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Mediation analysis relies on an untestable assumption of the no omitted confounders,
which posits that an omitted variable that confounds the relationships between the
antecedent, mediator, and outcome variables cannot exist. One common model in
alcohol addiction studies is a nonrandomized latent growth curve mediation model
(LGCMM), where the antecedent variable is not randomized, the two covarying
mediators are latent intercept and slope modeling longitudinal effect of the repeated
measures mediator, and an outcome variable that measures alcohol use. An important
gap in the literature is lack of sensitivity analysis techniques to assess the effect of
the violation of the no omitted confounder assumption in a nonrandomized LGCMM.
We extend a sensitivity analysis technique, termed correlated augmented mediation
sensitivity analysis (CAMSA), to a nonrandomized LGCMM. We address several
unresolved issues in conducting CAMSA for the nonrandomized LGCMM and present:
(a) analytical results showing how confounder correlations model a confounding bias,
(b) algorithms to address admissible values for confounder correlations, (c) accessible
R code within an SEM framework to conduct our proposed sensitivity analysis, and
(d) an empirical example. We conclude that conducting sensitivity analysis to ascertain
robustness of the mediation analysis is critical.

Keywords: mediation analysis, sensitivity analysis, no omitted confounder assumption, latent growth analysis,
structural equation model (SEM)

INTRODUTION

Mediation analysisC has become more common in analyzing complex causal chains in health and
psychological studies. One common model in alcohol addiction studies (e.g., Moyers et al., 2009;
Hartzler et al., 2011; Maisto et al., 2015) is a nonrandomized latent growth curve mediation model
(LGCMM; von Soest and Hagtvet, 2011). The LGCMM, as shown in Figure 1, hypothesizes that
a nonrandomized antecedent variable (pain) influences both mediators (i.e., mean negative affect
and monthly rate of negative affect); these mediators, in turn, cause an outcome variable (alcohol
use). Further, the antecedent variable can be also randomized (randomized mediation model).
A critical, yet untestable assumption in any mediation model, including the LGCMM, is the no
omitted confounder assumption (Judd and Kenny, 1981; Robins and Greenland, 1992; Pearl, 2014;
MacKinnon and Pirlott, 2015; Valente et al., 2017). A no omitted confounder assumption states
that an omitted variable (confounder) may not exist if it confounds the relationships among the
antecedent, mediators, and outcome variable. In a randomized mediation model, this assumption
implies that, by properly randomizing the antecedent variable, we can rule out the effect of a
confounder on the antecedent variable to the mediators and on the outcome variable relationships
but not on the mediators to outcome relationships. In a nonrandomized mediation model, however,
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FIGURE 1 | Latent growth curve mediation model (LGCMM). The antecedent
variable (X ) was pain at 4 months after treatment. The two covarying
mediators were the latent intercept (η0 = mean negative mood at 4 months)
and slope (η1 = monthly rate of negative affect) for the repeated measures of
negative affect. The outcome variable (Y ) measures percent drinking days
(PDD) at 16 months. C denotes a set of covariates (e.g., background
variables). A single-headed arrow shows the direct effect of a variable at the
origin on the variable at the end of the arrow. A curved double-headed arrow
shows covariance between the two residuals.

an omitted confounder can influence all the relationships among
antecedent variable, mediators, and outcome variable. As a result,
it is more challenging to assess the impact of violating the
no confounding assumption because the additional patterns
of confounding can happen with a nonrandomized mediation
model when that model is compared to a randomized mediation
model. Because the no omitted confounder assumption is not
testable and because the proper randomization of the antecedent
and mediator variables is absent, researchers have recommended
sensitivity analysis (Imai et al., 2010; VanderWeele and Arah,
2011; Tofighi et al., 2013, 2019; Albert and Wang, 2015;
VanderWeele, 2015; Tofighi and Kelley, 2016). A sensitivity
analysis assesses the impact of various degrees of violation of
the no omitted confounder assumption on the model parameter
estimates and on any inferences about the indirect effects.

Despite the prevalence of nonrandomized longitudinal
mediation studies in areas such as alcohol addiction (e.g., Moyers
et al., 2009; Hartzler et al., 2011; Maisto et al., 2015), most
research attention has been on randomized mediation model
in both multilevel/longitudinal and single-level data as a means
of improving causal inference. In fact, to our knowledge, no
study to date has offered a method to conduct sensitivity
analysis for a nonrandomized longitudinal mediation model
with two covarying mediators in a structural equation model
(SEM), a multivariate framework to study covariance structure.
Previous research mostly focused on the sensitivity analysis
for a randomized model with a single-level data in SEM or
in a potential outcome framework (Imai et al., 2010; Cox
et al., 2013; Albert and Wang, 2015; Valente et al., 2017; Hong
et al., 2018; Lindmark et al., 2018; McCandless and Somers,
2019). For a mediation model with two independent mediators,
Imai and Yamamoto (2013) studied sensitivity analysis and
strongly assumed independence between the two mediators;
their technique, however, cannot be directly applied to a
model with covarying mediators as it could result in bias
in estimating indirect effects (VanderWeele, 2015). Several
studies proposed randomized and nonrandomized sensitivity

analysis for sequential mediation models, where one mediator
is assumed to sequentially cause another mediator, in both
randomized (Imai and Yamamoto, 2013; Daniel et al., 2015)
and nonrandomized models (Harring et al., 2017). Because
of the strong assumption that the mediators are measured
in chronological order, the model specification, interpretation,
and sensitivity analysis techniques developed for a sequential
mediation model are not directly applicable to a model with
covarying mediators, where the mediators freely covary but
do not causally impact one another. In multilevel/longitudinal
mediation analysis, methods to conduct sensitivity analysis
have been proposed for nonrandomized (Tofighi and Kelley,
2016) and for randomized single-mediator model (Bind et al.,
2016; Talloen et al., 2016). For two mediators, Tofighi et al.
(2019) proposed an SEM-based sensitivity analysis method for
a randomized LGCMM. However, Tofighi et al. (2019) did
not consider a nonrandomized model where a confounder can
influence a pair of relationships among antecedent variable,
mediators, and outcome variable. To our knowledge, no study
to date has extended sensitivity analysis to a nonrandomized
LGCMM in an SEM framework.

Nonrandomized LGCMM poses interwoven challenges
compared to either single-level or longitudinal randomized
models. First, nonrandomization means a confounder can
impact the antecedent as well as the mediators and the
outcome variable. Thus, a confounder may impact not only the
relationships between the mediators and the outcome variable
(as in a randomized mediation model) but also may affect
additional relationships of the antecedent to each mediator
variable and to the outcome variable. This potential influence
poses two additional challenges. The first issue is how to
model and estimate biasing impact of a confounder on the
antecedent variable in an SEM framework if the antecedent
variable is exogenous. In a situation where an antecedent
variable is exogenous, the covariates, if they exist, do not
influence the antecedent variable. This is a critical issue to
address in sensitivity analysis because, in an SEM framework for
mediation analysis, an antecedent variable (randomized or not)
is generally modeled as an exogenous (and fixed) rather than an
endogenous (and random) variable when the covariates are not
assumed to influence the antecedent variable. The challenge is
to propose a method to convert the antecedent variable without
a predicting covariate that is modeled as an exogenous variable
into an endogenous variable so that potential impact of omitted
confounder on the antecedent variable can be modeled through
a confounder correlation.

The second challenge arises because of the additional
relationships that can be influenced by a confounder in a
nonrandomized model compared to a randomized model. In
this instance, conceptualizing, estimating, and interpreting all the
confounding relationships and their impacts on the indirect effect
estimates will be more complicated than any other sensitivity
analysis that has been performed. Also, in a longitudinal model,
the repeated measures are correlated; thus, special techniques
such as multilevel modeling (Raudenbush and Bryk, 2002) are
required to account for lack of independence and to make
correct inference about uncertainty of the parameter estimates. In
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addition, because of the multilevel structure of data, confounders
can impact the model variables at different levels of aggregation
(Tofighi and Kelley, 2016), and, thus, techniques developed for
a single-level model may not be directly applicable. Further, the
existence of two covarying mediators requires that the indirect
effect through each mediator be simultaneously estimated.
Conducting sensitivity analysis for each mediator separately
while ignoring the other covarying mediators, as is done in a
single-mediator model, is likely to result in bias because the two
mediators are covarying (VanderWeele, 2015). Thus, techniques
developed for a single-mediator model cannot be directly used
to conduct sensitivity analysis in a two covarying mediator
model. Lastly, given a variety of patterns of confounding bias,
summarizing the impact of confounding bias succinctly enables
researchers to assess sensitivity of the parameter estimate as
well as statistical inference to the confounding bias. Given the
importance of nonrandomized longitudinal model in practice
and the unresolved practical and theoretical issues that hinder
conducting sensitivity analysis for such models, proposing
a method on how to conduct sensitivity analysis that can
be implemented in SEM framework using available software
packages is critical.

In this paper, we extend a sensitivity analysis technique
from a randomized longitudinal mediation model to a complex,
nonrandomized longitudinal mediation model, such as the
model illustrated in Figure 1, in an SEM framework. More
specifically, we extend a technique, termed correlated augmented
model sensitivity analysis (CAMSA), that was developed for a
randomized longitudinal mediation model to conduct sensitivity
analysis in nonrandomized longitudinal mediation model with
two covarying mediators (Tofighi et al., 2019). The extended
CAMSA augments a nonrandomized mediation model with
confounder correlations induced by a hypothesized confounder
and addresses the unresolved challenges mentioned previously
in modeling the biasing impact of the confounder bias. We
present analytic results showing the confounder correlations
are a function of omitted confounder relations to the model
variables; we thereby show how the confounders correlations
can be used to estimate confounding biases. We further present
results on how to model and estimate confounder correlations in
a nonrandomized longitudinal mediation model using the lavaan
package (Rosseel, 2012), an opensource, freely available SEM
package within the R statistical computing software framework
(R Development Core Team, 2020). We present R code along
with detailed instruction and an empirical example on how
to conduct, interpret, and present the results of this proposed
sensitivity analysis1.

SENSITIVITY ANALYSIS FOR
NONRANDOMIZED MEDIATION MODEL

In this section, we extend CAMSA to conduct sensitivity analysis
for LGCMM (Figure 1). For simplicity but without loss of

1The R script for our proposed CAMSA for the empirical example is provided in
the online Supplementary Material.

generality, we consider an LGCMM without any covariates.
However, the results presented in this section will hold when
adding the covariates to LGCMM in Figure 1 as we will
demonstrate in the empirical example section. A crucial step
in CAMSA is to specify a set of confounder correlations; a
confounder correlation is used to model the impact of the
omitted confounders on the model parameters. More specifically,
confounder correlations are specified between the residuals
associated with the endogenous variables (i.e., the variables with
arrows pointed toward them). In extending CAMSA to the
nonrandomized LGCMM, we faced several challenges. First, we
needed to determine how to specify confounder correlations
between an antecedent variable, which is an exogenous variable
with no residual term, and the residuals associated with the
endogenous variables in the model. This step is required
because CAMSA uses confounder correlations to model biasing
confounder effects. Second, we found a lack of clarity about
whether the confounder correlations are uniquely a function
of the confounder effects on the model parameters or whether
they are also a function of the existing relationships between
the variables. Clarifying such relationships would elucidate what
confounder correlations are modeling. Thus, it is necessary to
analytically demonstrate relationships between the confounder
correlations and the effect of the confounder on the model
parameters. Third, because of an infinite number of the
combinations of confounder correlations, we were challenged
to find plausible values for confounder correlations that are
admissible and practical. In finding admissible values, we employ
and implement different methods such that the correlation
matrix is positive definite. To find sensible values, we propose
steps to explore a finite set of plausible confounder correlation
patterns as opposed to examining an infinite number of patterns;
thus, we provide a more accessible way for researchers to
conduct and interpret sensitivity analysis when facing an infinite
number of choices for confounder correlations. In the next
section, we introduce and extend CAMSA to the nonrandomized
LGCMM. We then present formulae for computing confounder
correlations in CAMSA. Next, we show equivalency between
the correlated augmented model and a latent augmented
model, an LGCMM that models a confounder explicitly.
Finally, we present methods to generate admissible confounder
correlations for CAMSA.

CAMSA
To conduct CAMSA and address the challenges outlined above,
we first specify the correlated augmented model, which adds to
the original LGCMM (Figure 1) with the confounder correlations
as shown in Figure 2. But first, we address the challenge that, in
the model in Figure 1, the antecedent variable is not endogenous
variable but is an exogenous variable without a residual term.
To solve this issue, we introduce a residual term εxi for the
antecedent variable X. To ensure that the model is identified,
we fix variance of the residual term to equal the variance of the
antecedent variable. The residual term would explicitly specify
the antecedent variable as an endogenous variable as opposed
a “fixed” exogenous variable that tends to be a default setting
in SEM software packages. That is, specifying this residual term
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FIGURE 2 | Correlated augmented LGCMM. The antecedent variable (X ) was
pain at 4 months after treatment. The two covarying mediators were the latent
intercept (η0 = mean negative mood at 4 months) and slope (η1 = monthly
rate of negative affect) for the repeated measures of negative affect. The
outcome variable (Y ) measures percent drinking days (PDD) at 16 months.
A single-headed arrow shows the direct effect of a variable at the origin on the
variable at the end of the arrow. A solid double-headed arrow shows
covariance between the two residuals. A dashed doubled headed arrow
shows confounder covariance (correlation) between the residuals.

will convert the role of the antecedent variable from exogenous
to endogenous, thus permitting us to specify the confounder
correlations between the antecedent variable residual term and
the other residual terms in the model. Now, we can model
confounder bias as the confounder correlations among all the
residual terms of the endogenous variables. In addition, by
converting the antecedent variable to an endogenous variable, we
can manipulate elements of the covariance matrix of endogenous
variables. Below we present the equations for this model where
Eq. (1) demonstrates specification for converting the antecedent
variable into an endogenous variable. The superscript “∗∗”
denotes the parameters for the correlated augmented model2.

xi = α
∗∗
3 + ε

∗∗
xi (1)

mij = ηi0 + ηi1 tij + e∗∗ij (2)

ηi0 = α
∗∗
0 + γ

∗∗
01 xi + ζ ∗∗0i (3)

ηi1 = α
∗∗
1 + γ

∗∗
11 xi + ζ ∗∗1i (4)

yi = α
∗∗
2 + λ

∗∗
1 xi + λ∗∗2 ηi0 + λ

∗∗
3 ηi1 + ε

∗∗
yi (5)

In the above equations, subscript i denotes person i = 1, . . ., N,
and subscript j denotes an occasion for the repeated measures
variable mij where j = 1,. . ., p. Variables mij and tij are the
repeated measures on the observed mediators and the time score,
respectively; yi is the outcome variable, and xi is the antecedent
variable. Latent intercept and slope are denoted by ηi0 and ηi1.
The terms α∗∗0 and α∗∗1 denote the intercepts for the latent
growth factors. The intercept for the outcome variable is α∗∗2 ; the
intercept for the antecedent variable is α∗∗3 where it is, in fact,

2Note that for simplicity and without loss of generality, we consider an LGCMM
without any covariates. However, the results presented in this section hold when
adding the covariates to LGCMM Figure 1 as will be shown in the “Empirical
Example” section.

estimated by the sample mean for the antecedent variable. The
parameters γ∗∗01 and γ∗∗11 quantify the effects of the antecedent
variable on the latent intercept and slope, respectively. The
regression coefficients λ∗∗1 ,λ

∗∗
2 , and λ∗∗3 quantify the effects of the

antecedent variable, latent intercept, and slope on the outcome
variable, respectively.

The second part of positing the correlated augmented model is
to specify the variances and covariances between the residuals for
the model. From a multilevel perspective, two levels of residuals
for LGCMM exist. First, there are p Within (Level-2) residuals

associated with repeated measures mijs, ε∗∗W =
(

e∗∗i1 , . . . , e∗∗ip
)T

,
where T denotes vector transpose operator. Second, there are

four Between (Level-2) residuals ε∗∗B =

(
ε∗∗ix , ε∗∗iy , ζ∗∗

0i
, ζ∗∗1i

)T
,

where ε∗∗ix , ε∗∗iy , ζ∗∗
0i
, and ζ∗∗1i are associated with the antecedent

variable, outcome variable, and latent intercept and slope,
respectively. Note that ε∗∗ix is included in vector of the residuals
because we explicitly specify the antecedent variable as an
endogenous variable with a residual term. We assume that the
covariances between the Level-1 and Level-2 residuals to be zero
(Raudenbush and Bryk, 2002).

For each level, the vector of residuals has the multivariate
normal distribution with a mean vector of zero and a covariance
matrix. For the Within residuals, the upper-triangle covariance
matrix is:

6∗∗W =


σ2

e∗∗1
0 0
. . . 0

σ2
e∗∗p


where σ2

e∗∗1
and σ2

e∗∗p
are the residual variance for mi1 and

mip, respectively. We assume that the covariances between the
repeated measures are zero although one could estimate the
Within residuals when this premise is supported by theory. For
the Between residuals, the upper-triangle covariance matrix is:

6∗∗B =


σ2

ε∗∗xi
σε∗∗xi

σε∗∗yi
ρ1 σε∗∗xi

σζ∗∗0
ρ2 σε∗∗xi

σζ∗∗1
ρ3

σ2
ε∗∗yi

σε∗∗yi
σζ∗∗0

ρ4 σε∗∗yi
σζ∗∗1

ρ5

σ2
ζ∗∗0

σζ∗∗0 ,ζ
∗∗
1

ρη0,η1

σ2
ζ∗∗1

 .
As shown in Figure 2, ρ1, ρ2, and ρ3 are the confounder

correlations between the antecedent variable and outcome
variable, the latent intercept and slope, respectively; ρ4 and ρ5
are the confounder correlations between the latent intercept and
slope and the latent slope and outcome variable, respectively. The
terms σ2s denote the variances of the respective residuals.

The confounder correlations ρ1 to ρ5 are assumed to model
the effect of the omitted confounder bias on the model
parameters although the exact nature of the relationships between
the confounder correlations and the omitted confounder remains
unclear. Note that if we had assumed that all the confounders
were included in the model (e.g., the covariates included the
confounders), most if not all the confounder correlations would
equal zero (Tofighi et al., 2013, 2019; Tofighi and Kelley, 2016).
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If all the confounders were included in the model, except for
the residuals of the latent intercept and slope, the residuals
associated with the antecedent variable, latent intercept and
slopes, and the outcome variable would not correlate merely
because of the omitted confounders3. This argument will be
made clearer when we show the relationships between the
confounder correlations and the omitted confounder effects later
in this article. The covariance of the residuals between the latent
intercept and slope is usually freely estimated (Singer and Willett,
2003). In general, the covariance between the intercept and slope
should not be fixed at zero because of its potential substantive
interpretation (Snijders and Bosker, 2011). As we will discuss
later, the covariance between the intercept and slope could be
biased because of the confounder bias when ρs are non-zero.

Before conducting CAMSA using the correlated augmented
model, three important issues must be addressed. First, we
need to derive analytical formulas to transform the confounder
correlations into confounder covariances that are covariances
between the residuals quantifying the effects of the omitted
confounders. Second, we need to determine the relationships
between the confounder correlations and the effect of the
omitted confounder on the model parameters. Third, we need
methods to generate admissible confounder correlation values
that are of substantive interest. We address these issues in
the next sections.

Transforming Confounder Correlations
Into Confounder Covariances
In conducting CAMSA, we cannot use confounder correlations
directly to specify a correlated augmented mediation model in
SEM framework because of scaling of the endogenous variables.
Rather, we need to use the confounder covariance and estimates
of the residual variance and then convert the fixed values of
confounder correlations to confounder covariance using the
derived computational formulas. We use the derived formulas
to estimate the correlated augmented model (see Supplementary
Material for details on deriving the formulas).

cov(xi, σε∗∗yi
) = ρ1σε∗∗xi

σε∗∗yi

cov(xi, ζ
∗∗
0i ) = ρ2σε∗∗xi

σζ ∗∗0i

cov(xi, ζ
∗∗
1i ) = ρ3σε∗∗xi

σζ ∗∗1i

cov(ζ ∗∗0i , ε
∗∗
yi ) = ρ4σζ ∗∗0i

σε∗∗yi

cov(ζ ∗∗1i , ε
∗∗
yi ) = ρ5σζ ∗∗1i

σε∗∗yi

Equivalence Between Correlated
Augmented Model and Latent
Augmented Model
In this section, we show the equivalence between the correlated
augmented model used in CAMSA and the latent augmented

3The residuals could be correlated due to other factors, such as common methods
factors (Podsakoff et al., 2003).

ϖ  
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FIGURE 3 | A latent augmented LGCMM. The antecedent variable (X ) was
pain at 4 months after treatment. The two covarying mediators were the latent
intercept (η0 = mean negative mood at 4 months) and slope (η1 = monthly
rate of negative affect) for the repeated measures of negative affect. The
outcome variable (Y ) measures percent drinking days (PDD) at 16 months.
A solid single-headed arrow shows the direct effect of a variable at the origin
on the variable at the end of the arrow. A solid double-headed arrow shows
covariance between the two residuals. The dashed circle shows the latent
proxy variable $ and the dashed arrows show the confounder parameters
modeling the effect of the latent proxy variable on the endogenous variables.

model in Figure 3. We use the term latent augmented
model because $ , termed a latent confounder, denotes a
latent variable that accounts for a linear combination of
the potential omitted confounders. Establishing equivalency
is critical because it is unclear whether the confounder
covariances/correlations in the correlated augmented model
exclusively account for the confounder correlations or for
correlations not caused by an omitted confounder. Model
specification and equations for the latent augmented model and
detailed analytic proofs of the equivalency between the latent
augmented model and correlated augmented model are shown
in Supplementary Material.

A significant contribution of our paper is to establish that
the latent augmented model is equivalent to the correlated
augmented model. That is, there is a one-to-one relationship
between the corresponding parameters from the two model. To
confirm this correspondence, we must show that the confounder
correlations/covariances in the correlated augmented model
are, in fact, functions of the confounding parameters in the
latent augmented model. It is not trivial that the confounder
correlations/covariances specifically model the effects of
confounders and not the other relationships between the
variables in the model. For example, we show that the covariance
between the latent intercept and slope in the correlated
augmented model is not, in general, equal to the corresponding
covariance between the intercept and the slope in the latent
augmented model.

Using a latent augmented model in sensitivity analysis is
an extension of the sensitivity analysis technique used in
randomized LGCMM (Tofighi et al., 2019) and multilevel SEM
(Tofighi and Kelley, 2016) and is similar to the phantom
variable technique used in single-level SEM (Harring et al.,
2017). We only use the latent augmented model to exhibit
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equivalency but not to conduct sensitivity analysis because using
the latent augmented model over the correlated augmented
model potentially produces negative residual variance (Tofighi
et al., 2019). Furthermore, using a latent augmented model
means that the confounder parameters, regression coefficients
measuring confounding bias on the model variables, are not
easily interpretable because of scaling of the variables. These
issues are remedied in the correlated augmented model because
we use confounder correlations, which are effect size measures,
and thus are more easily interpreted to gauge the impact of
confounding bias.

Generating Confounder Correlation
Matrix
In the correlated augmented model, the confounder correlations
are a set of fixed values that researchers establish with some
restrictions that will make correlation values admissible. We
will discuss different methods of finding admissible confounder
correlation values. One important contribution of our model is
that we propose a two-step procedure to investigate values for
the confounder correlations that has not been used in sensitivity
analysis literature. The two-step procedure uses the following
two methods of generating admissible correlation values: (a)
Toeplitz matrix method and (b) nearest positive-definite (PD)
matrix method. We explain in detail how each method works
and enumerate the pros and cons of each method. We show
application of the two-step procedure using an empirical example
in the next section.

A critical issue that needs to be addressed before conducting
CAMSA is finding admissible values for the confounder
correlations. Finding correlation confounder values is
challenging because the correlations have a restricted range
of [−1, 1] and are restricted by the values of other confounder
correlations. In other words, the correlation values are not
independent. This dependency means that we cannot pick values
for a correlation independent of the values of other correlations.
For example, for a triplet of correlations, all the values must
satisfy the following constraint (Rousseeuw and Molenberghs,
1994):

ρ2
12 + ρ2

13 + ρ2
23 − 2ρ12ρ13ρ23 ≤ 1

Finding the values of the triplets of correlations that would
satisfy the above restriction is not straightforward, especially as
the number of correlations increase. This challenge can be more
readily seen when arranging correlation values into a matrix as
the Between confounder correlation matrix shown below.

1 ρ1 ρ2 ρ3
1 ρ4 ρ5

1 ρη0,η1

1

 (6)

The correlation matrix in (6) must be positive semi-definite
(PSD). A square symmetric matrix is PSD if and only if the
matrix determinant is greater than or equal to zero. Finding the
determinant and setting it to be greater than (equal to) zero

would provide us with necessary and sufficient condition for
the correlation matrix. However, generating a matrix that would
satisfy these conditions is not straightforward. Additionally
challenging is generating a symmetric PSD whose diagonal
elements are one and off-diagonal elements are between −1
and 1 where the correlation values substantively meaningful.
The challenges are to find values and patterns of confounder
correlations that are of substantive interest while satisfying the
PSD condition. Below we discuss a two-step procedure for
generating PSD correlation matrices.

Step 1: Toeplitz Matrix Method
One way to generate a correlation matrix is to use a special
type of symmetric Toeplitz matrix (Schott, 1997; Wicklin,
2015) in which the main diagonal and diagonals parallel to
the main diagonal are constant. We focus on the symmetric
Toeplitz matrix whose diagonal elements are one. Consider
n real numbers a0, a1, ..., an−1 where a0 = 1. Then we
can denote a symmetric Toeplitz matrix whose first row is
a0, a1, ..., an−1 by

Tn = Tn[a0, a1, . . . , an−1] =


a0 a1 · · · an−1

a0 · · · an−2
. . .

...

a0

 (7)

We use the results by Bogoya et al. (2012) to generate a
special case for Toeplitz matrix where the matrix is square
and symmetric with the main diagonal of one. A main result
of Bogoya et al. (2012) is that a symmetric Toeplitz matrix
whose first row is a linearly decreasing sequence (i.e., a sequence
that decreases by the same amount each time) of non-negative
values is PD. Thus, the process creates a sequence of decreasing
positive values that generates a correlation matrix (Wicklin,
2015). To illustrate, consider a general polynomial sequence
of the form c1 − (j− 1)c2 where c1 and c2 are constant and
j is the index for column number, j = 1, ..., n, — although
one could also build a Toeplitz matrix with the first column
and then use a row index. The sequence is expanded as
follows: c1, c1 − c2, c1 − 2c2, .... A necessary condition for the
matrix to be PD is that the sequence should positive, thus
c1 − (j− 1)c2 > 0. For a correlation matrix, we set c1 = 1
because the main diagonal elements of a correlation matrix
equal one. Thus, the condition 1− (j− 1)c2 > 0 means that
decrement c2 must satisfy c2 < 1/(n− 1) and that the largest
value for j is the dimension of the matrix, n. For example,
a decrement for a triplet correlation Toeplitz matrix must be
c2 < 1/2. For the triplet of correlation values, when c2 = 1/4,
the first row is (1, 3/4, 1/2), and the resulting correlation
matrix is  1 3/4 1/2

1 3/4
1

 .
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To generate this matrix in R, we use

(T1 <- toeplitz(c(1,3/4, 1/2))) # generates
a Toeplitz matrix given the first row

##      [,1] [,2] [,3]
## [1,] 1.00 0.75 0.50
## [2,] 0.75 1.00 0.75
## [3,] 0.50 0.75 1.00

det(T1) # determinant of T1

## [1] 0.1875

What about the Toeplitz matrix for 4 × 4 confounder
correlation matrix for our LGCMM? The first row for
the Toeplitz for the confounder correlation matrix is
(1, 1− c2, 1− 2 × c2, 1− 3 × c2) where c2 < 1/3. We wrote
an R function to generate the first row and used Toeplitz function
in R to generate the Toeplitz confounder correlation matrix.

first_row <- function(x) {
if (x >= 1 / 3)

stop("Choose a value smaller than 1/4!")
return(c(1, 1 - x, 1 - 2 * x, 1 - 3 * x))

}
(T2 <- toeplitz(first_row(1/4.1)))

##           [,1]      [,2]     [,3]      [,4]
## [1,] 1.0000000 0.7560976 0.5121951 0.2682927
## [2,] 0.7560976 1.0000000 0.7560976 0.5121951
## [3,] 0.5121951 0.7560976 1.0000000 0.7560976
## [4,] 0.2682927 0.5121951 0.7560976 1.0000000

det(T2)

## [1] 0.07360849

So far, we have talked about generating the confounder
correlation matrix using Toeplitz matrix and a result from
Bogoya et al. (2012) that only generates positive confounder
correlations. What if we would like to have negative confounder
correlations as well? Bogoya et al. (2012) extended their results
to include the negative correlation by showing that a linearly
decreasing sequence of numbers can include negative values if the
sum of the values in the sequence remains positive, that is,

n∑
j = 1

c1 − (j− 1)c2 = nc1 − c2

n∑
j = 1

(j− 1)

= nc1 − c2
n(n− 1)

2
> 0.

Given the c1 = 1 for a Toeplitz correlation matrix, we have

n− c2
n(n− 1)

2
> 0

2− c2(n− 1) > 0

c2 <
2

(n− 1)

The above result indicates that, if we want to create a Toeplitz
correlation matrix with both positive and negative confounder
correlations, then we must choose a decrement that satisfies
the condition c2 < 2

(n−1) . However, if we want to generate
a correlation matrix with positive values, the decrement must
satisfy this condition c2 < 1

(n−1) . Note that the decrement
for the positive confounder correlation is smaller than one for
positive and negative confounder correlation. Now, we modify
our R function to indicate that one may choose a decrement that
would generate a Toeplitz matrix that includes both positive and
negative correlation matrix:

first_row <- function(x) {
if (x >= 2 / 3)

stop(
"Choose a value smaller than 1/2 for both

positive and negative correlation. Choose a a
value smaller than 1/4 for only positive
correlation."

)
return(c(1, 1 - x, 1 - 2 * x, 1 - 3 * x))

}
(T3 <- toeplitz(first_row(1/3.9)))

##           [,1]      [,2]      [,3]      [,4]
## [1,] 1.0000000 0.7435897 0.4871795 0.2307692
## [2,] 0.7435897 1.0000000 0.7435897 0.4871795
## [3,] 0.4871795 0.7435897 1.0000000 0.7435897
## [4,] 0.2307692 0.4871795 0.7435897 1.0000000

det(T3)

## [1] 0.08299326

Using this algorithm provides a great flexibility in choosing a
select number of confounder correlations to examine a relatively
wide range of the indirect effect values as well as to examine
model convergence. Thus, we recommend this algorithm be used
as an initial step to inspect the correlation confounders and
indirect effects values as well as the non-convergence of the
mediation model. While relative simplicity of this method and
the relationship between the confounder correlations dictated by
Toeplitz algorithm are advantages, the algorithm also limits the
range of confounder values because the confounder correlation
values follow the Toeplitz algorithm. Thus, we recommend
researchers use this initial step to investigate confounder
correlation values and their impacts on the sensitivity of the
indirect effects as well as on the model convergence.

Step 2: Nearest Positive-Definite Method
In the second step, we examine in more depth the range of
confounder correlation values that led to convergence of the
model using the relevant information from Step 1. Examining
the range of possible values would exhaust the memory
and computational resources. Even a more limited range of
confounder correlations could take hours on faster available PCs.
Given that we will generate thousands of correlation matrices,
using the confounder correlation values from the initial phase
will help us focus on the select ranges of the confounder
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correlations and, thus, be able to examine more thoroughly the
combination of confounder correlation values within the select
ranges gleaned from Step 1.

In this second step, we use the range of values that do not lead
to non-convergence of the model to generate many correlation
matrices to be used in sensitivity analysis. However, as mentioned
before, not all combinations of the correlation values would lead
to PD confounder correlation matrices. To solve this problem,
we use an algorithm suggested by Higham (2002) to transform
a non-PD correlation matrix into a “nearest” PD matrix. The
nearest PD matrix is achieved by repeatedly projecting the
original non-PD matrix onto the set of all symmetric positive
semidefinite matrices (termed cone) with unit diagonal entries.

The benefit of Higham’s (2002) algorithm is that we can choose
and control the range of values for each confounder correlation.
For example, we can choose a few values for ρXY , such as
small, medium, and large according to Cohen’s (1988) guideline,
while we choose a continuous range for other confounder
correlations, for example, 0 ≤ ρXM1 ≤ 0.5. A limitation of
this method is that the many combinations of the confounder
correlation values can lead to non-convergence of the model.
As a result, this method can be computationally expensive even
with the computational power of the modern computers. Further,
this method is a compromise between having more control
over the range of the confounder correlation values and the
convergence rate of the model. Next, we illustrate an application
of our proposed CAMSA to an empirical example and show
that CAMSA is generalizable to a nonrandomized LGCMM
with covariates.

EMPIRICAL EXAMPLE

To illustrate the application of CAMSA to a nonrandomized
longitudinal growth model, we used data from Combined
Pharmacotherapies and Behavioral Interventions for Alcohol
Dependence study (COMBINE; The COMBINE Study Research
Group, 2003), a randomized control trial that studied 16 weeks
of active treatment alcohol use disorder on 1,383 participants
recruited across 11 sites. The participants received nine
individual treatments or a combination of the following
treatments: sobriety and enhance medication adherence training
(Medical Management, MM), individualized psychotherapy
for outpatient alcohol dependence (combined behavioral
intervention, CBI), medications to reduce alcohol dependency
(e.g., acamprosate, naltrexone, or combination of the two), or a
placebo. Background information (covariates) prior to treatment
and assessment measures at the beginning (baseline).

In our example, we were interested in whether the negative
effect of pain on a participant’s drinking outcome would be
mediated through negative affect. The antecedent variable was
pain at 4 months (the end of the treatment). Pain was measured
by two items. One item, selected from the 26-item World Health
Quality of Life assessment (World Health Organization, 1997),
asks “To what extent do you feel that physical pain prevents
you from doing what you need to do?” The possible responses
range from 1 “not at all” to 5 an “extreme amount.” The second

question, selected from the 12-item Short Form Health Survey
(Ware et al., 1996), asks “During the past 4 weeks, how much
did pain interfere with your normal work including both work
outside the home and housework?” Again, the possible responses
range 1 “not at all” to 5 “extremely.” The outcome variable was
percent drinking days (PDD) at 16 months and was measured via
Form 90 (Miller, 1996).

The two mediators were the intercept and slope for repeated
measures of negative affect. Negative affect was measured by
the self-reported, 53-item Brief Symptom Inventory (BSI) that
measures distress (Derogatis and Melisaratos, 1983). An example
item asks, “How much were you distressed by nervousness or
shakiness inside?” with responses ranging from 0 “not at all” to
4 “extremely.” The BSI was measured at 4 months (the end of
treatment), 6.5, 13, and 17 months. For the LGCMM, the latent
intercept measured the mean negative affect at 4 months while
the latent slope measured the monthly rate of negative affect.

For this example, we also controlled for the following
covariates measured at or prior to the baseline: demographics
(i.e., gender, marital status, employment status, income, and
minority status), baseline alcohol dependence severity (Skinner
and Allen, 1982), number of alcohol dependence symptoms
(American Psychiatric Association, 1995), readiness to change
(DiClemente and Hughes, 1990), and alcohol abstinence self-
efficacy (DiClemente et al., 1994). Our proposed CAMSA results
are generalizable to LGCMM with the covariates. That is, the
analytical results for confounder correlation conversion formulas
and equivalency still hold. One notable adaptation when adding
covariates is that, because we control for the covariates for
antecedent variable as well as the mediators and outcome
variable, the antecedent variable is automatically endogenous.
Thus, we did not need to explicitly specify the antecedent variable
as an endogenous variable.

We fitted LGCMM using lavaan (Rosseel, 2012) and
conducted CAMSA in R (R Development Core Team, 2020),
an open source, freely available statistical software4. If the
no-omitted-confounder assumptions hold, the indirect effect
through the intercept was 0.096 (SE = 0.014), 95% CI [0.07, 0.125]
and the indirect effect through the slope was−0.013 (SE = 0.012),
95% CI [−0.039, 0.011]. Recall that the latent intercept was
the mean negative mood at 4 months and latent slope was
the monthly rate of negative affect. These results indicate that
pain increased the mean of negative mood at 4 months and
that, in turn, increased PDD at 16 months. However, pain
does not appear indirectly to change PDD through the negative
mood monthly change.

Given that the no-omitted confounder assumption is not
testable, we used our proposed method to conduct sensitivity
analysis. An important step was to find correlation confounder
values that were both feasible and practical. To do that, we
followed the steps of our proposed method. In Step 1, we
generated structured Toeplitz correlation matrices using the
algorithm by Bogoya et al. (2012). We then augmented the
model with confounder correlation values, ran the model, and

4The R script for our proposed CAMSA for the empirical example is provided in
the online Supplementary Material.
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computed the indirect effect estimates for each model. To save
space, we only show a few select combinations of confounder
correlations and the indirect effect through latent intercept and
slope in Tables 1, 2, respectively; more complete tables containing
the results can be found in the Supplementary Materials. We
found that not all combinations of confounder correlation values
would result in convergence. Confounder correlation values
equal or greater than the values ρXY ≥ − 0.032, ρXM1 ≥ 0.656,
ρXM2 ≥ 0.312, ρM1M2 ≥ 0.656, ρM1Y ≥ 0.312, ρM2Y ≥ 0.656
resulted in nonconvergence. Nonconvergence means that the
confounder correlation values caused model nonconvergence,
and, thus, these confounder correlations were inadmissible.
Although these values were proper confounder correlation values
from the standpoint of the confounder correlation matrix being
PD, the values were not compatible with the data and the model
implied correlation structure; thus, these values were discarded. If
we fix a correlation, or any parameter for that matter, that is not
supported by the data and the model, then the chance of model
nonconvergence increases (Anderson and Gerbing, 1988).

In Step 2, using the results from Step 1 as a guide, we explored
a wider range of confounder correlation values. We used the near
PD method, which allowed us to examine more combinations of
confounder correlations for the sensitivity analysis. In addition,
given that the range of confounder correlation values were
not guaranteed to be PD, we used the near PD algorithm to
convert a non-PD confounder correlation matrix into its nearest
PD matrix. Like Step 1, we then augmented the model with
confounder correlation values, ran the model, and computed the
two indirect effect estimates for each model. The five confounder
correlations took on five values, −0.3, −0.1, 0, 0.1, and 0.3, and
resulted in 15,625 combinations. Of 15,625 estimates for each
indirect effect, 15,000 (96%) resulted in nonconvergence.

Because of a relatively large number of estimates, we
recommend researchers be deliberate in examining indirect
effects for the corresponding range of confounder correlation
values. We started by examining the results for zero to small effect
(0 < ρ < 0.1) for the confounder correlations. For the indirect

TABLE 1 | A sample of sensitivity analysis results for indirect effect through
intercept for zero to small confounder correlation.

ρXY ρXM1 ρXM2 ρM1M2 ρM1Y ρM2Y Indirect effect LL UL

Non-significant indirect effects

−0.1 0.1 0 −0.1 0.1 0 0.012 −0.00005 0.02447

−0.1 0.1 0 −0.05 0.1 0 0.012 −0.00005 0.02447

−0.1 0.1 0 0 0.1 0 0.012 −0.00005 0.02447

−0.1 0.1 0 0.05 0.1 0 0.012 −0.00005 0.02447

−0.1 0.1 0 0.1 0.1 0 0.012 −0.00005 0.02447

Largest indirect effects

−0.1 −0.1 0 −0.1 −0.1 0 0.249 0.203 0.295

−0.1 −0.1 0 −0.05 −0.1 0 0.249 0.203 0.295

−0.1 −0.1 0 0 −0.1 0 0.249 0.203 0.295

−0.1 −0.1 0 0.05 −0.1 0 0.249 0.203 0.295

−0.1 −0.1 0 0.1 −0.1 0 0.249 0.203 0.295

These results are from Step 1, where the structured Toeplitz correlations, ρs,
were generated using the algorithm by Bogoya et al. (2012). LL, lower limit;
UL, upper limit.

effect through the intercept, examining the range of values for
small to zero showed support for the indirect effect to be robust in
that indirect effect remained positive; further, the CI limits were
all positive except for a few cases shown in Table 1. Maximum
indirect effects when the confounder correlations were in the
zero to small effect range are also shown in Table 1. For the
medium to large confounder correlations, however, none of the
models converged. Nonconvergence results should be interpreted
in the context of the select values for the confounder correlations;
we could not conclude that all the medium to large confounder
correlations would result in nonconvergence.

For the indirect effect through slope when the confounder
correlations were zero to small effect range, the sign of the
magnitude and inference about the indirect effect CI limits
remained unchanged. Table 2 shows five combinations of the
confounder correlations that resulted in the smallest and the
largest indirect effects. The indirect effect estimates remained
negative, ranging from −0.0167 to −0.0086. The lower limit of
the CIs ranged from −0.0487 to −0.0255 while the upper limit
ranged from 0.0153 to 0.0082. Because the indirect effect CI
contained zero, the indirect effect did not appear to be different
from zero when the confounder correlations ranged from zero
to small. Finally, we conducted sensitivity analysis when the
confounder correlations ranged from medium to large with the
values ranging from 0.3 to 0.5 and from −0.5 to −0.3. All the
combinations resulted in nonconvergence.

One important feature of our proposed CAMSA is that we
can ascertain sensitivity of the model fit to the confounder
correlations by examining convergence of the model fit to the
data. The nonconvergence results indicate that the correlated
augmented model, which consists of the constraints imposed by
the confounder correlations along with the implied covariance
matrix and mean structure posited by the model, was not
supported by the sample data (Anderson and Gerbing, 1988).
The estimation algorithm was not able to find the sample
estimates that would maximize the likelihood of data given the
correlated augmented model. We concluded that the fit of the

TABLE 2 | A sample of sensitivity results for largest and smallest indirect effect
through slope for zero to small confounder correlations.

ρXY ρXM1 ρXM2 ρM1M2 ρM1Y ρM2Y Indirect effect LL UL

Smallest indirect effect

0.1 0.1 0 −0.1 −0.1 0 −0.0167 −0.0487 0.0153

0.1 0.1 0 −0.05 −0.1 0 −0.0167 −0.0487 0.0153

0.1 0.1 0 0 −0.1 0 −0.0167 −0.0487 0.0153

0.1 0.1 0 0.05 −0.1 0 −0.0167 −0.0487 0.0153

0.1 0.1 0 0.1 −0.1 0 −0.0167 −0.0487 0.0153

Largest indirect effect

−0.1 0.1 0 −0.1 0.1 0 −0.0086 −0.0255 0.0082

−0.1 0.1 0 −0.05 0.1 0 −0.0086 −0.0255 0.0082

−0.1 0.1 0 0 0.1 0 −0.0086 −0.0255 0.0082

−0.1 0.1 0 0.05 0.1 0 −0.0086 −0.0255 0.0082

−0.1 0.1 0 0.1 0.1 0 −0.0086 −0.0255 0.0082

These results are from Step 1, where the structured Toeplitz correlations, ρs,
were generated using the algorithm by Bogoya et al. (2012). LL, lower limit;
UL, upper limit.
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posited model itself was sensitive to select medium to large
values of confounder correlations because the fit of the model
was not supported by the sample data. One interpretation of
model convergence sensitivity is that the effect of the confounder
correlations would severely degrade the fit of the posited model
to the sample data to a degree that the model would not be
able to be estimated from the sample data. The fit of the posited
model appeared to be sensitive to the confounders with medium
to large influence on the model. Thus, we could argue that the
posited model as a whole (global fit) and the indirect effects
(local fit) as a part of the posited model do not appear to be
robust to the confounder correlations ranging from medium to
large effects.

In summary, it appears that when the confounder correlations
were in the zero to small range, the overall model convergence
and the two indirect effects through intercept and slope were
less sensitive. For many of the combinations of the confounder
correlations, the indirect effect results for the correlated
augmented model remained the same as the ones for the posited
model when the no omitted confounder was assumed. However,
for the combinations of confounder correlations in medium
to large range, the model showed high sensitivity that resulted
in an overall lack of model convergence. As a result, we were
not able to estimate the indirect effects for medium to large
confounder correlations.

CONCLUSION

A critical, yet untestable assumption in mediation analysis is
the no omitted confounder assumption. This assumption states
that an omitted confounder should not influence any pair of
variables in a mediation model. Even when the antecedent
variable (X) is randomized, one cannot rule out the effect
of a confounder on the relationship between the mediator
and outcome variable because the values of mediator (M)
are not randomized. A more complicated situation is when
the antecedent variable is not randomized and when we have
two covarying mediators. For this model, a confounder could
affect any pair of variables including the antecedent variable.
Because the no omitted confounder assumption is untestable,
researchers recommend conducting sensitivity analysis that
ascertain the impact of potential confounders on the estimates
and the possible inference about indirect effects (VanderWeele
and Arah, 2011; Tofighi et al., 2013, 2019; Tofighi and Kelley,
2016; Valente et al., 2017). In this manuscript, we extend
sensitivity analysis to a nonrandomized latent growth curve
mediation model (LGCMM) with two covarying mediators
in SEM framework. Conducting sensitivity analysis for the
nonrandomized LGCMM has not been done before because
certain challenges have interfered. First, nonrandomization
means a confounder can impact the antecedent as well as
the mediators and the outcome variable. A confounder may
impact not only the relationships between the mediators and
the outcome variable (as in a randomized mediation model)
but also may affect additional relationships of the antecedent
to each mediator variable and to the outcome variable. Second,

a longitudinal model requires a more sophisticated statistical
technique such as LGCMM that can address dependency in
repeated measures while modeling mediation through two latent
variables: latent intercept and slope. In LGCMM, when the
is no covariate or the covariates do not affect the antecedent
variable, the antecedent variable is exogenous. The issue
remains on how to model and estimate biasing impact of a
confounder on the exogenous antecedent variable in LGCMM.
Further, the existence of two covarying mediators requires that
the indirect effect through each mediator be simultaneously
estimated. Conducting sensitivity analysis for each mediator
separately while ignoring the other covarying mediators, as
is done in a single-mediator model, is likely to result in
bias because the two mediators are covarying (VanderWeele,
2015). Thus, techniques developed for a single-mediator model
cannot be directly used to conduct sensitivity analysis in a two
covarying mediator model. Lastly, given a variety of patterns
of confounding bias, summarizing the impact of confounding
bias succinctly enables researchers to assess sensitivity of
the parameter estimate as well as statistical inference to the
confounding bias.

We extended the sensitivity analysis technique termed
CAMSA to a nonrandomized LGCMM. A major contribution
of our method is the extension of sensitivity analysis to
a nonrandomized antecedent variable. This expansion is
significant because nonrandomized studies are common and
pose additional challenges such as having to address more
confounder relationships between the variables because of not
having a randomized antecedent variable. Another contribution
of our model is that we analytically showed that CAMSA is
statistically equivalent to a model with an augmented latent
confounder. The analytic work is important because we show
how confounder correlations in CAMSA are directly a function
of confounder effects in the equivalent latent augmented
model. Without explicitly showing these relationships, what
confounder correlation is modeling in CAMSA is unclear.
Another advantage of our proposed method is that it is performed
in SEM framework. The SEM framework allows researchers
to, first, simultaneously estimate indirect effects through
covarying mediators. Estimating indirect effects independently
using separate regression equations would result in biased
estimates of indirect effects. Second, researchers could check
the effect of confounder correlations on model (global) fit and
convergence of correlated augmented model in addition to
modeling confounder effects on (local fit of) indirect effects.
Examining convergence of the mediation model is a strength
of using SEM to conduct mediation analysis and CAMSA
because of the simultaneous estimation of multiple regression
equations allows researchers to examine the convergence
and the fit of mediation models to the sample data. If
a specific range of confounder correlations could result in
nonconvergence, then checking confounder effect on indirect
effect would not be feasible. Third, as shown in the empirical
example, existing SEM software can be used to conduct our
proposed CAMSA. We provided code in R that would facilitate
researchers in conducting the proposed CAMSA in their
own research.
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We recommend that researchers conduct sensitivity analysis
and report the results to assess the robustness of mediation
analysis to untestable assumption of no omitted confounders.
Because the researchers in social science often use SEM to
conduct a mediation analysis, our proposed method along
with provided code for CAMSA in SEM context should be an
attractive tool that would help researchers enhance robustness
of their findings. In addition, we recommend researchers
report, in a meaningful way, the range of values for which
the results for indirect effects change; that is, investigators
should describe when the inference about indirect effect changes.
Finally, given the strength of SEM in assessing model fit
and convergence of a model, we recommend researchers
report ranges of confounder correlations that would result in
nonconvergence. We further encourage researchers to explore
the reasons for nonconvergence. One reason for nonconvergence
is that the correlated augmented model is either inaccurately
specified or too constrained to be supported by the sample
data. That is, the specific range of confounder correlations
render a model not supported by the data. For example,
if zero to small range of confounder correlation would
cause a large percentage of the nonconvergence, then one
might conclude that the posited mediation model is itself
sensitive and not robust to small changes. That conclusion
would call into question the correct specification of the
posited model and could motivate researchers to examine
and modify the model carefully. If the model convergence
is sensitive to medium and large range of confounder
correlations, then researchers could reexamine specification of
the posited mediation model. If the convergence rate would
not improve, then the researchers could conclude that the
model is robust to small range of confounder correlation
but not to the medium and large values. The implication
of each conclusion should be interpreted in the context of
substantive research.

Limitations of the current research are that X, M, and Y
are all continuous variables and that we, therefore, assume all
the relationships are linear. Future research should extend these
methods to a mediation model with one or more categorical
outcome. Categorical outcome would require using generalized
linear mixed model, and, thus, definition of indirect effects in

the potential outcome framework should be used (VanderWeele,
2015). A further limitation of the current study is that we assumed
that all variables in the model are measured without errors. While
the latent intercept and slope can model measurement error, we
did not use latent variables for X and Y. Future research should
investigate the joint effects of confounder bias and measurement
error (Fritz et al., 2016).

In sum, it is critical to conduct sensitivity analysis
to ascertain robustness of the mediation analysis and
carefully explain mediation analysis results in the context
of correlation confounders and substantive research. Our
proposed sensitivity analysis provides a tool for researchers to
conduct sensitivity analysis for a nonrandomized LGCMM using
available SEM software.
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