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Epilepsy is one of the most common chronic neurological disorders, and therefore,

diagnosis and treatment methods are urgently needed for these patients. Many

methods and algorithms that can detect seizures in epileptic patients have been

proposed. Electroencephalogram (EEG) is one of helpful tools for investigating epilepsy

forms in patients, however, an expert in the neurological field must perform a visual

inspection to identify a seizure. Such analyses require longer time because of the

huge dataset recorded from many electrodes which are put on the human scalp. With

the non-stationary nature of EEG, especially during the abnormality periods, entropy

measures gain more interest in the field. In this work, by exploring the advantages

of both reliable state-of-the-art entropies, fuzzy entropy and distribution entropy, a

modified-Distribution entropy (mDistEn) for epilepsy detection is proposed. As the results,

the proposedmDistEnmethod can successfully achieve the same consistency and better

accuracy than using the state-of-the-art entropies. The mDistEn corresponds to higher

Area Under the Curve (AUC) values compared with the fuzzy entropy and the distribution

entropy and yields 92% classification accuracy.

Keywords: distribution entropy, electroencephalogram (EEG), entropy, epilepsy, fuzzy entropy

INTRODUCTION

According to the World Health Organization (WHO), ∼50 million of people suffer from epilepsy
and about 10% of the population of the world has once had a seizure in their daily routine
(Epilepsy-information, 2019). Moreover, there are nearly 15 million people with epilepsy in Asian
countries. Roughly 1% of the people who live in these regions and including patients with epilepsy
visit faith healers rather than medical doctors, and only 10–20% of all patients with epilepsy
receive appropriate treatment. Nonetheless, 70–80% of people with epilepsy can lead normal
lives if properly treated; therefore, it should be critically considered why 80–90% of people with
epilepsy are not appropriately treated (Media-center, 2011). The brain acts as a control center
that commands all movements and responses including voluntary and involuntary responses of
the body. Electrical activity in the brain is used for communication via nerve cells but abnormal
signals received by the brain may interrupt normal function and result in a seizure (Health, 2019).
Epilepsy is a chronic neurological disorder that may causemovement disturbance, loss of awareness
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or sensation, and disrupted mood or mental function; therefore,
diagnosis and treatment are of major importance for epilepsy
patients (Kaya et al., 2014).

Electroencephalogram (EEG) which is a potential method that
can be used not only for detection but also for prediction of
epileptic seizures according to extensive evidence (Myers and
Kozma, 2018; Li et al., 2019). EEG does not require open surgery
and, thus, is a safe, non-invasive testing procedure that can yield
a huge amount of information regarding the health of the patient
(Ocak, 2009). In an epileptic patient, EEG tests can be performed
by using electrodes placed on the affected area of the human
scalp to record brain signals for analysis (Coyle et al., 2010).
However, the recorded EEG signals must be visually inspected
by an expert in this field, and such tests take longer time than
an automatic method because of the extensive amount of data
(Gandhi et al., 2010).

According to the literature reviews, there are various
contributions on designing the efficient feature extraction
methods for epileptic seizure detection, e.g., empirical mode
decomposition (EMD) (Pachori, 2008; Bajaj and Pachori,
2011; Pachori and Bajaj, 2011; Pachori and Patidar, 2014;
Pachori et al., 2015; Agrawal et al., 2019), time-frequency
representation (Bhati et al., 2017, 2020a,b; Sharma and Pachori,
2017; de la Serna et al., 2020; Gupta et al., 2020; Nishad
and Pachori, 2020), phase representation (Sharma and Pachori,
2015), deep neural network (Sharma et al., 2020a,b), fractional
order modeling (Joshi et al., 2014), and local binary pattern
(Kumar et al., 2015; Tiwari et al., 2016).

Complexity can be measured by different methods and
can compare time series to distinguish regular, chaotic and
random behavior (Paluš, 1998). Claude Shannon developed
the modern concept of “information” or “logical” entropy as
part of information theory in the late 1940s (Shannon, 1948).
With the non-stationary nature of EEG, especially during the
abnormality periods, entropy measures gain more interest in the
field. There are many of entropy methods, such as Bhattacharyya
et al. (2017), Sharma et al. (2018, 2019), Gupta and Pachori
(2019), approximate entropy (ApEN) (Pincus et al., 1991),
sample entropy (SampEN) (Richman and Moorman, 2000),
permutation entropy (PermEN) (Bandt and Pompe, 2002),
distribution entropy (DistEn) (Li et al., 2015a), fuzzy distribution
entropy (fDistEn) (Zhang et al., 2018), and these methods
have been proposed to examine physiological time series data
in recent years. Among these entropies, fuzzy entropy and
distribution entropy reveal the promising results (Li et al., 2018).
However, both of them give the promising results in different
types of epileptic seizures data. By exploring the advantages
of both fuzzy entropy and distribution entropy, a modified-
Distribution entropy (mDistEn) is proposed for the detection of
epileptic seizures.

This paper is divided into three sections. The following section
presents the data analyzed and describes the detail of themethods
applied in this paper. The second section presents and explains
about the results and discuss their meanings. The last section
of the paper is the conclusion and future direction of our
entropy method.

MATERIALS AND METHODS

EEG Data for Analysis
EEG seizure data is available from the University of Bonn
(Andrzejak et al., 2001a,b) which provides a free and reliable
database for analysis of all types of methods that are related
to seizure activity. Five sets of data are included (A, B, C,
D, E) corresponding to eye-closed and eye-opened states of
healthy subjects (two classes—A and B) and, the interictal
period (two classes—C and D) and ictal period (one class—
E) of epilepsy patients. These five data-sets contain a single-
channel electrode with 100 EEG segments and each segment
is 23.6 s long (4,096 sampling points with a sampling rate of
173.61Hz), as displayed in Figure 1. In this paper, fuzzy entropy
and distribution entropy are calculated for comparison with
the modified entropy calculation, i.e., the calculation based on
distribution entropy and combined with some parameters from
fuzzy entropy. First, EEG signals are used to reconstruct the
state-space using the embedding dimension and then the vector
from the state-space is ranked according to a fuzzy membership
function. The last step is the calculation of the FuzzyEn value, as
described in the next subsection.

The mDistEn is calculated from a reconstruction of the state-
space similar to fuzzy entropy. However, the difference between
FuzzyEn and mDistEn is the construction of a distance matrix
in the second step. The modified-distribution entropy is also
evaluated by reconstruction of the phase space, i.e., it is also the
state-space which is the representation of the behavior of a system
in the geometric form (Yadid and Friedman, 2008). Next, the
empirical Probability Density Function (ePDF) is estimated to
obtain the probability of the distance matrix. The following steps
are the same with the DistEn except that the parameter values r
(0.2 × standard deviation of all dataset) and n = 2 are included
before calculating the ePDF. These modifications provide the
better discrimination of the ictal state from the normal and
interictal states in epilepsy patient. Flow charts of these three
algorithms are shown in Figures 2A–C.

Fuzzy Entropy (FuzzyEn)
Approximation entropy and sample entropy that canmeasure the
similarity of a vector using a Heaviside function, given by:

θ (z)=

{

1, if z ≥ 0
0, if z < 0

(1)

This kind of function is a conventional two-state classifier, which
enables justifying the belongingness using a given class (Chen
et al., 2007). Given a time series with N data points, {x (n)} =
x (1), x (2), . . . , x (N), the following algorithm can be used to
calculate FuzzyEn (Xiang et al., 2015):

(i) For 1 ≤ i ≤ N – m+1, where m is given, form a vector
sequence {Xm

i (1) . . . Xm
i (N –m+ 1)}, which is defined as

Xm
i = {x (i) , x (i+1) , . . . , x (i+m 1)} − x0 (i), (2)
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FIGURE 1 | EEG data used for evaluation of difference entropy algorithms. (A,B) Are data from five healthy volunteers with eyes-opened and eyes-closed. (C) Data

recorded from patients before an epileptic attack, (D) from the epileptic zone, and (E) during an epileptic attack.

where Xm
i is m consecutive x values, commencing with the

ith point and that needs to be generalized by eliminating
a baseline

x0 (i)=
1

m

∑m−1

j=0
x
(

i+ j
)

. (3)

(ii) Define the distance between Xm (i) and Xm (j) (1 ≤ i, j ≤
(N – m), i 6= j) as the maximum absolute difference of
the corresponding components

dij
m = d[Xm

i ,X
m
j ] = max(k∈(0,m−1))|x(i+ k)− x0(i)

− (x(j+ k)− x0(j))|. (4)

(iii) Calculate the similarity degreeDm
ij by using n and the r value

through a fuzzy function

Dm
ij (n, r)= µ

(

dmij ,n,r
)

= exp







−
(

dmij

)2

r






. (5)

(iv) Define the function∅
m as

∅
m (n, r)=

1

N −m

∑N−m

i=1

(

1

N −m−1

∑N−m

j=1,j 6=i
Dm
ij

)

. (6)

(v) Similarly, Xm+1 (i) vector form, the value m can be
increased tom+1 and then, the function∅

m+1as

∅
m+1 (n, r)=

1

N −m

∑N−m

i=1

(

1

N −m−1

∑N−m

j=1,j 6=i
Dm+1
ij

)

. (7)

Frontiers in Physiology | www.frontiersin.org 3 June 2020 | Volume 11 | Article 607

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Aung and Wongsawat mDistEn for the Detection of Epileptic Seizures

FIGURE 2 | Flow diagrams for calculating the entropy values. (A) Fuzzy entropy calculation; (B) distribution entropy calculation; and (C) modified-distribution

entropy calculation.

(vi) Finally, a time series with finite data, can be evaluated by
the following equation

FuzzyEn (m, n, r,N)= ln∅m (n, r)− ln∅m+1 (n, r). (8)

Distribution Entropy (DistEn)
Distribution entropy is an entropy that measures the complexity
of time series data using the empirical probability density
function (ePDF) of distances for inter-vectors in the state space
(Li et al., 2015a). Given a time-series {x (i), 1 ≤ i ≤ N} for all N
points, the distribution entropy (DistEn) can be estimated by the
steps below (Li et al., 2016):

(i) State-space reconstruction can be completed by forming N
– (m – 1)×τ vectors X (i) using X (i) = {x (i), x (i+1), . . . ,
x (i +(m – 1)×τ )}, where 1 ≤ i ≤ N – (m – 1) ×τ and, m is
the embedding dimension and τ is time delay.

(ii) Distance matrix construction used to compute the distances
between all possible combinations of X (i) and X (j) by

dij= max {|x (i + k) x (j + k)|, 0≤k≤m 1} for all

1≤i, j ≤m 1. (9)

The distance matrix D = {dij} is defined. Then, the ePDF is
calculated using a histogram with bin numbers, {Pt , t = 1, 2,
3, . . . , B}.

(iii) The final step is the calculation of the distribution entropy.

DistEn (m,B)= −
1

log2 (B)

∑B

t=1
Pt log2 (Pt). (10)

Modified-Distribution Entropy (mDistEn)
A new method, which is implemented based on distribution
entropy, is the addition of twomore threshold parameters “r” and
“n” to existing parameters. Among these two parameters, r is set
by multiplying to the standard deviation of all data values by 0.2
and n is set to 2. For a given time series N sample,

(i) For phase-space reconstruction, create N-(m-1) ×τ vector
X (i) by x (i) = {x (i) + x (i+1), . . . , x (i + (m – 1)
×τ )}, where m is the embedding dimension and τ is the
time delay.

(ii) Computes a distance matrix (Dij) between X (i) and X (j) (1
≤ i, j ≤m – 1, i 6= j) using the Euclidean method.

(iii) In this step,Dmat is divided by r and squared (n= 2):

Dmat=

(

Dij

r

)n

. (11)

(iv) After obtaining Dmat, the ePDF is calculated using the
histogram approach from the Dmat from the previous steps
with the bin number. The probability for that number can
be given as {Pt , t = 1, 2, 3, . . . , B}.

(v) mDistEn can be described as follows:

mDistEn (m, τ , r, n,B)= −
1

log2 (B)

∑B

t=1
Pt (Dmat)

log2 [Pt (Dmat)] . (12)

Data Visualization of mDistEn

The data obtained from the result of mDistEn is visualized
according to the shape of the distribution and is shown in
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Figure 3 and (A) mDistEn is calculated using normal EEG data
and the distribution. Figure 3B shows the result of the interictal
data, which is a combination of EEG datasets C and D and
Figure 3C shows the onset seizure data.

Parameter Selection

The values of the gradient of the boundary (n) and the width
(r) of the exponential function applied in the fuzzy entropy,
are n = 2 and r = 0.2 × standard deviation of the time series
(Chen et al., 2007). These values are not only used in fuzzy
entropy but also used in the calculation of mDistEn. Moreover,
the embedding dimension (m) and the time delay (τ ) used in the
calculation are the same values of m = 3 and τ = 1, respectively
(Li et al., 2015a). Finally, the bin value (B = 64) is used for
estimation of the two distribution entropies; DistEn (Li et al.,
2016) and mDistEn.

RESULTS AND DISCUSSION

Analysis With Theoretical Data
Both the distribution entropy and the modified-distribution
entropy are simulated using periodic sinusoidal signals
with frequencies of 50 and 100Hz. The length of the
signal is 2 s long, and the sampling rate is 0.5 kHz. Since
calculation of the distribution entropies depends on the
parameter values, the number of values in each bin must
range from 50 to 1,000 per bin, and the number of bins
is increased to 50 bins for testing the stability. According
to the figures, both the distribution entropy and the
modified-distribution entropy have the same consistency in
measurements (Li et al., 2015b). Some parameters are added
to mDistEn but it still has strong regularity even when testing
different frequencies. Figures 4A,B shows the result of the
simulation using waves based on the estimation of different
distribution entropies.

Analysis With Experimental Data
Epileptic EEG data are used for the performance analysis by
a calculating of the AUC from the segmented EEG signals, as
AUC can distinguish normal, interictal and ictal forms. The AUC
values range from 0.5 to 1 and reflect failed, poor, fair, good and
excellent classification (Tape, 2019).

First, EEG signals are divided into three groups: normal,
interictal and ictal. The normal group includes datasets (A and
B) and the interictal group includes datasets (C and D) and
the ictal group contains dataset (E). Next, the AUC values
are evaluated for 1-s segments of all 100 datasets from 2
to 23 s-segments along the data sample. Then, 5-fold cross-
validation instead of 10-fold cross-validation (Acharya et al.,
2015) is used to test the five datasets. When one dataset (A)
is used as the testing data, the remaining four datasets (B-
E) are used for training. This process is iterated until all five
datasets (A–E) are used as the testing dataset. After, the entropy
for all datasets are calculated, the AUC values are estimated
based on the training dataset, and these values are plotted and

FIGURE 3 | Distribution of the data. The mDistEn is calculated using (A)

normal EEG datasets A and B and its distribution, (B) the interictal datasets C

and D and its distribution, and (C) ictal dataset E and its distribution.
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FIGURE 4 | Calculation of distribution entropy and the modified distribution entropy using a sinusoidal signal with difference frequencies (50 and 100Hz). (A)

Distribution entropy. (B) Modified-Distribution entropy.

shown in Figures 5, 6. Regarding Figure 5, the AUC values of
mDistEn using Equation (8) are noticeably greater than those
of the other two methods of fuzzy entropy and distribution
entropy. Therefore, the mDistEn has better discriminatory power

than the prior distribution entropies according to the AUC
values, proving that mDistEn is sufficient considering both
AUC and accuracy. Moreover, mDistEn is highly consistent
compared with the previous distribution entropy. Performance is
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FIGURE 5 | AUC values for different window lengths. (A) AUC values of the entropies for discrimination between normal and ictal and (B) between interictal and ictal.

evaluated by calculating the sensitivity, specificity, and accuracy
(Li et al., 2018):

Specificity =
TN

TN+ FP
, (13)

Sensitivity =
TP

TP+ FN
, (14)

Accuracy =
TP+ TN

TP+ FP+ TN+ FN
, (15)
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FIGURE 6 | AUC values for the different window lengths for classifying normal from interictal and ictal signals.

TABLE 1 | Performance evaluation of the different entropies.

Entropy Sensitivity (%) Specificity (%) Accuracy (%) AUC (%)

FuzzyEn 92.5 90 92 96

mDistEn 92.5 85 91 96

DistEn 83.75 95 86 91.3

where TP is the number of true positives and TN is the
number of true negatives. These two values indicate correct
labeling of the actual number of ictal and normal EEG
signals by classifier. FP and FN are the number of false
positives and false negatives which correspond to the number
of ictal and normal signals that are incorrectly categorized
by the classifier. It was already shown that the accuracy
of the modified distribution entropy is slightly lower (by
1%) than that of FuzzyEn but greater than that of the
previous distribution entropy as shown in Table 1. FuzzyEn
yields an accuracy of 92% in the fifth run time with 13-s
segments, while mDistEn with equation (8) and the distribution
entropy get the accuracies of 91 and 86%, respectively, in
the fifth run with 7-s segments and in the fourth run with
5-s segments.

Therefore, our new entropy is able to provide the promising
accuracy with a small amount of input data, as well as
optimal duration time (s) in the dataset. Consequently,
short-duration input would lead to a good setting for

the detect of epileptic seizures. However, entropy methods
are still highly dependent on the prefix parameters and
therefore one of the disadvantages of our proposed entropy.
Further investigation on this issue would be suggested as our
future work.

CONCLUSION

In this paper, mDistEn is proposed for calculating the complexity
of the time series data and was tested using both theoretical
data and real-world EEG data. We proved that mDistEn
is advantageous over fuzzy entropy and distribution entropy
for distinguishing normal EEG data segments from epileptic
EEG data segments, and for distinguishing the early state
of seizures data (interictal period) from epileptic EEG data
(ictal period). Moreover, our proposed entropy method can
also discriminate normal EEG data from interictal EEG data
and preictal state of EEG data from the ictal state of the
EEG data. The results mentioned above are described in
the calculation of AUC, which is most widely used for
decision tasks. The mDistEn remains stable even when two
new parameters are added. Furthermore, mDistEn yielded
better accuracy than previous distribution entropy and only
slightly lower accuracy than fuzzy entropy. Regarding the
AUC values, mDistEn is able to distinguish early state
of epilepsy from seizure onset, and thus, these parameters
could be used to predict epileptic seizures. However, further
studies are still needed to investigate the early detection
of epilepsy.
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