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Simple Summary: Tumor cells are known to produce and secrete pro-coagulants that recruit blood
particles such as platelets, inducing hypercoagulability. However, platelets can also influence tumor
carcinogenesis and metastasis, creating a reciprocal, vicious loop with the tumors. Confrontation
of platelets with tumor cells via transfer of tumor-associated biomolecules or influencing platelets
biology (“education”) is an emerging concept, that has been recently proposed to create innovative
platforms for biomarkers within blood-based “liquid biopsies”. In this study, we explore the intrinsic
regulation and the potential “education” of platelets using -omics profiling in pancreatic cancer
patients. Our results showed: (i) a high activity on RNA splicing that can lead to subsequent
platelets education; (ii) enrichment of specific modified forms (isomiRs) of canonical miRNAs; and
(iii) inhibition of SPARC transcription by specific class of isomiRs. Moreover, we created an interactive
tool to visualize expected correlations, to facilitate further investigations on additional potential
biomarkers and therapeutic tools.

Abstract: Pancreatic ductal adenocarcinoma (PDAC) is traditionally associated with thrombocy-
tosis/hypercoagulation and novel insights on platelet-PDAC “dangerous liaisons” are warranted.
Here we performed an integrative omics study investigating the biological processes of mRNAs and
expressed miRNAs, as well as proteins in PDAC blood platelets, using benign disease as a refer-
ence for inflammatory noise. Gene ontology mining revealed enrichment of RNA splicing, mRNA
processing and translation initiation in miRNAs and proteins but depletion in RNA transcripts.
Remarkably, correlation analyses revealed a negative regulation on SPARC transcription by isomiRs
involved in cancer signaling, suggesting a specific ”education” in PDAC platelets. Platelets of benign
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patients were enriched for non-templated additions of G nucleotides (#ntaG) miRNAs, while PDAC
presented length variation on 3′ (lv3p) as the most frequent modification on miRNAs. Additionally,
we provided an actionable repertoire of PDAC and benign platelet-ome to be exploited for future
studies. In conclusion, our data show that platelets change their biological repertoire in patients with
PDAC, through dysregulation of miRNAs and splicing factors, supporting the presence of de novo
protein machinery that can “educate” the platelet. These novel findings could be further exploited
for innovative liquid biopsies platforms as well as possible therapeutic targets.

Keywords: liquid biopsy; platelets; omics integration; regulatory mechanisms; gene expression;
miRNAs; proteins; pancreatic cancer

1. Introduction

Cancer death predictions in the US show pancreatic ductal adenocarcinoma (PDAC)
expected to become the second leading cause of cancer-related deaths by 2030 [1]. The
majority of PDAC patients are diagnosed late, with either locally-advanced or metastatic
disease, which are typically resistant to chemotherapy. The lack of reliable biomarkers for
preventive screening or early cancer detection, and the absence of effective therapies, are
the main causes for the poor survival rates, ranging between 2 and 9% [2,3].

Tumor cells are known to secrete pro-coagulants or fibrinolytic substances that recruit
platelets and this can induce hypercoagulability [4,5]. This is particularly common in
patients suffering from PDAC, with an incidence of thrombotic complications up to 36%,
and can be attributed to the procoagulant properties of PDAC cells, including the promotion
of platelet activation [6–8].

Recent studies reported the use of platelets as an extremely promising source for
cancer diagnosis and early detection biomarkers [9–13]. Platelets do not have a nucleus
but hold a pool of megakaryocyte-derived mRNAs [14,15] and the complete machinery for
de novo protein synthesis, resulting in dynamic modifications of protein expression [16].
Remarkably, platelets contain a vast amount of bioactive proteins which can be secreted
upon activation [17]. These proteins can be either synthesized by the platelets themselves
or taken up during circulation, making platelets profiling an extremely appealing tool to
obtain a representative “image” of the current status of the healthy or diseased body.

It has already been shown that platelets can alter their RNA profiles when cancer
cells are present, and they are referred as “tumor educated platelets” (TEPs) [18]. On this
basis, previous studies generated robust classifiers to identify the cancer status based on
the platelet signature in different tumor types, including PDAC [19–21]. However, further
studies to investigate the molecular mechanisms underlying the “education” of platelets
are warranted.

Evidence that platelets are capable of de novo protein synthesis [22], raised the issue of
whether there is a fine-tuning of their content depending on external stimuli. During RNA
splicing, intronic sequences of pre-mRNA are generally removed, while exonic sequences
are joined together. However, the splicing process can create several mRNA sequences by
varying the pre-RNA composition (e.g., by retaining introns or skipping exons), within a
process called alternative splicing. Denis et al. identified pre-mRNA splicing as a displaced
nuclear process that can occur in platelets [23]. Moreover, the presence of retained introns
transcripts has been suggested to be a biologically relevant phenomenon that contribute to
modulation of the platelet transcriptome [16,24].

Apart from RNA, circulating platelets are also enriched in small non-coding RNAs
(ncRNAs) such as miRNAs [25–27]. It is well recognized that many small ncRNAs play
a pivotal role in regulation of mRNAs expression in physiological and pathological con-
ditions [28–30]. In particular, miRNAs bind to specific regions in the target mRNAs, thus
leading to mRNA degradation or repression, subsequently resulting in suppression of
protein translation [31–34].



Cancers 2021, 13, 66 3 of 20

Most miRNA genes are transcribed by RNA polymerase II in the nucleus. The pri-
miRNA is then cleaved by the microprocessor Drosha. The resulting pre-miRNA is then
exported by Exportin-5 in the cytoplasm where it is further cleaved by Dicer. Commonly,
one strand of the miRNA is bound to AGO protein and incorporated in the RISC complex
that will repress gene transcription [35]. However, malfunctions of Drosha and Dicer can
create modified forms of miRNA, called “isomiRs”. Additionally, isomiRs can be generated
by the addition of nucleotides to the 3′ or 5′ ends by nucleotidyltransferases such as TUT4
and GLD2. Remarkably, there are several types of isomiRs, depending on the miRNA
length and the addition of nucleotides with respect to the canonical form, and they have
already been described as potential biomarkers for prostate cancer detection [29].

A successful integration of data from those types of molecules (i.e., miRNAs, isomiRs,
mRNA and protein expression) can lead to the discovery of new biomarkers that reflect
their complex relationships as well as to understand which biological pathways are affected
in different diseases, including cancer [36].

Here, to further unravel the biology underlying TEP profiles in PDAC, we applied for
the first-time parallel deep omics approaches using Next Generation Sequencing (NGS) for
RNA and small-RNA and label-free LC-MS/MS for proteomics, using benign pancreatic
disease as ”control group” to elucidate the biology of platelets in patients affected by
malignant tumor platelets.

These studies provide an extensive catalog of -omics data that can be used in many
ways to explore non-coding RNAs, mRNAs and protein expression in platelets of PDAC
and benign lesions. To facilitate further research on diagnostic markers from non-invasive
biopsies, novel targets to inhibit metastases formation and the many further uses that can
be envisaged, all data are available in GEO (GSE160252), proteomeXchange (PXD022514)
and resulting biological networks from these analyses are presented in the R Shiny Web
App: http://platelnet.eu.ngrok.io while the R script code is available at: https://github.
com/Giulia221091/Platel-net.

2. Results

First, we investigated whether the inclusion of healthy donors can be useful in our
study setting. We analyzed age- and sex- matched healthy donors samples (HD, n = 19)
and their RNA expression profile when compared to PDAC and benign platelets. Based
on the different RNA profile of HD (Figure S1) we have excluded this group from the
following analyses. Indeed, HD cases classify aside from the other groups, suggesting that
the expression of RNA from blood platelets of healthy individuals is different from the RNA
expression of platelets from patients with PDAC or benign diseases. This difference might
be explained by the fact that all patients with benign diseases had some inflammatory
responses which could result in differences in RNA expression in platelets compared
to HD.

Our choice to compare PDAC to benign disease was also sustained by the actual
clinical challenge: distinguish PDAC patients from patients having non-malignant disease.
Unfortunately, clinical symptoms and diagnostic features of patients with PDAC show a
considerable similarity to those of patients with different benign diseases of the pancreas.
Currently, the diagnostic process relies on clinical suspicion, radiological investigation,
brush cytology or fine-needle aspiration for pathological confirmation, and measurement
of tumor markers. However, most clinically used biomarkers fail to discriminate PDAC
from benign diseases, substantiating the need for correction of the inflammatory signal in
-omic analyses.

To obtain a comprehensive overview of the regulation of the transcriptome and pro-
teome in platelets of PDAC and benign disease, we performed quantitative proteomic
analysis (~2000 identified proteins), small-RNA profiling (~44,000 canonical and isomiRs
type identified) and transcriptomics analysis (~50,000 RNA transcripts identified) on iso-
lated and highly purified platelets. Platelets were collected from patients with PDAC
(N = 11) and age- and sex matched patients with benign disease (N = 11). Clinical charac-

http://platelnet.eu.ngrok.io
https://github.com/Giulia221091/Platel-net
https://github.com/Giulia221091/Platel-net


Cancers 2021, 13, 66 4 of 20

teristics and age- and sex distribution are presented in Table S1 and Figure S2. In addition,
proteomics analysis was performed on a subset with sufficient protein content after care-
fully checking that age and sex were still matching between groups in proteomics and
transcriptomics datasets (Figure S2).

Figure 1 describes the workflow overview adopted in this study. Blood samples were
collected from patients with PDAC and benign disease, with subsequent platelets isolation.
After measuring and processing for small-RNAs, transcriptomics and label-free mass
spectrometry-based proteomics, we evaluated differential expressed profiles for each data
type. Moreover, we performed an intra group correlation analysis in PDAC and benign
patients and an integrative gene ontology mining to understand the common enriched
pathways between data types in PDAC and benign platelets.
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Figure 1. Workflow of platelets omics profiling. Platelets were isolated from 22 age and sex-matched
patients with PDAC and benign diseases. Small-RNAs, RNA transcripts (PDAC samples = 11; benign
samples = 11) and proteins (PDAC samples = 8; benign samples = 11) were isolated and sequenced
following validated protocols [28,37]. Bioinformatics tools were adopted to quantify canonical as
well as isomiRs from smallRNA-seq, mRNA and intron-spanning reads from RNA-seq, and proteins.
Downstream analyses were carried out using standalone tools for differential analysis of all data
types comparing PDAC versus benign platelets; intra group correlation analysis between miRNAs,
mRNAs and proteins of matched PDAC and benign platelets and, lastly, gene ontology mining.
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A repertoire of 344 canonical miRNAs, 8357 isomiRs, 8695 intron-spanning reads,
49965 mRNAs and 2106 proteins were used for downstream analyses as reported in
Figure 2A. Next, differential expression analysis was computed separately for each data-
type including canonical miRNAs, isomiRs, intron-spanning reads, mRNAs and proteins
(Figure 2B,C).
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2.1. Differential Analysis

First, we aimed to differentiate platelets of PDAC and benign patients using each
data-type. This analysis led to the identification of: (i) 41 differentially expressed (DE)
canonical miRNAs (28 up-regulated in PDAC and 13 up-regulated in benign platelets)
(Figure 2B left panel); (ii) 981 DE isomiRs (448 up-regulated in PDAC and 533 up-regulated
in benign) (Figure 2B right panel); (iii) 285 DE intron-spanning reads (217 up-regulated in
PDAC and 68 up-regulated in benign) (Figure 2C left panel); (iv) 1878 DE mRNAs (1466
up-regulated in PDAC and 412 up-regulated in benign) (Figure 2C right panel); (v) 52 DE
proteins (26 up-regulated in PDAC and 26 in benign) (Figure 2D). Raw-sequencing data
can be found at www.ncbi.nlm.nih.gov under the accession GSE160252.

Regarding the canonical miRNAs up-regulated in PDAC platelets, we observed that
many of them were expected to regulate genes of ECM-receptor interaction. In particular,
miR-128, miR-29a and miR-335 were the miRNAs targeting more genes involved in this
interaction. However, the same miRNAs were targeting genes enriched for proteoglycans
in cancer and PI3K-Akt signaling pathways. Those pathways have been described in
several studies reporting their aberration in PDAC and other cancer types [38–41].

Analyzing the differentially expressed intro-spanning RNA reads we found MAP2K4,
CDC42, CBL, SOS1, ROCK2, FOXO1 up-regulated in PDAC and associated to MAPK

www.ncbi.nlm.nih.gov
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signaling, insulin signaling, TGF-beta and PDGF pathways. Previous studies already
showed the alteration of those signaling pathways in PDAC cells [42,43].

However, the analysis on mature-mRNA revealed enrichment of very broad terms
such as cell adhesion, cytoskeletal protein binding, and ion binding. This suggests that acti-
vated platelets in PDAC patients may require several proteins to affect different processes.
Indeed, we identified many proteins up-regulated in platelets from PDAC patients that are
involved in poly-A RNA binding, mRNA binding and transferase activity, suggesting a
clear “protein machinery” in action [16,44].

2.2. Regulatory Networks

Understanding the internal regulation of platelet activity in PDAC patients is one of
the main goals for this study. Thus, we used the negative correlations between miRNAs
(canonical and isomiRs) and genes (intron-spanning RNAs and mRNAs), and positive
correlations between genes and proteins that we call “expected” correlations. This has led
to 8 resulting networks in total: four networks for PDAC platelets and four networks for
benign platelets. These four networks were based on expected correlations of: (i) isomiRs-
mRNA-proteins; (ii) isomiRs-intronRNA-proteins; (iii) canonical miRNA–mRNA-proteins;
(iv) canonical miRNA-intronRNA-proteins.

Analyzing the resulting four correlation networks from PDAC platelets we discovered
that five RNA transcripts namely SNTB1, SPARC, PPM1A, TLN1 and ADD3 were repre-
sented in all four networks. Of those transcripts, SPARC showed to be between the top five
most connected nodes with a node degree ranging from three (in canonical networks) to 32
(in isomiRs networks).

Specifically, the mRNA transcript of SPARC was found to be down-regulated in PDAC
platelets patients. Figure 3 clearly show that SPARC down-regulation is mainly associated
by isomiRs. Each connection represents one specific class of isomiR (e.g., nta#A, mv, nta#C
etc.). The various number and type of isomiRs competing for SPARC down-regulation
is given by the biological effects in which several miRNAs compete for the same gene
target. In Figure 3A, we show the mRNA transcript SPARC is negatively correlated to
several isomiRs, namely miR-17-3p, miR-29a-3p, miR-22-3p and miR-221-5p, while panel
B shows canonical miRNAs associated to SPARC modulation that are not significantly
different between PDAC and benign blood platelets included in our study. Of note, high
expression of miR-22-3p is associated to poor survival in an external cohort of PDAC
patients (Figure S3) as reported previously [45]. Moreover, KEGG pathways analysis of
the above-mentioned miRNAs revealed an enrichment of classical PDAC pathways such
as PI3K-Akt signaling, mTOR pathway, focal adhesion and “pancreatic cancer pathways”
itself (Table S2). Additionally we have performed a multivariate analysis on SPARC and
miR-29a-3p expression correcting for age, sex and stage and assessed that those clinical
features are not confounding factors (Table S3).

The same analysis strategy was adopted in benign correlation networks. This time,
none of the RNA transcripts was found to be over-represented between the four networks.
However, we found spectrin-β non erythrocytic 1 (SPTBN1) of particular interest. This
RNA transcript was one of the most connected nodes in isomiRs-networks and found
to be down-regulated in benign platelets (Figure S4A,B) suggesting a key role of PDAC
progression for this gene.
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Previous analysis from TCGA consortium already showed a significant down-
regulation of RNA transcript SPTBN1 in healthy and non-tumor matched samples when
compared to PDAC tissues (Figure S4C). In addition, proteomics analysis confirmed
transcriptomics results, showing elevated proteomic levels of SPTBN1 in CD24+ PDAC
tissues when compared with CD24− adjacent normal tissues [46]. However, divergent
results on transcriptomics and proteomics data are found when studying prognosis of
PDAC patients. Indeed, in a proteomics study of 55 pancreatic cancer patients, lower levels
of SPTBN1 correlate with advanced PDAC stage and worse prognosis [47], and similar
data were reported in a cohort of 82 resected PDAC patients [48] (Figure S3D). Contrary to
this, transcriptomics data show that high levels of SPTBN1 correlates with poor prognosis.
Therefore, different regulations at transcriptomics levels or post-translational modifications
may tune SPTBN1 expression from benign state to cancer progression.

2.3. SPARC Is a Direct Target of miR-29a-3p and Its Modulation Affect Cell Migration

To validate SPARC as an important target of miR-29a-3p, we evaluated previous
literature studies [49–53] using cloned 3′UTR regions of this transcript in luciferase vectors
and co-expressed them with precursor miRNAs (pre-miRs). Most of these studies showed
reduced luciferase levels upon miRNA over-expression and verified a direct miRNA-
mRNA interaction (Figure 4A). We then transfected both Panc-1 and LPC006 cells with
the pre-miRs and anti-miRs, individually, and performed RT-qPCR to assess and confirm
changes at the endogenous mRNA levels. Transfection efficiency of pre- and anti-miR-
29a-3p was evaluated by qRT-PCR analysis, 48 h post transfection, showing a significant
modulation of miR-29a-3p expression in both cellular models (Figure S5). Consistent with
the literature findings, we observed a reduction in the levels of SPARC mRNA in cells with
increased expression of miR-29a-3p. On the contrary, we observed a significant increase
of SPARC expression in cells with reduced miR-29a-3p expression (Figure 4B). The effect
of miR-29a-3p on cell migration was evaluated using the wound healing assay, which
showed that the hsa-miR-29a-3p mimic inhibited PDAC cell migration capability, while
the hsa-miR-29a-3p inhibitor enhanced it (Figure 4C). These findings demonstrate that
hsa-miR-29a-3p regulates the mRNA expression of its predicted target SPARC and affects
PDAC cell migration.
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2.4. Integration of Gene Set Enrichment Analyses

Defining and discovering a regulatory mechanism in a specific phenotype is often
challenging. For example, many miRNAs can compete to target the same gene and the
same gene can be targeted by many miRNAs simultaneously. Not only miRNAs, but the
entire family of small-RNAs can regulate gene expression by both mRNA degradation
and translational repression mechanisms and it has been shown that protein expression
not always correlate to gene expression due to post-translation modifications and/or
regulatory feedbacks.

We hypothesized that the most active and prominent pathway that describes the
current state of the cell/platelet should be maintained across all data-layers.

To this end, we performed a gene set enrichment analysis using Gene Ontology
terms for each data-type. Next, results of the separate gene ontology mining were inte-
grated retaining only the overlapped GO terms (Figure 5). Interestingly, a total of eight
pathways resulted significantly enriched for RNA splicing, mRNA processing, ribosome
biogenesis and translation initiation in miRNAs and proteins of PDAC platelets, in line
with previous findings [16,44]. Genes and intron-spanning reads were found to be down-
regulated in PDAC platelets. This can be well explained by the inhibitory mechanisms
of miRNAs acting on gene expression. Of note, proteins that are supposed to correlate
to RNA expression are on opposite direction. This outcome can have at least three ex-
planations: (i) the presence of alternative regulatory mechanisms and post translational
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modifications on RNAs; (ii) various proteins also non-tumor related can be ingested by
platelets; (iii) blood platelets can ingest miRNAs and proteins that can control internal
splicing events encoding for unfolded/non-functional proteins inducing a “specific” regu-
lation. Indeed, down-regulation of RNA splicing in platelets of cancer patients was already
shown by Best et al. [19] when biologically mining the selected features for their diagnostic
TEP model.
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2.5. Different Isomirs Profile in PDAC and Benign Platelets of Patient

We performed an exploratory analysis on the different expression protein profile of
eight PDAC and 11 benign platelets patients using our proteomics data and four additional
datasets to validate our findings: (i) label-free quantification from DDA data of discovery
cohort; (ii) label-free quantification from DIA data of discovery cohort; (iii) iq implemen-
tation of DIA data of discovery cohort [54]; (iv) published study on proteomics platelets
using healthy controls and PDAC patients [9].

In this analysis, we found five highly expressed proteins in PDAC platelets: HBA1,
HBD, PRDX2, CA1 and 1 down-regulated protein in PDAC platelets: AGT. Results are
presented in Figure S6.

Next, we investigated whether there was a correlation with transcriptomics and
small-RNAs data based on the above-mentioned analysis. Unfortunately, none of the
six differentially expressed proteins were differentially regulated in transcriptomics data.
However, AGT, HBD and CA1 shared a miRNA target that is up-regulated in PDAC,
miR-26b-5p (Table S4).

Next, we generated an isomiRs profile based on differentially expressed canonical
miRNAs (Figure 6). Based on this profile, miR-26b-5p is stable in benign platelets (only
addition of #G base and the 5′ ends), while several types of isomiRs of this miRNA are
produced in PDAC platelets (nta#A, lv5p, lv3p, mlv5p). We then investigated the frequency
of each isomiR class in PDAC and benign platelets, using only the isoform of DE canonical
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miRNAs (side barplots Figure 5). Strikingly, while benign platelets present a relatively
high number of isomiRs of nta#G, in PDAC platelets this class of isomiR is almost absent
and several different types of isomiRs appear to increase, with nta#T and lv3p being the
most frequent. These results suggest a different action of nucleotidyltransferases in the two
patient groups.
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3. Discussion

This study demonstrates a novel integrative interaction of miRNAs, mRNAs, and
protein expression in blood platelets of patients with PDAC, when compared to benign
lesions. Parallel deep omics approaches were applied to unravel the biology of TEPs and
correlate expression profiles. The intrinsic regulation of platelets was further explored using
–omics profiling. With an extensive catalog of data profiles, we demonstrated profound
regulations at multiple levels with high discriminatory power.

Next, correlation analysis of intron-spanning reads and mRNAs with corresponding
proteins were compared in PDAC and benign platelets to evaluate the presence of different
translational activity.

Importantly, SPARC resulted to be down-regulated in PDAC networks when using
isomiRs data. In particular, SPARC is negatively correlated with several isomiRs, such as
miR-221-5p, miR-29a-3p, miR-22-3p and miR-17-3p. We further validated the nhibitory
effects of miR-29a-3p on SPARC expression through RT-qPCR in PDAC cells. Ontology
mining for those miRNAs revealed an over-expression of classical PDAC pathways, such as
ErbB signaling, PI3K-Akt signaling, mTOR pathway, focal adhesion. Notably, high plasma
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levels of miR-22 appear to be prognostic for poor survival in an external PDAC cohort [45].
However, a clear relationship between miR-22 and SPARC has not yet been described.

SPARC is a multifunctional glycoprotein with different and somehow controversial
activities, it can modulate cellular interaction with the extracellular matrix (ECM) by
binding collagen and vitronectin, but also contributes to counteradhesive cells effects by
focal adhesion abrogation. In tumorigenesis, SPARC presents a downregulated pattern in
specific tumor cell types (e.g., epithelial) and an upregulated pattern in adjacent stromal
cells, as described in ovarian, pancreatic and lung cancers [55–57]. SPARC negatively
regulates cell proliferation, angiogenesis and adhesion, but is increased in gliomas (grades
II–IV) [58]. These opposing actions of SPARC may be clarified by differences in the
biological activities of several proteolytic molecules including matrix metalloproteinases,
cathepsins, elastases and serine proteases [59]. Moreover, SPARC regulates the activity of
several growth factors such as platelet-derived growth factor, basic fibroblast growth factor
and vascular endothelial growth factor that can all play a pivotal role in platelet molecular
mechanisms underlying cancer progression and metastases.

In this study, SPARC negatively correlates to the above-mentioned isomiRs suggesting
that alterative mechanisms such as malfunctioning on proteins involved in miRNAs bio-
genesis or ingestion of tumor-secreted miRNAs can potentially play a role in regulation of
SPARC gene transcripts and the subsequent inhibition of the tumor suppressor. However,
a still open question is if SPARC is produced by platelets and released on the tumor site, or
it is taken up by platelets from tumor cells.

Finally, a possible “pathway flow” from miRNAs to proteins going across mRNAs
and retained introns mRNAs was investigated. Integration of significantly enriched gene
ontology terms from differentially expressed miRNAs, mRNAs, intron-spanning reads and
proteins showed that RNA splicing, RNA transcription, mRNA processing and translation
initiation terms were enriched in PDAC platelets for miRNAs and proteins but not for
mature mRNAs and intron-spanning reads. This result is in line with previous findings [60]
suggesting that other mechanisms are acting at the level of mRNA processing. For example,
we found that many miRNAs related to the RNA splicing pathway, where up-regulated in
PDAC platelets, whereas the mature mRNAs associated to them where down-regulated.
This may suggest that other regulatory mechanisms are involved in mature-RNA degra-
dation such as 5′ and 3′ modifications on RNA extremities [61], RNA helicases, poly-A
tail elongation, chaperones and silencing RNAs (psiRNAs) [62]. However, integrated
pathway analysis showed that miRNAs correlated with protein levels, meaning that, also
when mRNA is degraded, proteins are still produced. A potential explanation for such
phenomenon could be that miRNAs and proteins secreted by CTCs or directly from the
tumor are recruited and ingested by platelets.

We demonstrated that differentially expressed canonical miRNAs of PDAC blood
platelets are enriched for different type of isomiRs class such as lv3p, nta#A and nta#T while
benign platelets solely show an enrichment for nta#G. There are two possible explanation
for these findings: (i) those miRNAs are not produced in the platelets but can be taken up
after contact with tumor, CTCs or tumor vesicles secreted; (ii) platelets contain nucleotidyl-
transferases that can alter the miRNA template and the subsequent interaction with the
gene target. Both mechanisms can result in a modification of the platelet transcriptome and
its subsequent education in response to external stimuli such as the presence of the tumor.

A seminal study performed in 2018 developed a non-invasive blood test called Can-
cerSEEK [63] that aimed to detect eight common cancer types based on eight circulating
protein biomarkers and tumor-specific mutations in circulating DNA. Depending on the
cancer type, this method detected cancer with a sensitivity ranging from 69 to 98% open-
ing a promising future in this field. More recently, an increasing number of studies has
shown that cell-free DNA (cfDNA) methylation could be utilized for the identification
of disease-specific signatures in pre-neoplastic lesions or chronic pancreatitis (CP), repre-
senting a sensitive and non-invasive method of early diagnosis of PDAC. An exhaustive
review by Gall and colleagues reported a summary of all cfDNA studies in PDAC, chronic
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pancreatitis (CP) and benign lesions [64]. A major limiting factor of the reproducibility of
(cf)DNA methylation data is the lack of a common reporting standard for DNA methyla-
tion detection. Furthermore, the heterogeneity of the cfDNA molecules and their genetic
variability associated with cancer make the results’ interpretation even more difficult. De-
spite technological advances in heterogeneity deconvolution [65–67] pinpointing of tissue-
and disease-specific subsets of molecules remains a difficult task. More insights in tumor
heterogeneity will surely boost the utilization of liquid biopsies and, thus, the discovery of
PDAC biomarkers.

Of note, a recent analysis reported the first methylation landscape on tumor suppressor
genes in PDAC [68]. In this study higher methylation indices for SPARC were able to
distinguish PDAC from CP, confirming previous observations [69]. Furthermore, SPARC
hyper-methylation was associated with stage IV, metastasized disease, and poor survival.
However, this study was conducted in small cohorts, and validation in larger independent
cohorts is warranted.

Overall, this is the first study where miRNAs, RNAs and proteins were profiled from
the same set of platelets samples in PDAC patients. Having in mind the limitation of the
sample size and the low detection rate for proteomics, this study aimed to explore the in-
trinsic regulation of platelets using -omics profiling. To this end, we generated an extensive
catalog of data profiles and an interactive tool to visualize expected correlations, in order to
facilitate further investigations on additional diagnostic biomarkers and therapeutic tools.

A recent study described how tumor educated platelets enable both brain tumor
diagnostic and therapy monitoring [70]. The strategy adopted behind in this study in-
terrogated intron-spanning RNA reads and their expression using a fine-tuned classifier
(swarm intelligence). This resulted in an accuracy of 0.95% when discriminating glioblas-
toma from asymptomatic healthy controls. Remarkably, the same method was adopted to
diagnose a non-tumor disease such as multiple sclerosis with 80% of accuracy [71]. These
findings demonstrate that spliced-RNA of tumor educated platelets could be a used for
different diseases.

To conclude, using a multi-omics profiling of platelets from PDAC and benign diseases
patients we (i) provide additional data supporting previous findings where signature of
RNA splicing is down-regulated in RNA of cancer platelets; (ii) illustrated that all the
-omics profiles can classify the two groups; and (iii) showed that specific isomiRs types are
present in PDAC platelets prompting future studies to further validate their biological and
clinical relevance.

4. Materials and Methods
4.1. Patients and Samples Collection

This study enrolled 11 patients with pathologically confirmed PDAC and 11 patients
with benign disease, both groups comprising male and female subjects aged between 39
and 81 years. Clinical characteristics of the study subjects are listed in Table S1.

Blood samples were obtained from the two University Hospitals of Amsterdam (VUmc
and AMC, Amsterdam Universities Medical Centers (Amsterdam UMC, Amsterdam, The
Netherlands), after receiving an informed consent of the patients (medical ethical approved
protocol: #14438). Healthy donors were reported to be without any type of cancer, currently
or in the past, as described previously [72]. The samples and associated clinical data of all
individuals was collected and stored with a retraceable code, and fully anonymized.

4.2. Isolation of RNA and Protein for miRNAs, mRNAs and Protein Profiling

To elucidate potential different regulatory mechanisms, miRNA, mRNA and proteins
were profiled from the same blood platelets samples.

Platelet pellets were isolated within 48 h after blood collection and stored in RNAlater
at −80◦. Total RNA was extracted from platelets using the MiRVAna kit (Ambion) while
the protein fraction was stored for proteomics analysis after removal of RNA. Platelets
isolation and extraction was performed as described previously [37].
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4.2.1. RNA-Seq Library Preparation

For RNA isolation and sequencing, all samples were subjected to the thromboSeq
protocol described previously [37].

4.2.2. miRNA-Seq Library Preparation

Preparation of miRNA libraries and sequencing was performed as described by
Koppers-Lalic et al. [28,29]. After RNA isolation, samples were adjusted to have the same
amount of total RNA concentration (500 pg in 7 µL). Libraries were prepared using the
standard small-RNA Library Prep Kit for Illumina. To assess samples’ quality before
sequencing, the concentration of the samples was determined using the Fragment Analyzer
and all samples met the quality requirements. Sequencing was performed using the HiSeq
4000 instrument (Illumina, San Diego, CA, USA) with 150 bp paired-ends.

4.2.3. Protein Extraction and MS/MS Sample Preparation

After RNA removal proteins were precipitated and loaded on SDS-PAGE. Image J
analysis was used to enable equal loading on a subsequent SDS-PAGE (12%). Proteins were
allowed to run just into the running gel before the voltage was stopped and stained with
Coomassie R-250. After washing in MQ, each stained protein blob was cut from the gel as
a single band and subjected to tryptic (Promega, Madison WI, USA) digestion. Peptides
were extracted, desalted and dried.

Peptides were separated by an Ultimate 3000 nanoLC system (Dionex LC-Packings,
Amsterdam, The Netherlands). After injection, peptides were trapped at 6 µL/min on a
10 mm × 100 µm ID trap column packed with 5 µm 120 Å ReproSil Pur C18 aqua at 2%
buffer B (buffer A: 0.5% acetic acid in ultrapure water; buffer B: 80% ACN + 0.5% acetic
acid in ultrapure water) and separated at 300 nL/min in a 10–40% buffer B linear gradient
in 90 min (120 min inject-to-inject).

Eluting peptides were ionized into a Q Exactive mass spectrometer (Thermo Fisher,
Bremen, Germany). Intact masses were measured at resolution 70.000 (at m/z 200) in the
orbitrap using an AGC target value of 3E6 charges. The top 10 peptide signals (charge-
states 2+ and higher) were submitted to MS/MS in the HCD (higher-energy collision) cell
(1.6 amu isolation width, 25% normalized collision energy). MS/MS spectra were acquired
at resolution 17.500 (at m/z 200) in the orbitrap using an AGC target value of 1E6 charges,
a maxIT of 60 ms and an underfill ratio of 0.1%. Dynamic exclusion was applied with a
repeat count of 1 and an exclusion time of 30 s. More details on the sample processing and
for DIA method are reported in the metadata file of PXD with accession: PXD022514.

4.3. Downstream Analysis of miRNAs, mRNAs and Protein Profiles
4.3.1. Intron-RNA Processing Data

FASTQ files obtained from RNA-seq experiment were subjected to a standard pipeline
as described previously [60], selecting only the spliced intron-spanning RNA reads. Gene
counts were converted to counts per millions (CPM) before filtering procedures. Genes with
a total count of at least 1 CPM in more than 40% of the samples were retained. Black and
white cases were also retained allowing 0 values in max 18% of the positive samples group.
Gene counts were then converted to TMM values through the EdgeR package in R (version
3.5.0). Differential analysis was performed with EdgeR package in R (version 3.5.0).

4.3.2. mRNA Processing Data

FASTQ files were checked for quality reads and adapters were removed with Trim-
momatic [73]. Successfully quality passed reads were mapped to the human reference
genome (Hg19) with STAR mapping tool [74] and gene counts were extracted with HT-
Seq [75]. Normalization, quality filtering and data presence were previously described in
Section 4.3.1.
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4.3.3. miRNA Processing Data

cDNA libraries were sequenced at GenomeScan (Leiden, The Netherlands) and FASTQ
files were acquired. Trimming, mapping and miRNA counts was performed with sRN-
Abench tool (version 10/14) [76]. Profiled miRNAs were then converted to CPM following
the same filtering and normalization procedure for mRNA data processing. Differential
analysis was performed with EdgeR package in R (version 3.5.0).

4.3.4. Protein Processing Data

MS/MS spectra were searched against the Swissprot FASTA file (release September
2015, 20197 entries, canonical and isoforms) using MaxQuant version 1.5.2.8. Peptide and
protein identifications were filtered at an FDR of 1% using the decoy database strategy. The
minimal peptide length was seven amino-acids. Proteins that could not be differentiated
based on MS/MS spectra alone were grouped to protein groups (default MaxQuant set-
tings). Searches were performed with the label-free quantification option selected. After
contaminants removal proteins were normalized by global median. Differential analysis of
spectral counts was computed in R with “ibb” package [77]. Normalized spectral counts
data are reported in Table S5. Details in the data processing protocols and DIA samples are
reported in the metadata file in PXD with accession PXD022514.

4.4. Differential Expression Analysis

In this study, two different statistical tests were adopted to determine the difference
in the expression profiles of platelets in PDAC patients and patients with benign diseases.
Differentially expressed canonical and isoforms of miRNAs were analyzed separately with
the R package EdgeR (version 3.24.3) using cutoff of p-value < 0.05 and |Log2FC| > 1.
Same parameters were applied for mRNAs and pre-mRNAs differential expression analysis.
Finally, differentially expressed proteins were evaluated with the R package “ibb” and
significance was determined using a threshold of p-value < 0.05.

4.5. Correlation Analysis

Correlation analyses were computed in R version 3.5.1. with cor.test() function. Signif-
icance level was set to p-value < 0.05.

4.6. Cell Culture and Transfection

Panc-1 cells were purchased from the American Type Culture Collection (ATCC, Man-
assas, VA, USA), while the primary cells LPC006 were isolated from laser-microdissected
PDACs, as described previously [78]. Both were maintained in RPMI supplemented with
10% FCS, 1% penicillin/streptomycin, and 1% glutamine, at 37 ◦C under an atmosphere of
5% CO2 in 75 cm2 tissue culture flasks (Greiner Bio-One GmbH, Frickenhausen, Germany).
When the cells were ready for transfection, they were plated the day before and then
transfected with the precursor and antisense oligonucleotides (Pre-miR™ miRNA Precur-
sor pre-miR-29a-3p and Anti-miR™ miRNA Inhibitor anti-miR-29a-3p) purchased from
ThermoScientific/Ambion-Applied Biosystems, Waltham, MA, USA (Assay ID, PM12499
and AM12499, respectively) at 30 nM final concentration, as described previously [79].
Cells were plated at 5000 cells/well in 200 µL RPMI with 10% FBS and 1% antibiotics. After
24 h cells were exposed to 0.9 µL oligofectamine (Invitrogen, Paisley, UK) in serum-free
medium, mixed for 10 min at room temperature, followed by the addition of 0.3 µL of
6.25 µM miR-29a-3p precursor or inhibitor. Cells were also incubated with miRNA neg-
ative controls. After overnight exposure the medium was removed from the wells and
replaced with RPMI with 10% FBS, without antibiotics. Then cells were allowed to grow
for additional 48 h in drug-free medium before lysis and RNA extraction to evaluate the
transfection efficiency and modulation of SPARC mRNA level and cell migration.
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4.7. Quantitative Real-Time PCR (RT-qPCR)

Total RNA extracted was used to perform RT-qPCR using Taqman mature miRNA
primers and probes. RNA was extracted using a Trizol-chloroform protocol (Sigma, St.
Louis, MO, USA). RNA yields and purity were checked by measuring optical density at
260/280nm with a Nanodrop® spectrophotometer (NanoDrop-Technologies, Wilmington,
DE, USA). Briefly, both mature miRNA miR-29a-3p and SPARC mRNA expression were
measured using specific primers (assay-ID 002112 and Hs00234160_m1, respectively) for
complementary DNA (cDNA) synthesis followed by Taqman PCR analysis. PCR reactions
were performed on a 7500HT sequence detection system (Applied Biosystems, Foster City,
CA, USA), in accordance with the manufacturer’s instructions. Duplicate samples and
endogenous controls for miRNA and mRNA normalization (snRNA U6 and GAPDH) were
used throughout. Quantification of miRNA relative expression was performed evaluating
the threshold cycle (Ct) and normalized to U6, as described previously [79]. Similarly,
expression levels of SPARC mRNA were normalized to GAPDH, and quantitation of gene
expression was performed using the ∆∆Ct calculation, where the amount of target gene,
normalized to GAPDH and relative to the calibrator (untreated control cells), is given as
2−∆∆Ct. Specimens were amplified in triplicate with appropriate non-template controls,
and the coefficient of variation was <1% for all replicates.

4.8. Migration Assay

For the migration assay the cells transfected with pre-miR-29a-3p or anti-miR-29a-3p
or miR-negative control, as described above, were plated at a density of 2 × 104 cells/well
onto 96 wells plates, and artificial wound tracks were created by scraping with a specific
scratcher within the confluent monolayers. After removal of the detached cells by PBS
washing, the medium was refreshed and cells ability to migrate into the wound area was
assessed by comparing the pixels of the wound tracks in the images taken at the beginning
of the exposure (time 0), with those taken after 8, 16, and 24 h, with the LeicaDMI300B-
station integrated with Scratch Assay software (Digital-Cell Imaging Labs, Keerbergen,
Belgium), as described previously [80].

4.9. Functional Pathways Enrichment

To investigate the regulatory role of miRNA in PDAC and benign disease, a GSEA was
performed with fgsea R package (version 1.8.0). Differentially expressed intron-spanning
reads and proteins were ranked based on their p-value and FC [−log10(p-value)*FC sign].
A compendium of Gene Ontology terms (biological processes, molecular function and
cellular component) was downloaded from the Broad Institute: MSigDB [81] version 6.0,
including Hallmarks of Cancer.

MiEAA web based tool [82] was used to evaluate biological processes enrichments in
miRNAs. Performing an over-representation analysis, the normalized enrichment score
(NES) was not given by the database and was set to 1.5 for each significant enrichment.

5. Conclusions

In the present study, we investigated the biological mechanisms acting in platelets of
PDAC patients. Patients with benign disease were included in this study as a reference
for inflammatory noise. Through an extensive gene ontology mining of different –omics
data we demonstrated that active RNA processing, splicing signals events and translation
initiation are specific terms in the biology of circulating platelets in patients with PDAC.
In particular, the differential regulation of some genes, such as SPARC, in PDAC and
benign platelets, makes platelets an interesting source for diagnostic tools, together with
the different miRNAs and proteomic profiles. Further understanding of the real function
of these profiles is essential for biomarker discovering when using a machine learning
approach. The analysis of specific platelets content could therefore provide a dynamic
and powerful approach for the specific diagnosis of PDAC, paving the way for early
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detection intervention strategies, which represent the greatest hope for making substantial
improvements in survival for this disease.
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Abbreviations

lv3p length variant in 3′

lv5p length variant in 5′

nta#A non-templated addition of base A
nta#T non-templated addition of base T
nta#C non-templated addition of base C
nta#G non-templated addition of base G
exactNucVar exact nucleotide variant
mv multiple variant
mlv3p multiple length variant in 3′

mlv5p multiple length variant in 5′
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