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Introduction

Metastasis is the multi-step process by which cancer cells spread 
from the primary tumor site to other parts of the body, and is 
responsible for around 90% of cancer deaths.1 To be success-
ful, the process requires the individual cancer cell to acquire a 
host of new characteristics and abilities that are needed in order 
to overcome the considerable barriers to the establishment of 
tumors within the body. However, it is now apparent that these 
invading cancer cells are not acting alone. Recent studies have 
highlighted the requirement for support from certain cells of the 
immune system which aid in each of the major steps of metasta-
sis. This timely review will bring together the evidence for a role 
of the myeloid cell compartment in the spread of cancer around 
the body.

The myeloid compartment of the immune system is comprised 
of a heterogeneous population of cells, all of which originate from 
the bone marrow, but mature into sub-populations with diverse 
and unique properties. Neutrophils, eosinophils, dendritic cells 
(DC) and mast cells are known to play some part in the different 
phases of metastasis, but in recent years it is the tumor-associated 
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Metastasis is a key step in cancer progression, and was 
traditionally attributed to the accumulation of genetic and 
epigenetic changes within individual cancer cells. These 
changes promoted invasiveness, immune evasion and 
survival at distant sites. However, recent studies reveal that 
metastasis is not achieved by the cancer cell in isolation, but 
requires intervention from the immune system. The myeloid 
cell population in particular is now implicated in many 
aspects of metastasis. Here, we bring together the evidence 
for the importance of various myeloid cell sub-populations 
throughout the metastatic process, from initiation of cancer 
cell invasiveness, to priming the tissue site for colonization.
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macrophages and myeloid-derived suppressor cells which have 
received the most attention as key players in supporting the meta-
static process.

Tumor-associated macrophages (TAMs) share some similari-
ties with the M2 macrophage subset, also known as alternatively 
activated macrophages. Broadly speaking, M2 macrophages 
exhibit anti-inflammatory features; downregulating expression 
of their major histocompatibility complex (MHC) molecules 
and interleukin [IL-12, while expressing high levels of IL-10, 
scavenger receptor A, and arginase (Arg)]. M2 macrophages are 
involved in wound-healing and angiogenesis.2 This is in contrast 
to the other main macrophage phenotype, M1, which is associ-
ated with anti-tumor responses and production of high levels of 
pro-inflammatory cytokines including TNFα, IL-1, IL-6, IL-12 
and inducible nitric oxide synthase.2 For more information on 
macrophage polarization and subsets, see the recent review by 
Sica and Mantovani.3

Myeloid-derived suppressor cells (MDSCs) also exhibit anti-
inflammatory properties, and have come into prominence in recent 
years as their role in cancer progression has been uncovered.4 A 
significant amount of evidence now indicates that MDSCs accu-
mulate in most malignant murine and human tumors.5,6 Human 
MDSCs are defined by their CD11b+CD33+HLA−DR− pheno-
type.7 The murine MDSC population express the phenotypic 
markers CD11b and Gr-1 but is in fact a heterogeneous group 
of cells comprising myeloid progenitors, immature macrophages, 
immature granulocytes and immature dendritic cells.4 Despite 
their heterogeneity, MDSC are unified by their activated pheno-
type [characterized by high expression of Arg1, reactive oxygen 
species (ROS) and nitrogen species (nitric oxide, NO)] and their 
ability to suppress T-cell functions. In both healthy mice and in 
humans, immature myeloid cells normally lack this suppressive 
activity and primarily reside in the bone marrow, but in patho-
logical conditions, of which cancer has been the most studied, 
MDSCs accumulate in secondary lymphoid organs, in blood and 
in tumors. This redistribution is associated with the production 
of various pro-tumoral growth factors, chemokines and cyto-
kines.4 A recent in-depth review of the subsets and functions of 
MDSCs can be found in Zhi, et al.8

We will now review how the various subsets of myeloid cells 
contribute to the many steps of metastasis, namely delamination 
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(2) transforming growth factor (TGF)-β1 and (3) hepatocyte 
growth factor (HGF). G-MDSCs themselves were the main 
intra-tumoral source of TGFβ1 and HGF. Like the murine 
model, EGF, HGF and TGFβ also play important roles in 
human cancers; HGF, c-Met (the receptor for HGF) and EGF 
are all expressed in uveal melanoma, where vitreal EGF levels 
correlate with scleral invasion.15 Both c-Met16 and TGFβ17 activ-
ity in melanoma are linked with increased metastatic potential.

TAMs also have the capacity to support EMT. In a mouse 
mammary tumor model, the tumor cells recruited TAM through 
the secretion of colony stimulating factor 1 (CSF-1), which in 
turn stimulated expression of EMT-promoting EGF by TAMs.18 
In vitro, macrophage-conditioned medium destabilizes the adhe-
rens junctions in a human liver carcinoma cell line by promot-
ing increased tyrosine phosphorylation of β-catenin. This leads 
to decreased E-cadherin surface expression in the cancer cells. 
Inhibition of EGF by gefitinib partially blocked the effect of the 
conditioned medium.19 TGFβ is also involved in macrophage-
induced EMT, and is expressed at high levels by M2 macrophages 
in particular.20 This is not unexpected, as macrophages play an 
important role in wound-healing,  a physiological process that 
requires cells to undergo EMT.21 In vitro, the macrophage cell 
line, RAW 264.7, can augment TGFβ-driven EMT by express-
ing tumor necrosis factor (TNF)-α.22 In human gliomas TAMs 
at the invasive edge of the tumor express TGF-β that stimu-
lates glioma stem-like cells to express matrix metalloproteinase 
(MMP)-9, which allows the extravasation of the cancer cells.23 
Expression of MMPs by TAMs can also help break-down the 
extracellular matrix (ECM) and release ECM-bound factors such 
as TGF-β, thus forming a positive feedback loop. These steps are 
summarized in Figure 2.

Metastasis Step 2: Invasion and Intravasation

Once they have detached from the primary tumor, cancer cells 
must navigate on and through the ECM to reach the blood or 
lymphatic vessels.24 A study by Solinas, et al. identified migration-
stimulating factor (MSF) produced by TAMs as an important 
promoter of tumor cell motility and invasiveness.25 Molecular 
messengers can also be important in inducing cancer cell inva-
siveness; Yang, et al. demonstrated that M2 macrophages co-
cultured with breast cancer cells exchange miRNA, specifically 
miR-223, through exosomes. miR-223 that entered the tumor 
cells had the ability to increase their invasiveness.26

In addition to the roles of MDSCs and TAMs, mast cell num-
bers are increased in human cancers and this correlates with a 
poorer prognosis.27 This might be accounted for by the fact that 
mast cell factors increase the invasiveness of thyroid carcinoma 
cells in vitro.28 Mast cells also have a similar effect on invasive-
ness in pancreatic cancer cells.27 It has been postulated that this 
invasive effect is promoted by tryptase secreted by mast cells and 
subsequently stimulating MMP-2 production in breast cancer 
cells, MDA-MB-231, resulting in increased invasion.29

Eosinophils have also been associated with an increased risk 
of metastasis in a number of cancers,30 however, there are some 
reports of eosinophils inhibiting tumor growth and reducing the 

from the primary tumor mass, invasion of the surrounding tis-
sues, intra- and extra-vasation and eventually colonization of the 
metastatic site (Fig. 1).

Metastasis Step 1: Delamination

Ramón y Cajal, in the 1800s, identified undifferentiated breast 
carcinomas undergoing physiological changes that allowed them 
to migrate. “The epithelial islands are not surrounded by a base-
ment membrane… We shall mention the fusiform, pear-like and 
star-like forms… The cells are not attached to each other…”.9 The 
metastatic process begins with cancer cells acquiring the ability 
to detach from the primary tumor mass (delamination). This 
change is often driven by the process of epithelial-mesenchymal 
transition (EMT),10 and myeloid cells play an important part 
here. EMT is a coordinated conversion of epithelial cells toward 
a mesenchymal-like phenotype. Although EMT has mainly been 
described in embryonic development, it is also involved in can-
cer progression.10 EMT generally begins with the loss of apical-
basal polarity, followed by disassembly of the cell-cell junctions 
and degradation of the basement membrane.11 Cell surface pro-
teins, such as E-cadherin that mediate epithelial connections to 
adjacent cells, are replaced with integrins.12 The peripheral actin 
cytoskeleton is replaced by stress fibers, while cytokeratin inter-
mediate filaments are replaced by vimentin,13 and it is with these 
changes that the cell acquires the ability to detach from the pri-
mary tumor site.

MDSCs can be split into two morphologically distinct popu-
lations, monocytic (Mo-) and granulocytic (G-) MDSCs.5 Mo- 
and G-MDSCs also differ in the expression of selected markers, 
the mechanisms by which they suppress T-cell responses and 
their level of differentiation.8 In our studies, we have shown that 
G-MDSCs induce mesenchymal transition (MT) in a mouse 
model of spontaneous melanoma.14 Depletion of G-MDSCs 
resulted in a significant inhibition of tumor cell dissemination 
and a decrease in metastasis. MT in this model was activated 
through three pathways: (1) epidermal growth factor (EGF), 

Figure 1. Myeloid cells play important roles in the metastatic process in 
cancers – from detachment from the primary tumor stroma to coloniza-
tion of the pre-metastatic niche at distal sites.
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metastasis through increased production of MMP-14, MMP-13 
and MMP-2.38 In a murine model of colorectal cancer, accumu-
lation of immature myeloid cells, distinct from MDSCs, favors 
invasion through the production of MMP-2 and MMP-9.39 
Another mechanism inducing invasiveness relies on urokinase 
plasminogen activator (uPA) produced by myeloid cells. The uPA 
receptor is involved in ECM degradation via cell surface plasmin-
ogen activation, and has been linked to metastasis and poor prog-
nosis in gastric cancer.40 Mast cells can express proteases directly 
or induce other cell types to produce proteases. Mouse mast cell 
protease (mMCP) -4 and mMCP-6 can activate pro-MMP-9 and 
release other pro-angiogenic factors from the ECM.41

Few studies have shown in vivo that myeloid cell-derived pro-
teases play a direct role in helping tumor cell migration through 
the ECM. This is confounded by the fact that tumor cells pro-
duce MMPs as well. Identifying the source of these proteases in 
the tumor could help in the therapeutic targeting of the main pro-
tease-producing cells. More studies taking advantage of 2-photon 
intra-vital microscopic techniques, such as those by Wyckoff, et 
al., might prove instructive in elucidating, specifically, the role of 
myeloid cell-derived proteases.18

Following migration through the ECM, cancer cells must 
reach a blood or lymphatic vessel if they are to be transported 

invasive phenotype of cancer cells.31,32 As such, the effect of eosin-
ophils on cancer metastasis is still undetermined.

Other than increasing invasiveness, proteolytic degradation 
of the ECM is physically important in allowing tumor cells to 
migrate. Macrophages express a number of proteases such as 
MMPs, serine proteases and cathepsins.33 These proteinases, 
especially MMP2, help break down the ECM, permitting metas-
tasis of tumor cells. ECM remodeling also releases matrix-bound 
factors such as TGFβ which further augment the invasion.34 In a 
mouse model of epidermal squamous cell carcinoma, TAMs pro-
duce MMP-9 which degrades the ECM, releasing pro-angiogenic 
factors. When tumor-bearing mice were crossed with MMP-9 
deficient mice, angiogenesis and invasion were both delayed. 
This effect was reversed when wild-type bone marrow cells 
were transferred to the MMP-9 deficient mice, restoring normal 
malignancy to the tumors.35 Removal of macrophage-derived 
cathepsin B and S, in vivo, reduces metastasis in mouse models.36 
Other MMP-driven forms of ECM remodeling, such as collagen 
re-structuring, have also been described; however these functions 
were not directly attributed to macrophage-derived factors.37

Other myeloid cell types further promote the ECM remodel-
ing required for tumor cell migration; in mouse mammary carci-
nomas, MDSCs accumulate in the primary tumor and promote 

Figure 2. MDSC and macrophages induce invasion early in tumor development. Key to this is the secretion of factors that induce eMT. Hepatocyte 
growth factor (HGF), epidermal growth factor (eGF), transforming growth factor (TGF)-β and migration-stimulating factor (MSF) are all factors se-
creted by the myeloid cells infiltrating the primary tumors. These factors promote invasiveness of the cancer cells. Matrix metalloproteinases (MMPs) 
degrade the eCM, releasing pro-invasive factors such as TGFβ. Macrophages might also play a unique role in inducing an invasive phenotype by fusing 
with cancer cells, transferring their motile phenotype to the latter.
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TAMs have been found surrounding blood vessels in necrotic, 
hypoxic areas of the tumor.47 In human tumors, the density of 
TAMs correlates with microvessel density,48,49 and the TAMs are 
known to secrete pro-angiogenic factors including VEGF,47 pla-
cental growth factor,50 thymidine phosphorylase49 and platelet-
derived endothelial cell growth factor.48 In PyMT mice, which 
model spontaneous mammary cancer, depletion of macrophages 
reduced the density of intra-tumoral vessels, while premature 
infiltration of macrophages in the pre-malignant lesions increased 
blood vessel density. The authors of this study hypothesized that 
overexpression of macrophage-derived VEGF may have caused 
the early blood vessel formation.51

Alongside the TAMs, a specialized subset of highly pro-angio-
genic macrophages/monocytes that express the Tie2 (Tyrosine 
kinase with Ig and EGF homology domain-2) receptor has been 
identified in both mice and humans. These Tie2-expressing mac-
rophages (TEMs) are found in highly vascularized or stromal 

to a distant site (intravasation). Therefore, within the primary 
tumor, angiogenesis, and to a certain extent lymphangiogen-
esis, are important processes in the dissemination of tumor 
cells.42,43 Vascular endothelial growth factors (VEGFs) are essen-
tial for both angiogenesis (via VEGF-A) and lymphogenesis 
(via VEGF-C and VEGF-D). MMPs secreted by myeloid cells 
contribute to this process as well via the ECM degradation that 
makes available previously-inactive molecules that were bound 
to the matrix. In dysplasias, MMP-9-expressing CD11b+Gr-1+ 
cells are involved in the initial angiogenic switching required for 
pre-malignant lesions to progress; less VEGF to VEGFR bind-
ing was found in tumors depleted of these cells.44 The pronoci-
ceptive peptide Bv8 (also known as prokineticin 2) is expressed 
by CD11b+Gr-1+ cells and is known to promote angiogenesis.45 
Importantly, this pro-angiogenic function is observed only at the 
early stages of tumor development, as depletion of Bv8 at later 
time points had no effect on the tumor vasculature.46

Figure 3. Summary of the different factors secreted by myeloid cells that aid in the different stages of metastasis. TAMs, tumor-associated macro-
phages; MDSC, myeloid-derived suppressor cells; TeMs, Tie2-expressing macrophages; DCs, dendritic cells; MCP, mast cell protease; iL, interleukin; 
veGF, vascular endothelial growth factor; TNF, tumor necrosis factor; PiGF, placental growth factor; TYMP, thymidine phosphorylase; PD-eCGF, Platelet-
Derived endothelial Cell Growth Factor; TGF, transforming growth factor; eGF, epidermal growth factor; HGF, hepatocyte growth factor; bFGF, basic 
fibroblast growth factor; iGF, insulin-like growth factor; iFN, interferon; ANG, angiopoietin; MSF, migration stimulating factor; mir, microrNA; MMP, 
matrix metalloproteinase.
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appropriate anti-tumor response, in addition, immature DCs 
can tolerize T cells and induce the proliferation of regulatory 
T cells.66 This results in an overall dampening of the anti-tumor 
response allowing tumor cells to migrate through the circulation 
and survive in the distal metastatic site.

MDSCs accumulate in pre-metastatic mouse lungs through 
expression of VEGF, TGFβ and TNFα by the primary tumor.67 
MDSCs that infiltrate the pre-metastatic niche express the inflam-
matory molecules S100A8/9 which in turn contribute to priming 
the site for metastasis. In mice that fail to express S100A9, the 
number of lung metastases is reduced.68 Interestingly, S100A8/9 
expressed by the MDSCs in turn recruits more MDSCs and 
macrophages to the site, forming a positive feedback loop of pro-
tumoral site priming.67

MDSCs recruited to the pre-metastatic lung also condition 
the lung into an inflammatory and immunosuppressive envi-
ronment suitable for tumor establishment and growth. MDSCs 
inhibit IFNγ production in the pre-metastatic lung, while in 
contrast basic fibroblast growth factor, insulin-like growth factor 
I and the Th2 cytokines IL-4, IL-5, IL-9 and IL-10 are increased 
in pre-metastatic lungs.69 All these secreted factors create a micro-
environment that suppresses anti-tumoral immune responses.69 
MMP-9 secreted by infiltrating MDSCs results in disorganized 
vessel capillaries with poor pericyte coverage and degraded base-
ment membrane, which leads to a leaky vasculature in pre-meta-
static lungs, thereby facilitating extravasation of the cancer cells 
into the stroma.69

CD11b+VEGFR1+ myeloid cells can also secrete MMP-9 
which breaks down the ECM in the pre-metastatic niche, releas-
ing matrix-bound VEGF. Depletion of these cells using anti-
VEGFR1 antibodies inhibits the formation of pre-metastatic 
niches.70 However, there are contradicting reports stating that 
these myeloid cells are dispensable for the initiation of the pre-
metastatic niches, even though they are important for the growth 
of the established metastases.71 Neutrophils, though intra-vital 
microscopy, have been seen directly binding to circulating tumor 
cells in the liver sinusoids.72 This interaction, mediated by Mac-1 
and ICAM-1, promotes tumor cell adhesion to the endothelial 
cells, leading to increased metastasis.72

A subset of CD11b+Gr1−F4/80+CD11cloCX
3
CR

1
+CCR2+V

EGFR1+ macrophages has been shown to interact with tumor 
cells in the lung vasculature and help tumor cell extravasation. 
Depletion of macrophages in this system greatly reduced seeding 
efficiency in the lung.73 Interestingly, these macrophages do not 
express Tie2 or CXCR4, thus making them a distinct population 
from the pro-angiogenic TEMs. Furthermore, these inflamma-
tory macrophages that infiltrated the lungs are distinct from resi-
dent lung macrophages, as they do not express CD11c.73

Perspectives

Metastasis is an important event in cancer progression. Until 
recently, the first step of metastasis (i.e., tumor cell dissemination) 
was thought to be a late event.74 This time lag was presumably 
needed to allow selected cancer cells to accumulate the additional 
mutations required for motility and colonization. However, recent 

regions, but are absent from necrotic tumor regions.52 TEMs are 
activated by angiopoietin-2, which stimulates the pro-angiogenic 
activity of TEMs by increasing the expression of thymidine 
phosphorylase and cathepsin B.53 Removal of TEMs from trans-
planted human gliomas in a mouse orthotopic model prevented 
neovascularization and reduced tumor progression.54

In humans, mast cell infiltration is associated with increased 
microvessel formation in gastric cancer55 and oral squamous cell 
carcinoma.56 These mast cells are localized around new vessels 
and correlated with poor prognosis.55 Mast cells produce VEGF,57 
angiopoetin-158 and basic fibroblast growth factor59 in the tumor 
microenvironment, thereby assisting in the angiogenic process. 
In mouse models, mMCP-4 expressed by mast cells stimulates 
the angiogenic switch in hyperplastic lesions.41

Tumor-infiltrating DCs, molded by the tumor microenviron-
ment, can be found around capillary-like structures in the tumor. 
Furthermore, the cells in these structures express both CD31 and 
CD11c, markers of endothelial cells and dendritic cells respec-
tively. The authors postulated that the tumor-infiltrating DCs 
acquire an endothelial-like phenotype in the tumor. These DCs 
were found to be immature and to express VEGF-A, which pro-
moted vascularization of the tumor.60

In terms of lymphangiogenesis, it has been hypothesized that 
macrophages contribute via at least two mechanisms—by expres-
sion of pro-lymphogenic factors, and by acting as progenitors 
of lymphatic endothelial cells. A subset of TAMs does express 
VEGF-C and VEGF-D, which are important for lymphangio-
genesis and metastasis, at least in transplanted tumor models in 
mice.61,62 These VEGF-expressing TAMs are located in the peri-
tumoral areas and their numbers are correlated with lymphatic 
vessel density. VEGF-C and -D expression in these macrophages 
can be induced by TNFα and VEGF-D.63

In conclusion, we see that myeloid cells play an important role 
in angiogenesis and, in part, lymphangiogenesis. These processes 
are invaluable to both tumor growth and the intravasation of 
tumor cells into the circulation.

Metastasis Step 3: Extravasation and Colonization  
of the Metastatic Site

Metastasis is a very inefficient process. In vivo metastatic assays 
show that 80% of injected tumor cells survive in the liver micro-
circulation, but only 2.5% form micrometastases. Of these micro-
metastases, only 1% goes on to form macrometastases. Overall 
this adds up to only 0.02% of injected cells achieving tumor for-
mation.64 Although this was illustrated in an artificial transplanted 
tumor model, the inefficiency of metastasis formation highlights 
the stringent conditions that are required to support metastatic 
growth in distal organs. During cancer development, certain sites 
are induced to become more favorable for distal tumor establish-
ment, and these sites have been termed pre-metastatic niches.65 
Myeloid cells play a role in the establishment of this niche.

In cancer patients, tumor-derived factors can alter DC mat-
uration and differentiation. This leads to an accumulation of 
immature DCs in the primary tumor and the peripheral lym-
phoid organs. These immature DCs are not able to induce an 
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Anti-VEGF therapy, in addition to its anti-angiogenic effects, 
may also help in reducing the numbers of myeloid cells.78 
Interestingly, in mouse models, refractoriness to anti-VEGF ther-
apy has been shown to be dependent on MDSCs.79 Furthermore, in 
a tumor xenograft model in zebrafish, inhibition of VEGF signal-
ing effectively suppresses localized tumor growth but accelerates 
tumor invasiveness and micrometastasis through the recruitment 
of neutrophils.80 As seen from these contradictory reports, more 
studies have to be conducted on the targeting of myeloid cells 
before we can move on to rationally-designed clinical studies.

The diversity of myeloid cells allows them to play multiple 
roles in tumor progression. However, they are also crucial in nor-
mal physiology and responses to infection. Further studies would 
have to focus on defining the mechanisms underlying the differ-
ent functions of myeloid cells with respect to tumor progression. 
Only then would we be able to safely and effectively incorporate 
anti-myeloid cell therapy into current treatment regimes.
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work, including that from our own laboratory, has challenged this 
paradigm. In fact, cancer cells disseminate even before diagnosis 
of the primary tumor,75 and so a different, faster mechanism must 
be driving the development of the motile phenotype. Myeloid cells 
are prime candidates as inducers of early metastasis in cancer. They 
are one of the first cells arriving at the primary tumor due to the 
inflammation present at the cancer site.76 They also play important 
roles in neo-vasculature formation in this area.51

As seen in this review, myeloid cells are crucial at all stages of 
the metastatic process (Fig. 3). Targeting myeloid cells in combi-
nation with classical therapy could improve current treatments. 
Rational drug combination strategies may allow lowering of the 
dosage of toxic chemotherapeutic drugs, while maintaining or 
increasing efficacy. Furthermore, unlike malignant cells, myeloid 
cells are not genetically instable, potentially making them better 
targets than the tumor cells themselves.

Some chemotherapeutic drugs reduce myeloid cell numbers. 
In humans, sunitinib, a receptor tyrosine kinase inhibitor used in 
renal cell carcinoma, has been shown to reduce MDSC number and 
function and alleviate their T-cell suppressive effect. Furthermore, 
sunitinib reduces MDSC viability and function in vitro.77
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