simulations for Kbath~8:5 mM, 12 mM and 15 mM, respectively. The dynamics is typical for (a)
and (b) seizure–like activity, (c) and (d) tonic firing, (e) and (f) periodic SD. Note the different time scales of SLA, tonic firing and period SD and also
the different oscillation amplitudes in the ionic variables.
doi:10.1371/journal.pcbi.1003941.g007
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bifurcations (LP1, LP2, HB2, HB3) which all leave it unstable and

do not create stable limit cycles. It is in HB4 that the fixed point

becomes stable again and also a stable limit cycle is created. This is

the last fixed point bifurcation of the model.

The limit cycle that is created in HB4 changes its stability in

several bifurcations. The physiologically most relevant ones are the

four torus bifurcations. The bifurcation labels indicate the order of

detection for the continuation that starts at HB4. Initially the limit

cycle is characterized by fast low-amplitude oscillations. It

becomes unstable in the subcritical torus bifurcation TR1. It

regains and again loses its stability in the subcritical torus

bifurcations TR2 and TR3. The last torus bifurcation, the

restabilizing supercritical TR4, is directly followed by a PD after

which no stable limit cycles exist any more. Again we have omitted

in the diagram the unstable branch after PD and the limit cycle

that is created in PD, which remains unstable.

Physiologically it is more intuitive to discuss the diagram for

increasing Kbath starting from the initial physiological conditions

marked by the black square. Normal physiological conditions

become unstable at KHB1
bath and above this value the neuron spikes

continuously according to the stable limit cycle branch between

PD and TR4. When KTR4
bath is reached the dynamics changes from

Figure 8. Bifurcation diagram. Bifurcation diagram of the bath coupled reduced model for Kbath–variation. Color and line style conventions for
fixed points and limit cycles are Figs. 2 and 3: black and green lines are fixed point and limit cycles, solid and dashed line styles mean stable and
unstable sections. Stable solution on invariant tori are blue. They were obtained by direct simulations. The fixed point changes stability in HBs and
LPs. The bifurcation types limit cycle undergoes are LPlc, period–doubling (PD) and torus bifurcation (TR). Some physiologically irrelevant unstable
limit cycles are omitted (cf. text). Panel (a) shows the membrane potential, panel (b) shows the extracellular potassium concentration. (b) does not
contain the limit cycle, because it can hardly be distinguished from the fixed point line.
doi:10.1371/journal.pcbi.1003941.g008
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stationary spiking to seizure-like activity on an invariant torus. The

beginning of SLA is hence due to a supercritical torus bifurcation

and the related ionic oscillation sets in with finite period and zero

amplitude. From KTR3
bath on tonic spiking activity is stable again and

there is a small Kbath-range of bistability between SLA and this

tonic firing. As we mentioned above solutions on an invariant

torus cannot be followed with normal continuation tools like

AUTO, so only stable branches are detected. The details of the

bifurcation scenario at TR3 are hence not totally clear, but we

suspect that the unstable invariant torus that must exist near TR3

collides with the right end of the stable torus SLA-branch in a

saddle-node bifurcation of tori. Tonic spiking then remains stable

until TR2. This bifurcation is related to the period SD that already

exist well below KTR2
bath . In fact, the threshold value KTR2

bath is in

agreement with experiments [33]. Again the unstable torus near

TR2 is not detected, but we suppose that a similar scenario as in

TR3 occurs. The dynamics on the torus branch related to TR2

(and TR1 where it seems to end) is very different from the first

torus branch. While the periods of the slow oscillations during SLA

are 16–45 sec the ion oscillations of periodic SDs are much slower

with periods of 350–550 sec.

Another crucial difference is obvious from Fig. 8b which shows

the bifurcation diagram in the (Kbath,Ke)-plane. The fixed point is

just a straight line, because the diffusive coupling Eq. (35) makes

Ke~Kbath a necessary fixed point condition. The limit cycle is

always extremely close to this line. On the chosen scale it cannot

be distinguished from the fixed point and is hence not contained in

the plot. Only the torus solutions of SD and SLA attain Ke values

Figure 9. Bifurcation diagram. Different representations of the bifurcation diagram of Fig. 8. Panel (a) shows the extracellular sodium
concentration and includes an inset around TR4 and PD. Panel (b) presents the potassium gain/loss.
doi:10.1371/journal.pcbi.1003941.g009
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that differ significantly from the regulation level. The ionic

amplitudes of SD are one order of magnitude larger than those of

SLA. This has to do with the fact that the peak of SD—as

described above—must be understood as a metastable FES state

that exists due to the bistability of the transmembrane dynamics.

The dynamics of SLA is clearly of a different nature.

Note that the bifurcation diagram reveals a bistability of tonic

firing and full-blown SD between the left end of the SD branch at

about 11 mM and TR2. This means that there is no gradual

increase in the ionic amplitudes that slowly leads to SD, but

instead it implies that SD is a manifest all-or-none process.

In Fig. 9 we look at the same bifurcation diagram in the

(Kbath,Nae)- and the (Kbath, ~KKe)-plane. While in Fig. 8 most of the

ionic phase space structure is hidden, because Ke&Kbath for fixed

points and limit cycles, the (Kbath,Nae)-presentation in Fig. 9a

provides further insights into the ion dynamics. We see that the

stable fixed point branch before HB1 has extracellular sodium

concentrations close to the physiological value Na0
e~125:31 mM.

The stable branch after HB4, however, has an extremely reduced

extracellular sodium level and is indeed FES-like. The stable limit

cycles between PD and TR4 and between TR3 and TR2, and also

SLA are rather close to the physiological sodium level. On the

other hand, periodic SD is an oscillation between FES and normal

physiological conditions, which is an expected confirmation of the

findings from the previous section.

Fig. 9b is useful in connecting the phase space structure of the

bath coupled system to that of the transmembrane model of the

first subsection of Sect. Results. If we interchange the Kbath- and

the ~KKe-axis in the diagram it looks very similar to Fig. 2b. The

torus bifurcations TR1, TR2 and TR3 are very close to the limit

point bifurcations LP1lc, LP2lc and LP3lc of the transmembrane

model. The fixed point curves are topologically identical.

This striking similarity has to do with the fact that the limit cycle

in Fig. 2 has almost constant ion concentrations. We have pointed

out in the first subsection of Sect. Results that Fig. 2 tells us which

extracellular potassium concentrations are stable for pure trans-

membrane dynamics. Diffusive coupling with bath concentrations

at such potassium levels leads to negligibly small values of Jdiff (cf.

Eq. (35)). Therefore the limit cycle is still present in the bath

coupled model and also the stability changes can be related to

those in the transmembrane model. Again this can be seen as a

confirmation of the results from the previous section: the

transmembrane phase space plays a central role for models that

are coupled to external reservoirs. We can interpret the ionic

oscillations from Fig. 7 and the bifurcations leading to them with

respect to this phase space.

Last we consider the dynamics of SLA and periodic SD in a

phase space projection. In Fig. 10 the trajectories for SLA and

periodic SD are plotted in the ( ~KKe,Ke)-plane together with the

underlying fixed point and limit cycles from the transmembrane

model (cf. Fig. 4). The periodic SD trajectory has a very similar

shape to the single SD excursion from Fig. 6 and is clearly guided

by the stable fixed point branches Bphys and BFES . On the other

hand SLA is a qualitatively very different phenomenon. Rather

than relating to the FES branch, it is an oscillation between

physiological conditions and those stable limit cycles that exist for

moderately elevated extracellular potassium concentrations. The

ion concentrations remain far from FES. So SLA and SD are not

only related to distinct bifurcations, though of similar toroidal

nature and branching from the same limit cycle, but they are also

located far from each other in the phase space. This completes our

phase space analysis of local ion dynamics in open neuron systems.

Discussion

In this paper we have analyzed dynamics at different time scales

in a HH model that includes time-dependent ion concentrations.

Such models are also called second generation Hodgkin-Huxley

models. They exhibit two types of excitability, electrical and ionic

excitability, which are based on fast and slow dynamics. The time

scales of these types of excitability are themselves separated by four

to five orders of magnitude. The dynamics ranges from high-

frequency bursts of about 100 Hz with short interburst periods of

the order of 10 msec (Fig. 7a) to the slow periodic SD with

frequencies of about 2:10{3 Hz and periods of about 7:30 min

(Fig. 7c).

The slow SD dynamics in our model is classified as ultra-slow

or near-DC (direct current) activity and cannot normally be

observed by electroencephalography (EEG) recordings, because of

artifacts due to the resistance of the dura (thick outermost layer of

the meninges that surrounds the brain). However, recently

subdural EEG recordings provided evidence that SDs occur in

abundance in people with structural brain damage [1]. Indirect

evidence was already provided earlier by functional magnetic

resonance imaging (fMRI) [34] and a patient’s symptom reports

combined with fMRI [35] that SD also occurs in migraine with

aura [2].

Figure 10. Phase space plots. Phase space plots of the simulations (a) for SLA and (b) periodic SDs from Fig. 7. Only extracellular potassium is
shown. The limit cycle and fixed point curves from Figs. 2 and 4 are superimposed to the plots as shaded lines whereas the limit cycle and fixed point
from Fig. 2 (dynamical chloride) are darker. The limit cycle and fixed point are not graphically distinguished, but comparison with Fig. 2 should avoid
confusion.
doi:10.1371/journal.pcbi.1003941.g010
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The slowest dynamics that can be accurately measured by EEG,

i.e., the delta band, with frequencies about 0.5 to 4 Hz, has

attracted modelling approaches much more than SD, which was

doubted to occur in human brain until the first direct measure-

ments were reported. It is interesting to compare the origin of slow

time scales in such delta band models to our slow dynamics.

Models of the delta band essentially come in two types. On the

one hand thalamo-cortical network and mean field models of HH

neurons with fixed ion concentrations have been studied [36]. In

this case, a slow time scale emerges because the cells are

interconnected via synaptic connections using metabotropic

receptors that are slow, because they act through second

messengers. On the other hand, single neuron models with

currents that are not contained in HH, namely a hyperpolariza-

tion-activated depolarizing current, Ca2z-dependent sodium and

potassium currents, and a persistent sodium current, were

suggested. The interplay between these currents gives rise to

oscillations at a frequency of about 2–3 Hz [37]. It is therefore

hardly surprising that these currents, in particular the persistent

sodium and the Ca2z-dependent sodium and potassium currents,

have also been proposed to play an essential role in SD [30,38].

Furthermore, bursting as another example of slow modulating

dynamics was studied in a pure conductance-based model with a

dendritic and an axo-somatic compartment [16]. Also metabo-

tropic receptors as modeled by Bennett et al. [15] and other

cellular processes at appropriately slow time scales may play a role

and contribute to the repolarization.

In contrast to those approaches our results show that dynamics

in a HH framework with time-dependent ion concentrations and

buffer reservoirs already range from seconds to hours even with

the original set of voltage-gated ion currents. Time scales from

milliseconds (membrane dynamics) to seconds (ion dynamics) and

even minutes to hours (ion exchange with reservoirs) can be

directly computed from the model parameters (cf. Sect. Models).

The interplay of membrane dynamics, ion dynamics and coupling

to external reservoirs (glia or vasculature) naturally leads to

dynamics typical of SLA and SD.

In particular SD is explained by a bistability of neuronal ion

dynamics that occurs in the absence of external reservoirs. The

potassium gain or loss ~KKe through reservoirs provided by an

extracellular bath, the vasculature or the glial cells is identified as a

bifurcation parameter whose essential importance was not realized

in earlier studies (see Fig. 11). Using this bifurcation parameter

and the extracellular potassium concentration as the order

parameter, we obtain a folded fixed point curve with the two

outer stable branches corresponding to states with normal

physiological function, hence named physiological branch Bphys,

and to states being free-energy starved (BFES ).

The definition of the bifurcation parameter implies that

exchange with ion reservoirs happens along the diagonal direction

labelled by ‘r’. Membrane-mediated dynamics is in the vertical ‘m’

direction. In the full system where the ion exchange is a dynamical

variable our unconventional choice of variables, i.e. modelling ~KKe

instead of Ke, makes it obvious that the time scales of diagonal and

vertical dynamics is separated by at least two orders of magnitude.

Slow dynamics is along Bphys and BFES , and the fast dynamics

describes the jumps between these branches. We remark that

dynamics along Bphys is slower than along BFES, because the

branch is almost horizontal which leads to a very small gradient

driving the diffusive coupling. Similarly the release of buffered

potassium from the glial cells is only weakly driven (cf. the

discussion of buffering time scales in Sect. Model).

In the closed system sufficiently strong stimulations lead to the

transition from the physiological resting state located on Bphys to

FES. In the full system with dynamical ion exchange with the

reservoirs, physiological conditions are restored after a large phase

space excursion to the the before stable FES state. We refer to this

process as ionic excitability. In contrast to the electrical excitability

Figure 11. Bifurcation diagram. Fundamental bifurcation diagram in the slowest–scale dynamics, the potassium ion gain or loss through
reservoirs (i.e., the bifurcation parameter). The unit of the bifurcation parameter was chosen such that it denotes the ion concentration with respect
to the extracellular volume. The actual extracellular potassium concentration is the order parameter. Shown are the stable branches Bphys and BFES

(see Sec. Results) and the directions (arrows) of two paths of ‘pure’ flux condition: fluxes exclusively across the membrane and fluxes exclusively from
(or to) reservoirs. A horizontal path is caused by a particular mixture of these fluxes that induces potassium ion concentration changes exclusively to
the intracellular compartment. Ionic excitability can be understood as a cyclic process in this diagram (see text).
doi:10.1371/journal.pcbi.1003941.g011
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of the membrane potential this process involves large changes in

the ion concentrations. The entire phase space excursion of this

excitation process can be explained through the specific transits

between and along Bphys and BFES .

We observe ion changes on three slow time scales. (i) Vertical

transits between Bphys and BFES caused by transmembrane

dynamics in the order of seconds. The time scale is determined

by the volume-surface-area ratio and the membrane permeability

to the ions. (ii) Diagonal dynamics along BFES in the order of tens

of seconds caused by contact to ion reservoirs. This time scale is

determined by buffer time constants or vascular coupling strength.

(iii) Dynamics on Bphys again caused by contact to ion reservoirs,

but at the slower backward buffering time scale in the order of

minutes to hours determined by the slower backward rate of the

buffer [12]. During this long refractory phase of ionic excitability

the spiking dynamics based on electrical excitability—separated by

seven orders of magnitude—seems fully functional.

The right end of Bphys and the left end of BFES are marked by

bifurcations that occur for an accordingly elevated or reduced

potassium content. This is the first explanation of thresholds for

local SD dynamics in terms of bifurcations. We remark,

however, that for SD ignition the important question is not

where Bphys ends, but instead where the basin of attraction of

BFES begins.

This new understanding of SD dynamics suggests a method to

investigate the SD susceptibility of a given neuron model. One

should consider the closed model without coupling to external

reservoirs and check if shows the typical bistability between a

physiological resting state and FES. We remark that unphysical so-

called ‘fixed leak’ currents must be replaced by proper leak

currents with associated leaking ions. Thresholds for the transition

between BFES and Bphys translate to thresholds for SD ignition and

repolarization, i.e., recovery from FES in the full open model.

Knowledge of the potassium reduction needed to reach the

repolarization threshold and knowledge about the buffer capacity

could then tell us if recovery from FES can be expected (such as in

migraine with aura) or if the depolarization is terminal (such as in

stroke).

Although our model does not contain all important processes

involved in SD, our phase space explanation appears to be valid

also for certain model extensions. For example, considering only

diffusive regulation of potassium is physically inconsistent, but

adding an analoguous regulation term for sodium turns out not to

alter the dynamics qualitatively. Moreover osmosis-driven cell

swelling—normally regarded as a key indicator of SD—is not

included in our model, but can be added easily [13,30,39].

Unpublished results confirm that also with such cell swelling

dynamics the fundamental bifurcation structure of Fig. 11 is

preserved.

As a clinical application of our framework, we have linked a

genetic defect, which affects the inactivation gate h and which is

present in a rare subtype of migraine with aura, to SD. Our

simulations show that such mutations render neurons more

vulnerable to SD [40]. The interesting point, however, is that on

the level of the fast time scale the firing rate is decreased, which in

a mean field approach (as done for the delta band) translates to

decreased activity. This effect seemingly contradicts the increased

SD susceptibility and hence illustrates the pitfalls in trying to

neglect ion dynamics in the brain and to bridge the gap in time

scales by population models.
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fruitful discussions, and critically reading the manuscript.

Author Contributions

Conceived and designed the experiments: NH MAD. Performed the

experiments: NH MAD. Analyzed the data: NH MAD. Contributed

reagents/materials/analysis tools: NH MAD. Wrote the paper: NH MAD.

References

1. Dreier JP (2011) The role of spreading depression, spreading depolarization and
spreading ischemia in neurological disease. Nat Med 17: 439–447.

2. Charles AC, Baca SM (2013) Cortical spreading depression and migraine. Nat

Rev Neurol 9: 637–44.

3. Leão AAP (1944) Spreading depression of activity in the cerebral cortex.
J Neurophysiol 7: 359–390.

4. Martins-Ferreira H, Nedergaard M, Nicholson C (2000) Perspectives on

spreading depression. Brain Res Rev 32: 215–234.

5. Grafstein B (1963) Neural release of potassium during spreading depression. In:

Brazier MAB, editor, Brain Function. Cortical Excitability and Steady

Potentials, Berkeley: University of California Press. pp. 87–124.

6. Reshodko LV, Bures J (1975) Computer simulation of reverberating spreading

depression in a network of cell automata. Biol Cybern 18: 181–189.

7. Tuckwell HC, Miura RM (1978) A mathematical model for spreading cortical
depression. Biophys J 23: 257–276.

8. Dahlem MA, Graf R, Strong AJ, Dreier JP, Dahlem YA, et al. (2010) Two–

dimensional wave patterns of spreading depolarization: retracting, re–entrant,
and stationary waves. Physica D 239: 889–903.

9. Dahlem MA, Isele TM (2013) Transient localized wave patterns and their

application to migraine. J Math Neurosci 3: 7.

10. DiFrancesco D, Noble D (1985) A model of cardiac electrical activity
incorporating ionic pumps and concentration changes. Phil Trans R Soc B

307: 353–398.

11. Dokos S, Celler BG, Lovell NH (1993) Modification of DiFrancesco–Noble
equations to simulate the effects of vagal stimulation onin vivo mammalian

sinoatrial node electrical activity. Ann Biomed Eng 21: 321–335.

12. Kager H, Wadman WJ, Somjen GG (2000) Simulated seizures and spreading
depression in a neuron model incorporating interstitial space and ion

concentrations. J Neurophysiol 84: 495–512.

13. Shapiro BE (2001) Osmotic forces and gap junctions in spreading depression: a
computational model. J Comput Neurosci 10: 99–120.

14. Yao W, Huang H, Miura RM (2011) A continuum neural model for the instigation

and propagation of cortical spreading depression. Bull Math Biol 73: 2773–2790.

15. Bennett MR, Farnell L, Gibson WG (2008) A quantitative model of cortical

spreading depression due to purinergic and gap–junction transmission in
astrocyte networks. Biophys J 95: 5648–5660.
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23. Hübel N, Schöll E, Dahlem MA (2014) Bistable dynamics underlying excitability

of ion homeostasis in neuron models. PLoS Comp Biol 10: e1003551.

24. Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004)
ModelDB: A Database to Support Computational Neuroscience. J Comput
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