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Background. Patients with low-grade glioma (LGG) have a relatively long survival, and a balance is often struck between treating
the tumor and impacting quality of life. While lesions may remain stable for many years, they may also undergo malignant
transformation (MT) at the time of recurrence and require more aggressive intervention. Here we report on a state-of-the-art
multiparametric MRI study of patients with recurrent LGG.

Methods. One hundred and eleven patients previously diagnosed with LGG were scanned at either 1.5 T or 3 T MR at the time
of recurrence. Volumetric and intensity parameters were estimated from anatomic, diffusion, perfusion, and metabolic MR
data. Direct comparisons of histopathological markers from image-guided tissue samples with metrics derived from the
corresponding locations on the in vivo images were made. A bioinformatics approach was applied to visualize and interpret
these results, which included imaging heatmaps and network analysis. Multivariate linear-regression modeling was utilized for
predicting transformation.

Results. Many advanced imaging parameters were found to be significantly different for patients with tumors that had undergone
MT versus those that had not. Imaging metrics calculated at the tissue sample locations highlighted the distinct biological sig-
nificance of the imaging and the heterogeneity present in recurrent LGG, while multivariate modeling yielded a 76.04% accuracy
in predicting MT.

Conclusions. The acquisition and quantitative analysis of such multiparametric MR data may ultimately allow for improved clinical
assessment and treatment stratification for patients with recurrent LGG.
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Infiltrating low-grade gliomas (LGGs) are a class of terminal
central nervous system tumors that comprise malignant neu-
roglia. Histopathological diagnosis of tumor grade is performed
using criteria set by the World Health Organization (WHO) and
is based on factors that include nuclear atypia, proliferative
capacity, tumor neovascularization, and necrosis.1 The clinical
outcome for patients with LGG is variable, with some lesions
following a more indolent disease course, while others
recur more rapidly and often after undergoing malignant trans-
formation (MT) to a higher grade.2 Lesions that have thus trans-
formed to a grade III anaplastic glioma or grade IV secondary
glioblastoma multiforme (GBM) are managed with additional,

more aggressive treatments. To date, little is known regarding
the nature of recurrent disease, and the most significant prog-
nostic factors for patients diagnosed with LGG are the presence
of somatic driver mutations in isocitrate dehydrogenase 1 and 2
(IDH1/2) oncogenes and the codeletion of the 1p and 19q chro-
mosomal arms, which have been associated with increased
survival and sensitivity to the treatment given.2 – 5

IDH mutations have been implicated as an initiating event
in gliomagenesis and are key to reprogramming the tumor
epigenome and metabolome, largely through neomorphic pro-
duction and accumulation of 2-hydroxyglutarate.6 Given uncer-
tainties regarding the effectiveness of options available for
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treating LGGs, IDH mutations have garnered significant attention
as a targetable therapeutic pathway, and there are several novel
therapies on the horizon.7 – 9 Until these therapeutics become
available, the clinical mainstay of treatment for patients with
LGG consists of surgical resection, with radiation therapy and al-
kylating chemotherapy being typically reserved for recurrences
that were either subtotally resected or have undergone MT.

MRI is an integral component of brain tumor diagnosis and
monitoring. Recent advances in state-of-the-art techniques
have enabled the noninvasive assessment of tumor morpholo-
gy and physiology, with primary GBM having been studied most
extensively. Although the ability to noninvasively detect MT
would be of significant clinical interest for diagnosis and treat-
ment planning, few studies have focused on addressing this
question. Multiparametric MRI holds significant promise for
comprehensively characterizing the structural and physiologi-
cal properties of the tumor. We hypothesize that these ad-
vanced imaging techniques may also provide improved
characterization of MT in patients with recurrent LGG.

The objective of this study was to establish multiparametric
MRI profiles of patients with tumors prior to image-guided sur-
gery in order to relate metrics obtained from these methodol-
ogies to histopathological grade. Volumetric regions with
abnormal imaging features were calculated to provide a robust
assessment of the entire recurrent tumor lesion. Regions of vi-
able tumor were targeted for image-guided tissue sampling in
order to associate in vivo parameters with histopathological
features and to strengthen our understanding of the link be-
tween glioma tumor biology and parameters from noninvasive
imaging.

Materials and Methods

Patient Accrual

Institutional review board approval was obtained to study pa-
tients who had an original pathological diagnosis of WHO grade
II glioma. Patients were recruited immediately prior to surgical
resection for a suspected recurrence, when MT to a higher
grade is often observed.

In vivo Multimodal MRI and Spectroscopy

MR examinations were performed on either a 1.5 Tor 3 T EXCITE
GE Signa Echospeed scanner (GE Healthcare Technologies)
using an 8-channel phased-array headcoil (MRI Devices).
Standard anatomic imaging included T2-weighted (fluid atten-
uated inversion recovery [FLAIR] and fast spin echo) as well as
T1-weighted pre- and post-gadolinium (Gd) contrast images.
Diffusion weighted imaging (DWI) was obtained in the axial
plane with 6 gradient directions and twofold acceleration
with sensitivity encoding parallel imaging (repetition time
[TR]/echo time [TE]¼ 1000/108 ms, voxel size¼ 1.7×1.7×
3 mm3, b¼ 1000 s/mm2). Dynamic susceptibility contrast perfu-
sion weighted imaging (PWI) was obtained with a 5 mL/s bolus
injection of 0.1 mmol/kg body weight Gd-DTPA (diethyltriamine
pentaacetic acid) acquired using a series of T2*-weighted echo-
planar images (TR/TE/flip angle¼ 1250–1500/35–54 ms/
30–35 degrees, 128×128 matrix, slice thickness¼ 3–5 mm,
7–15 slices with 60–80 timepoints) before, during, and after

injection. Lactate-edited 3D proton MR spectroscopic imaging
(MRSI) was applied using point-resolved spectroscopic selection
for volume localization and very selective saturation pulses
for lipid signal suppression (approximate excited volume¼
80×80×40 mm3, TR/TE¼ 1104/144 ms, overpress factor¼
1.5, field of view¼ 16×16×16 cm3, nominal voxel size¼ 1×
1×1 cm3, flyback echo-planar readout gradient in the
superior-to-inferior direction, 988 Hz sweep width, and 712
dwell points).10

Postprocessing of MR Exam

The in vivo data were de-identified and transferred to a local
Linux workstation. Software developed in house was applied
to estimate relevant DWI, PWI, and MRSI parameters and nor-
malize between field strengths using estimates from normal
appearing brain tissue (NABT). Normalization factors were de-
fined for each study using the mode of the histogram from
the whole brain minus the region of hyperintensity on T2-
weighted FLAIR images, which was previously shown to be rep-
resentative of values in NABT. Maps of the normalized apparent
diffusion coefficient (ADC) were generated on a voxel-by-voxel
basis according to a published algorithm.11 Perfusion datasets
were nonrigidly aligned using the VTK CISG software package.12

Normalized cerebral blood volume (CBV), percent DR2* signal
recovery (%-REC), DR2* peak height (PH), and recirculation fac-
tor were calculated for each voxel using software developed by
our lab. CBV intensities and PH parameters were obtained by fit-
ting the dynamic perfusion data by a modified gamma-variate
function with a recirculation parameter.13 Peak height and per-
cent recovery values were also estimated using a simplified
nonparametric procedure.14

Lactate-edited MRSI data were reconstructed and the signal
from the individual channels combined to quantify total choline
(tCho), N-acetyl-aspartate (NAA), creatine (Cr), lactate (Lac),
and lipid (Lip) levels. The values of the Cho-to-NAA index (CNI)
and the Cho-to-Cr index (CCRI) were generated from a linear re-
gression–based algorithm, which represents changes in Cho and
NAA or Cr levels compared with voxels in NABT. Excess choline
(exCho) and excess creatine (exCr) values were calculated
using the formulas (tCho-[tCho/NAA]NABT * NAA)/tCho NABT and
(Cr-[Cr/NAA] NABT * NAA)/Cr NABT,15 respectively. Imaging data
were aligned to the post-Gd scan using the Linear Image Regis-
tration Tool of Functional Magnetic Resonance Imaging of the
Brain. Anatomic imaging was resampled for overlay with DWI,
PWI, and MRSI, and the software package by SIVIC (Spectro-
scopic Image Visualization and Computing) was used to select
target locations for intraoperative tissue sampling.16 An example
of the multimodal MRI data is shown in Fig. 1.

Tissue Sample Acquisition

Tissue sample targets were planned for each patient based on
surgically accessible regions of abnormally decreased ADC, de-
creased %-REC, and increased PH and CBV, as well as elevated
CNI, which are expected to represent viable, cellular regions of
tumor with elevated proliferation and neovascularization.
These locations were designated as 5-mm-diameter spherical
targets on coregistered MRIs using Brainlab surgical navigation
software. Intraoperative navigation guided the neurosurgeons
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to these locations, and tissue samples were excised if possible
to do so safely. A research assistant was present in the operat-
ing room to obtain 3D screenshots and coordinates of the pre-
cise location where the tissue sample was removed. Samples
were immediately bisected, with half being fixed in 10% zinc
formalin, dehydrated by graded ethanols, and embedded in
Paraplast Plus wax (McCormick Scientific) using standardized
techniques for tissue processing and immunohistochemistry,
and the other half being snap-frozen in liquid nitrogen and
stored at 808C for 1H high-resolution magic angle spinning
spectroscopy. The results of the ex vivo metabolic analysis of
a subset of these patients have been published by our group
in previous manuscripts.17 – 19

Histopathology and IDH Analysis

Tissue samples were reviewed and scored for standard WHO II
criteria by a board-certified neuropathologist. Antibodies used
in the assessment of the samples and histological scoring are
described in the Supplementary material.20

Analysis of MR Parameters

Volumetric regions of interest (ROIs) were defined manually for
the T2 hyperintensity (T2ALL), contrast enhancement, necrosis,

and nonenhancement throughout the entire tumor lesion.
In-house software was applied to quantify normalized intensity
values at a patient level within each T2 lesion and to evaluate the
10th percentile, median, and 90th percentile values of parame-
ters estimated from DWI, PWI, and MRSI. T1 difference subtrac-
tion images were obtained through registration and subtraction
of the T1 precontrast images from the T1 postcontrast images
after normalization to make their intensities consistent.

To assess variations in the spatial extent of the anatomic le-
sion, the volumes of regions with intensities in the T1 post-Gd
image from the contrast enhancing lesion ROI .1.2× NABT
(T1c12) or .1.2× NABT in the image obtained after T1 differ-
ence subtraction (T1s12) were evaluated. Additionally, we an-
alyzed volumes of regions with abnormal ADC, the normalized
ADC ,1.5 or ,1.25 times NABT in the T2ALL (ADC15, ADC125);
the perfusion volumes of normalized CBV .2 or .3 (CBV2,
CBV3), nonparametric PH .2 or .3 (PH2, PH3); spectroscopy
volumes of CNI .2 or .3 within the T2ALL (CNI2t, CNI3t),
and the region with CNI .2 or .3 that overlapped with
T2ALL (CNI2p, CNI3p).

To compare imaging parameters with histological findings,
normalized intensity values were calculated at the individual
tissue target locations using 5 mm spherical ROIs. Additional
perfusion analysis is presented in the Supplementary
material.21

Fig. 1. Multimodality MRI exam of a subject with a recurrent LGG that had undergone MT. Neurosurgical tissue targets were planned based on
regions of suspected tumor using additional functional MR techniques. The imaging revealed a heterogeneously enhancing region of recurrent
tumor situated in the left posterior temporal and parietal white matter. An additional, masslike non–contrast enhancing region of residual
tumor was also seen in the left insular white matter. This lesion was consistent with residual low-grade neoplasm with marked differences in
ADC, PH, and CNI (abnormal regions highlighted in white).
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Heatmap Generation

Histopathology data were categorized by histology and grade
and imported into Gitools version 2.2.1 (www.gitools.org),22

and a linear, hierarchical clustering algorithm was performed
within grade as well as within grade and histological subtype.
Heatmaps of abnormal imaging volumes were similarly gener-
ated based on the difference from the median values within
each parameter and normalized by the 90th percentile for rel-
ative visualization.

Statistical Analysis

A Wilcoxon rank sum test was used to assess the statistical signif-
icance of imaging parameters between lesions that had remained
grade II and those that had undergone MT. Kaplan–Meier curves
were generated using Stata version 11.23 If the curves did not
cross, the association of parameter and outcome was assessed
via the log-rank test, otherwise the Tarone–Ware test was
employed. Statistical significance was assessed at P , .05.

In order to identify variables that could play a role in predict-
ing MT, we built logistic regression models implementing a for-
ward/backward selection process using the minimum Akaike
information criterion in JMP Pro 11.0. Among anatomic, diffu-
sion, perfusion, and spectroscopic modalities there were a
total of 80 variables included in this selection process, which in-
cluded both volumetric and intensity measurements. This pro-
cess indicated around a dozen variables for a logistic model,
which decreased the smallest outcome group to 40–50 pa-
tients due to missingness in the variables. To maximize the
number of patients included, we constrained the final predictive
models to at most 4 variables. We chose models for which (i)
variables came from multiple different imaging modalities
and (ii) prediction error rate estimations via leave-one-out
cross-validation on our patient dataset were minimized. A cus-
tom R script (version 3.1.2)24 was used to iterate over the dif-
ferent variable combinations to determine several models that
satisfied these criteria. The model presented in the results had
the lowest overall error rate of those generated.

The Kendell’s-tau rank correlation test was used to assess
pairwise correlations between tissue sample level histopathol-
ogy and imaging parameters. The Holmes step-down algorithm
was used to determine a conservative cutoff of P , .00008 to
account for multiple testing in our correlation analysis. Network
analysis and visualization were performed using Cytoscape ver-
sion 3.2.0 (www.cytoscape.org).25 Due to the exploratory

nature of this type of network analysis, a cutoff value of P ,

.05 was applied for that component.

Results

Characterization of Patient Population with Recurrent
Low-Grade Glioma

A total of 120 patients with recurrent LGG were initially recruit-
ed into the study. Nine patients were excluded due to diagnosis
inconsistent with LGG, leaving 111 patients available for analy-
sis. Ten patients received scans at 2 distinct recurrence time-
points, giving a total of 121 scans for analysis. Ninety percent
of scans (109/121) were performed using a 3 T scanner, while
10% (12/121) were scanned at 1.5 T. The population included
54 females and 57 males, with a median age of 36 years (range
15–70) at their original diagnosis and 43 years (range 18–70)
at the current surgery. Age was not found to be associated with
tumor grade. The median time from diagnosis to the surgery
being considered was 2244 days (6.1 y); and for the patients
who had records available, 26% had received prior radiation
therapy, while 43% had been treated with temozolomide and
25% with other experimental agents. For the majority of cases,
there had been one or more prior recurrences, but the surgery
considered was the first since their original diagnoses. It was
observed that 59% of scans were of patients who had under-
gone MT to a higher-grade lesion: 50 patients (41%, 92 tissue
samples) remained grade II, while 55 patients (46%, 107 tissue
samples) had upgraded to anaplastic glioma (grade II � III)
and 16 patients (13%, 37 tissue samples) to secondary GBM
(grade II � IV). There were 55 subjects with astrocytoma, 45
with oligodendroglioma, and 21 with mixed oligoastrocytoma
histological subtypes (Table 1). IDH mutation status was as-
sessed in 100 patients with sufficient size tissue, with 19 pa-
tients (19%) having lesions that were IDH wild-type and 81
patients (81%) having lesions that were mutated. Deletion sta-
tus for 1p-19q had been evaluated for 61 patients, of whom 33
(54%) were codeleted and 28 (46%) were not. A total of 52 pa-
tients had p53 mutation status assessed, among whom 37
(71%) were mutated.

For patients who had clinical follow-up available (109/113),
the median progression-free survival (PFS) from the time of the
current surgery was 27 months (95% CI: 21–32 mo), with the
time for subjects who remained grade II being 28 months (95%
CI: 21–40 mo), those in the grade II � III cohort being 31

Table 1. Recurrent LGG presurgical scans by grade and histopathological subtype

Grade Total Patient Scans (samples) Astrocytoma (samples) Oligodendroglioma (samples) Oligoastrocytoma (samples)

Acquired All 130 (251) – – –
Excluded All 9 (15) – – –
Analyzed All 121 (236) 55 (105) 45 (85) 21 (46)

II 50 (92) 9 (16) 29 (52) 12 (24)
II�III 55 (107) 30 (52) 16 (33) 9 (22)
II�IV 16 (37) 16 (37) – –

The population comprised astrocytoma, oligodendroglioma, and mixed oligoastrocytoma histological subtypes. Nine patients and 15 tissue
samples were excluded due to their having diagnoses other than LGG. Ten of the 121 patient scans were done at 2 distinct recurrences.
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months (95% CI: 19–46 mo), and those in the grade II � IV
cohort being 13 months (95% CI: 3–19 mo). PFS and overall
survival (OS) curves are presented in Fig. 2. Although there
was insufficient follow-up to assess the median OS for the co-
hort that remained grade II, the median OS for the grade II �
III cohort was estimated to be 52 months (95% CI: 38 mo, with
25 subjects dead and 26 subjects censored) and for the grade

II � IV cohort 22 months (95% CI: 12–26 mo and all 18 sub-
jects having died).

Findings from Presurgery Anatomic MRI

The right-hand rows in the heatmap shown in Fig. 2C give a vi-
sual interpretation of the volumetric imaging data from

Fig. 2. Heatmaps of volumetric MR parameters and clinical outcome of recurrent LGG. Kaplan–Meier curves generated from (A) OS and (B) PFS
demonstrated statistically significant differences among WHO grades for OS between grade II and grade II � III (P¼ .006), grades II/II � III and
GBM (P , .001), while PFS only distinguished GBM from grade II and grade II � III lesions (P , .001). (C) The heatmap generated from patient
scans (rows) and hierarchical clustering revealed subgroups of grade II and grade III lesions that displayed abnormal imaging features similar
to GBM. Zero volume is shown in blue and approximately twice the median normalized volume is shown in red. Header column denotes the
mean parameter value. Gray cells denote cases where there were no data available. NEL, nonenhancing lesion; CEL, contrast enhancing lesion;
NEC, necrosis.
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individual subjects, and Fig. 3 shows summary parameters sep-
arated by grade and histological subtype. Recurrence with larg-
er T2 lesions was associated with a higher probability of MT (see
Supplementary Table 1). The median volume of the T2 lesions
for the 47 subjects who remained grade II was 15.6 cc; for
the 47 subjects in the grade II � III cohort, 30.9 cc; and for
the 18 subjects in the grade II � IV cohort, 69.7 cc. Only 8 of
the lesions had visually identifiable regions of necrosis, which
corresponded to 4 lesions with a diagnosis of grade III oligo-
dendroglioma and 4 lesions with a diagnosis of GBM.

Of the cohort that remained grade II, only 13/47 (28%) were
characterized as having small regions of enhancement on post-
contrast T1-weighted images, while 23/47 (49%) of the grade II
� III cohort were enhancing, and all of the lesions for the
grade II � IV cohort were enhancing. Visual assessment of

the volume of contrast enhancement, as well as analysis of
intensities in the postcontrast T1-weighted image and in T1

subtraction images indicated that these regions were relatively
small compared with the T2 lesion but were larger for cases
that had undergone MT. Oligodendrogliomas tended to have
modest T2 lesion volumes but were more likely to have regions
of contrast enhancement (69% of the grade II � III oligoden-
drogliomas compared with 37% of the grade II � III astrocy-
tomas; see Fig. 3A and B). Univariate statistical analysis
indicated that several parameters derived from the histograms
of intensities within the T2 lesion were also significantly differ-
ent between lesions that remained grade II and those that had
undergone MT. These included the median and 90th percentile
values from T1 subtraction and T1 postcontrast images (as
presented in Supplementary Table 1).

Fig. 3. Differences in lesions that had undergone MT. The bar plots represent median differences of volumetric imaging parameter values among
the various histological grades and subtypes. Error bars are representative of the 25th and 75th percentiles. Statistical significance was assessed
using a Wilcoxon rank sum test at P , .05 (*), P , .01 (**), and P , .005 (***).
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Findings from Presurgery Diffusion Weighted MRI

Analysis of diffusion parameters within the T2 lesion indicated
that the 10th percentile of the ADC and radial diffusion (l-rad)
were significantly lower for lesions that had undergone MT.
While this trend held for all 3 histological subtypes, it was
noted that oligodendroglioma lesions had lower median ADC
values than astrocytomas. As can be seen in Supplementary
Table 1, the larger overall T2 lesion volumes and lower ADC val-
ues associated with MT translated to the diffusion volume met-
rics (ADC15, ADC125) for these lesions being significantly larger
relative to lesions that had remained grade II. When separated
based on histological subtype, it was noted that astrocytomas
transforming to grade III had median ADC15 volumes that
were similar to those remaining grade II (Fig. 2C). The heatmap
in Fig. 2 also reveals that a subset of the lesions that remained
grade II had similar diffusion volumes as their higher-grade
counterparts.

Findings from Presurgery Perfusion Weighted MRI

As shown in Supplementary Table 1, the 90th percentile CBV
values and 75th percentile nonparametric PH values were sig-
nificantly higher for lesions that had undergone MT. When con-
sidering the volumes of regions with elevated CBV and PH
within the T2 lesion, it was clear that lesions transforming to
GBM and to grade III oligodendroglioma also had larger abnor-
mal perfusion volumes (CBV2, CBV3, PH2, and PH3; Fig. 2D).
Interestingly, as can be seen in the heatmap, the same group
of patients who had remained grade II and who had larger
diffusion volumes also had larger abnormal perfusion volumes.

Findings from Presurgery Spectroscopic Imaging Data

Although there were fewer patients for whom presurgery spec-
troscopic imaging data were acquired (83/113), there were a
number of metabolic intensity parameters significantly differ-
ent for lesions that had undergone MT. These included the me-
dian, 90th percentile, and maximum values of exCho; 90th
percentile and maximum values of CCRI; maximum values of
CNI and tCho levels; and the minimum and 10th percentile val-
ues of Cr (Supplementary Table 1). The volumes of abnormal
metabolism (CNI2t, CNI2p, CNI3t, and CNI3p) were all assessed
as significantly larger for cases that had undergone MT. As was
the case with abnormal perfusion volumes, the same group of
subjects who had larger abnormal diffusion volumes also had
larger metabolic lesions (Fig. 3). When evaluated by histological
subtype, oligodendrogliomas tended to have lower CNI, Lac,
and Lip than astrocytomas and oligoastrocytomas. The sub-
jects with lesions that had transformed to GBM had the highest
integrated CNI, Lac, and Lip values in the CNI2t region (Fig. 2F).

Multivariate Analysis of Imaging Parameters

In an effort to provide predictive modeling that utilized the
strongest statistical differentiators of MT, we developed several
multivariate logistical regression models utilizing parameters
that spanned multiple MR modalities and both volumetric
and intensity parameter measurements. Although there were
several models that provided comparable results, the one

with the highest overall accuracy included estimates of the
10th percentile of Cr in regions with CNI .2; the volume of
ADC .1.5× that of NABT divided by the T2ALL volume; the me-
dian ADC in the T2ALL region; and the 10th percentile fast spin
echo in the T2ALL. This model had a predictive accuracy of
76.04%, with a 10.42% false-negative and 13.54% false-
positive rate (Supplementary Fig. 1). Lesions that were misclas-
sified corresponded to 17% of the astrocytomas, 20% of the
oligoastrocytomas, and 35% of the oligodendrogliomas, sug-
gesting that there may be differences among the histological
subtypes which influence the accuracy of the model.

Differences in Histopathological Parameters with Grade
and Subtype

To examine the histopathological features associated with re-
current LGG, we produced a heatmap based on the neuropathol-
ogy assessment of each of the image-guided tissue samples
(Fig. 4). As expected, tissue samples that had undergone MT
were characterized by increased measures of relative tumor
content (T-score), proliferation (MIB-1), and axonal disruption
(SMI-31). Interestingly, several image-guided tissue samples
from WHO grade II oligodendrogliomas contained very elevated
MIB-1 scores of 10%–20%, two of which were .20%. Thus,
image-guided sampling identified tumor regions with MT that
clinical sampling did not. Anaplastic glioma and secondary
GBM samples were characterized by increased hypoxic condi-
tions (carbonic anhydrase 9), the presence of neovasculariza-
tion, and necrosis, which was found primarily in GBM samples.

Correlation of Histopathology and In vivo Imaging
Parameters

Analysis of imaging intensities that were calculated at the spa-
tial location of the tissue sample excision with histopathology
scores provided insight into the biological underpinnings of
specific MR-based imaging measurements (Supplementary
Table 2). ADC values from DWI were inversely correlated with
cell proliferation. Nonlinear CBV and nonparametric PH were
correlated with cell density, mitotic figures, and hypoxia. Met-
rics of T1 imaging (T1c, T1s) were also correlated with mitotic
figures and simple vascular hyperplasia, while T1 contrast en-
hancement was correlated with necrosis.

Visual network maps that were generated based on
Kendell’s-tau correlations are presented in Fig. 5. High levels
of connectivity and decreased average edge length within dif-
fusion (l-rad, ADC), perfusion (PH, CBV, %-REC), and anatomic
T1 imaging metrics (T1c, T1s) were observed, as well as MRSI
measures of excess Cho-to-Cr indices (exCCRIs) in the complete
multimodal imaging and histopathology network (Fig. 5A). Due
to increased centrality and connectivity in these parameters,
these metrics may provide an increasingly objective assess-
ment of tumor histopathology.

To better assess the specific nature of the various imaging
modalities, we generated modality-specific networks (Fig. 5B–
E). The anatomic imaging metrics were highly central and shared
edges with several pathological measures of tumor; however,
the T1 imaging correlated more specifically with necrosis and
vascularization and the fast spin echo with hypoxia. The diffusion
network consisted of 2 major clusters, with the larger containing
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both ADC and l-rad and being associated with several measures
of proliferative tumor. The presence of normal, delicate vascu-
lature was correlated with ADC values, while necrosis shared
a node with l-rad and the second, smaller cluster around
fractional anisotropy, T-score, and SMI-31. In the perfusion net-
work, nonlinear CBV held common edges with all histopatholo-
gy parameters, while PH and %-REC were each correlated with
several distinct nodes. In the metabolic imaging correlation
network, measures of CCRI and exCCRI had the highest levels
of connectivity with histopathology, and increased dispersion
and specificity were observed among the other metabolites.

Discussion
This study demonstrated the feasibility of utilizing multipara-
metric MRI to identify patients with recurrent LGG whose
lesions had undergone MT. Quantitative analysis of anatomic,
diffusion, perfusion, and metabolic images provided parame-
ters that described lesion volumes and the magnitude of
abnormal intensities relative to normal appearing brain within

the same individual. A bioinformatics approach was applied for
data visualization, with heatmaps and networks proving helpful
in summarizing and interpreting variations in the relatively
large number of parameters and complex information con-
tained within the data. The tools that were developed and
the metrics that they produce may be helpful for evaluating
temporal changes within the lesion during routine patient
follow-up or when surgical resection is not feasible.

When considering all patients as a single group, we found
many multivariate models with similar accuracy for predicting
grade II versus transformation of grade II � III or of grade II
� IV. The model with the lowest error rate assessed by cross-
validation had an accuracy of 76%. Given that there were differ-
ences in imaging and histological parameters among different
subtypes and that transformation to grade IV had the biggest
impact upon survival, a second cohort of patients are now
being accumulated to allow further tests of these models
and exploratory analyses that include partitioning patients
into more specific subgroups.

The imaging heterogeneity found within this patient popu-
lation illustrates the challenges that exist for clinicians in

Fig. 4. Heatmap of image-guided tissue samples. (A) To assess the biological features within each distinct histology, the neuropathology data were
separated by glioma subtype and used hierarchical clustering within each grade. Based on image-guided targeting criteria, several grade II
samples were identified that had an unusually high MIB-1 score, and 2 grade III astrocytomas or mixed oligoastrocytomas (OA) had necrosis
present. Although few in number, these examples highlight the utility of image guidance to improve tumor sampling. A portion of grade III
oligodendroglioma patients had elevated carbonic anhydrase 9 (CA-9) scores of hypoxia. (B) When evaluating the entire mixed population of
glioma histologies, we observed a decrease in normal, delicate vasculature (delicate v.), and increases in the presence of simple and complex
neovascularization (simple v. and complex v.) were noted within a subset of tumors that had undergone MT.
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Fig. 5. Network linkage map of histopathology and advanced imaging of image-guided tissue samples. Nodes were color coded using meta-labels of angiogenesis, proliferation/invasion,
and microenvironment for histopathology parameters as well as by modality for imaging parameters. Node size corresponds with average shortest path length. Imaging nodes are
presented as hexagons and histopathology nodes as circles. Although imaging and histopathology parameters were intracorrelated, only edges between histopathology and
imaging were generated for clarity of network visualization. Red connections denote negative correlation.
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interpreting imaging findings from a subject with suspected re-
currence, where the results obtained are reflective of both
inherent and therapy-driven features of the tumor.26 Based
on the heterogeneity of the histological findings for the image-
guided tissue samples, it is clear that surrogate noninvasive
markers of proliferation, angiogenesis, and invasion are likely
to be important for making decisions about both upgrade sta-
tus and the effectiveness of different treatments. The correla-
tions between imaging and histological parameters observed in
our study provide strong evidence that integrating metrics
derived from multiparametric imaging can be helpful for as-
sessing spatial heterogeneity within the lesion. Of particular in-
terest is the ability to use maps of CBV, ADC, and CNI from the
presurgery imaging examination to target tissue sampling to
regions that are likely to be the most malignant. The criteria
that were used in our study selected regions of CBV .2, ADC
,1.5, and CNI .3. While it was not always possible to obtain
tissue from these exact locations, the relatively high yield
with positive tumor scores (201/212) indicates that this was a
successful strategy.

Our previous work in patients with high-grade gliomas
showed that several of the imaging metrics used in the current
study were associated with PFS and OS.15 It is too early to say
whether the subset of lesions that remained grade II but had
similar imaging characteristics as those that upgraded had
worse OS. Future studies will investigate this possibility.
Although the current definition of tumor grade based upon
WHO II criteria has been driving decisions about when to use
more aggressive therapy, recent studies have suggested that
molecular markers such as IDH and TERT mutations provide a
better assessment of prognosis.27,28 Because the majority
(79%) of the patients in our study were IDH mutated, it was
not possible to determine whether IDH status was an impor-
tant factor in driving outcome. Future studies will be designed
to include a full analysis of genomic and epigenetic markers
that have been shown to be relevant to the natural history
and response to treatment for LGG. This will shed light on the
nature of the clonal outgrowths present in recurrent lesions and
how they influence imaging. The long-term goal of this and
future studies is to improve our understanding of the evolution
of malignant glioma and the clinical management of such
patients.

Supplementary Material
Supplementary material is available online at Neuro-Oncology
(http://neuro-oncology.oxfordjournals.org/).
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