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Topoisomerase IIa promotes activation of
RNA polymerase I transcription by facilitating
pre-initiation complex formation
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Type II DNA topoisomerases catalyse DNA double-strand cleavage, passage and re-ligation

to effect topological changes. There is considerable interest in elucidating topoisomerase II

roles, particularly as these proteins are targets for anti-cancer drugs. Here we uncover a role

for topoisomerase IIa in RNA polymerase I-directed ribosomal RNA gene transcription, which

drives cell growth and proliferation and is upregulated in cancer cells. Our data suggest that

topoisomerase IIa is a component of the initiation-competent RNA polymerase Ib complex

and interacts directly with RNA polymerase I-associated transcription factor RRN3, which

targets the polymerase to promoter-bound SL1 in pre-initiation complex formation. In cells,

activation of rDNA transcription is reduced by inhibition or depletion of topoisomerase II, and

this is accompanied by reduced transient double-strand DNA cleavage in the rDNA-promoter

region and reduced pre-initiation complex formation. We propose that topoisomerase IIa

functions in RNA polymerase I transcription to produce topological changes at the rDNA

promoter that facilitate efficient de novo pre-initiation complex formation.
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T
opoisomerases cleave DNA to elicit topological changes,
facilitating DNA-processing events in cells, including
transcription1–3. The type II topoisomerases (Top2) relax

supercoiled DNA by a double-strand DNA passage reaction.
There is much interest in understanding the cellular roles of the
Top2 enzymes, the mechanisms and sites of action and the
processes involved in recruitment to these sites, particularly as
these proteins are targets for clinically important anti-cancer
drugs4–6. In transcription, Top2 activity has been implicated in
resolving supercoiling associated with elongation by RNA
polymerases7–12. In RNA polymerase I (Pol I) transcription, in
yeast, Top2 cleavage resolves the positive supercoiling ahead of
the elongating polymerase, whereas Top1 resolves negative
torsion behind the polymerase7 and, in mammalian cells, Top1
has been shown to have an important role in Pol I transcription
elongation13–15. Mammalian cells have two isoforms of Top2, a
and b, with similar enzymatic activities and 68% overall sequence
identity, but Top2a and b differ markedly in their C-terminal
domains (CTDs), which appear to determine isoform-specific
functions. Top2a, specifically, is essential for chromatid
segregation and decatenation G2-checkpoint function16,17, for
instance, whereas, Top2b is involved in the repair of DNA cross-
links and the transcriptional induction of a subset of hormone-
and developmentally regulated genes in Pol II transcription18–22.
To our knowledge, a Top2a-specific role in transcription has not
yet been described. Intriguingly, our proteomic analyses of Pol I
complexes had revealed, previously, the specific co-purification of
Top2a with the initiation-competent Pol Ib complex23. Pol I
transcription produces the major ribosomal RNA (rRNA)
constituents of the protein-synthesis machinery, driving cell
growth and proliferation and, thereby, influencing cell fate24,25.
Upregulation of Pol I transcription is linked to the unrestrained
growth and proliferation characteristic of cancer cells26,27.

Here we present evidence for a role for Top2a in the early
stages of the Pol I transcription cycle. We demonstrate that
Top2a is a component of Pol Ib and can bind to the RRN3
component of Pol Ib, which bridges the interaction between Pol I
and basal transcription factor SL1 at the rRNA gene promoter28–30.
We found that drug-induced inhibition of Top2 activity did not
prevent elongation of rRNA transcripts. Our data suggest a novel
and specific role for Top2a activity in facilitating de novo pre-
initiation complex (PIC) formation in rRNA gene transcription.
Top2 inhibitors produced a defect in activation of Pol I
transcription, independently of the DNA-damage response
pathways, suggesting that drugs designed to target Top2a in Pol
I transcription could be useful non-genotoxic agents in the
treatment of cancer.

Results
Active Top2a is a component of initiation-competent Pol Ib.
Pol I transcribes the rRNA gene repeats to produce the 47S pre-
rRNA transcript that is processed into the 18S, 5.8S and 28S
rRNAs24,25,28,31. Two functionally distinct forms of Pol I complex
can be extracted from the nucleus of human cells. The Pol Ia
complex, the most abundant form of Pol I in nuclear extracts, is
catalytically active but does not support promoter-specific
initiation at an rRNA gene promoter. The Pol Ib complex
accounts for B10% of Pol I activity and is competent for
promoter-specific transcription initiation. Pol Ib is defined by the
association of its Pol I core subunits with growth-regulated
transcription initiation factor RRN3, which bridges the
interaction between basal transcription factor SL1 and Pol I in
formation of functional PICs at the rRNA gene promoter24,25,28.
We have previously reported that Top2a co-fractionates with the
Pol Ib promoter-specific transcription activity and is the major

substrate for Pol Ib-associated CK2 in the Pol Ib complex23. We
demonstrate that Pol Ib has an associated decatenation activity
that is ATP-dependent and sensitive to non-hydrolysable ATP
and Top2 inhibitor etoposide (Fig. 1a). The decatenation activity
and Top2a protein co-purify with the RRN3 component of Pol Ib
(Supplementary Fig. S1a). These data suggest that catalytically
active Top2a is associated with the initiation-competent Pol Ib
complex.

To substantiate an association of Top2a with Pol Ib in cells, we
immunoprecipitated Pol I from nuclear extracts of HeLa cells
transiently expressing Flag-tagged Pol I subunit CAST32, using
Flag-specific antibodies, then immunoblotted the immuno-
precipitates using antibodies specific for Top2a, RRN3 and Pol
I subunits PAF53 and AC19. Top2a co-immunoprecipitated with
Pol I in this experiment (Fig. 1b). We also passed purified Pol Ib
over a Top2a-antibody column and analysed proteins eluted from
the column and proteins in the flow-through in immunoblot
and promoter-specific transcription assays (Supplementary Fig.
S1b–d). Intriguingly, the majority of promoter-specific transcrip-
tion activity was lost and most of the RRN3 protein was depleted
from Pol Ib and retained on the Top2a-antibody column.
Therefore, the specific Top2a antibody used disrupted Top2a and
RRN3 interactions with Pol I. These data indicate that the majority
of Pol Ib complexes purified from human cell nuclei include Top2a.

Top2a interacts directly with Pol Ib-specific component RRN3.
We reasoned that a direct interaction between Top2a and Pol Ib
might involve Pol Ib-specific component RRN3. Two polypep-
tides unique to Pol Ib bound to RRN3, the larger of which
migrated similarly to full-length Top2a protein, in a Far-western
analysis in which in vitro-translated 35S-labelled hRRN3 was used
to probe renatured Pol Ia or Pol Ib (Fig. 1c). Moreover, there was
a direct interaction between RRN3 and Top2a in a recombinant
protein-binding assay, in which in vitro-translated RRN3 was
incubated with in vitro-translated green fluorescent protein
(GFP)-Top2a33 on GFP-antibody beads (Fig. 1d). To test the
likely involvement of the isoform-specific CTD in the interaction
of Top2a with RRN3, we used Top2a CTD-mutant proteins
lacking the terminal 42 or 180 amino acids (st1 or st5,
respectively). These were the shortest and longest of a series of
CTD truncations shown to impair the ability of GFP-Top2a to
rescue the conditional Top2a-mutant cell line HTETOP33 from
lethal Top2a depletion (Supplementary Fig. S2). A C-terminal-
truncated version of Top2a (st5, 180 amino-acid deletion)
displayed significantly reduced interaction with RRN3 in the
recombinant protein-binding assay (Fig. 1d). To further assess
Top2a–RRN3 interactions, nuclear extracts of HTETOP cells
depleted of endogenous Top2a33 and stably expressing GFP-
Top2a-wild type (WT) or -st1 (CTD 42 amino-acid deletion)
were incubated with GFP-specific antibodies, and immuno-
precipitates were immunoblotted using antibodies specific for
Top2a, RRN3 and Pol I subunit PAF53. Endogenous RRN3 and
Pol I subunit PAF53 co-immunoprecipitated with GFP-Top2a-
WT (Fig. 1e). There was a significant decrease (Bsixfold) in
the amount of RRN3 that co-immunoprecipitated with the
GFP-Top2a-st1 mutant, compared with GFP-Top2a-WT. There
was also a decrease (Btwofold) in the amount of PAF53
co-immunoprecipitated; the smaller magnitude of this decrease
might reflect interactions between Top2a and other components
of the initiation-competent Pol Ib complex, such as CK223.
Collectively, these data demonstrate that Top2a interacts directly
with RRN3 and that residues 1491-1531 in the Top2a CTD are
important for such interaction. Therefore, there is evidence, both
in vitro and in cells, to support an interaction between Top2a and
RRN3 as components of initiation-competent Pol Ib.
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Top2a occupies the rDNA promoter in an SL1-dependent
manner. The association of Top2a with initiation-competent Pol
Ib predicts the presence of Top2a at the rDNA promoter. Top2a
was detectable at the rDNA promoter by chromatin immuno-
precipitation (ChIP) analysis in all cell types tested (Fig. 1f and
Supplementary Fig. S3); elsewhere, along the rDNA repeat,
Top2a association varied according to cell type (Supplementary
Fig. S3). Small interfering RNA-mediated depletion of the TAFI41
subunit of SL1 in cells, which leads to the disappearance of SL1
and Pol I from the rDNA promoter and reduces Pol I tran-
scription34, resulted in the loss of Top2a from the rDNA
promoter (Fig. 1f and g). The data suggest that SL1, which binds
to the rDNA promoter and recruits Pol Ib through RRN3, is
required for the recruitment of Top2a to the rDNA promoter in
cells and that the presence of Top2a at the rDNA promoter
correlates with the presence of Pol Ib and Pol I transcription.

Top2a and RRN3 dissociate from Pol I following initiation.
RRN3 dissociates from Pol I at an early step following initiation
of transcription35,36, and we have used a stalled Pol I
transcription system37 to assess whether Top2a and RRN3 both

dissociate from Pol I following initiation of transcription. Pol I
can be stalled at the position of the first T (þ 31) on a ‘T-less’
template when the transcription reaction is carried out in the
absence of UTP. Immobilization of the template allows the
template-associated proteins to be separated from proteins that
dissociate from the transcription complex after initiation of
transcription. We demonstrate that Pol I subunit PAF53 was still
associated with the DNA template following initiation of
transcription, as expected for a stalled Pol I complex (Fig. 2a,
lane 1), whereas RRN3 and Top2a were present in the reaction
supernatant (Fig. 2a, lane 2). Note that in control transcription
reactions supplemented with all four NTPs, Pol I transcribes to
the end of the template, whereupon it dissociates in the presence
of excess competitor DNA (Fig. 2a, lane 3) and, consequently,
Pol I and Pol I-associated factors were present in the reaction
supernatant (Fig. 2a, lane 4). Therefore, both Top2a and RRN3
dissociate from Pol I following initiation of transcription in vitro
(Fig. 2b), consistent with a tethering of Top2a to Pol I, at least in
part, through RRN3. Should Top2a indeed dissociate from Pol I
at initiation or during/immediately following promoter escape in
cells, any role for Pol Ib-associated Top2a in Pol I transcription
would be predicted to be at an early step in transcription.
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Figure 1 | Top2a is a component of initiation-competent Pol Ib and interacts directly with RRN3 and occupies the rDNA promoter. (a) Pol Ib-associated

decatenation activity is ATP-dependent and sensitive to non-hydrolysable ATP and Top2 inhibitor. Pol Ib peak fractions were incubated þ /� ATP, AMP-

PNP and etoposide in a kinetoplast DNA decatenation assay. (b) Top2a co-immunoprecipitates with Pol Ib. Pol I was immunoprecipitated from nuclear

extracts of HeLa cells expressing Flag-CAST (Pol I), using Flag-antibodies, and then immunoblotted for Top2a, Pol Ib subunit RRN3 and Pol I subunits

PAF53 and AC19. Purified Pol Ib (lane 1); IgG immunoprecipitate (lane 2). (c) RRN3 interacts with Top2a of Pol Ib in far-western analysis. Pol Ia and Ib were

probed with 35S-Flag-RRN3 and Top2a-antibodies. (d) Top2a C-terminus is important for RRN3 interaction. In vitro-translated and Flag-immunopurified
35S-Flag-RRN3 was incubated with in vitro-translated 35S-GFP-Top2a WT and C-terminal-truncated (st5; 180 amino-acid deletion) proteins on GFP-

antibody beads. Input RRN3 (1%, lane 1); RRN3 with GFP-antibody beads (lane 4); *contaminating translation product. (e) Efficient co-IP of Top2a with

Pol Ib requires its C-terminal 42 amino acids. Top2a was immunoprecipitated from HTETOP cells depleted for endogenous Top2a and stably expressing

GFP-Top2a-WT and C-terminal-truncated (st1, 42 amino-acid deletion) proteins, using GFP antibodies. IgG control (lane 1). Immunoprecipitates were

immunoblotted using antibodies for Top2a, PAF53 and RRN3. Representative immunoblot is shown. Quantitation and normalization of the RRN3 and PAF53

immunoblot signals to those of Top2a-WT and -st1, in three independent experiments, revealed that C-terminal 42 amino-acid truncation of Top2a reduced

RRN3 and PAF53 signals Bsixfold and Btwofold, respectively. (f) Top2a occupancy of the rDNA promoter is reduced in TAFI41-depleted cells with

decreased rRNA transcription. HEK293 cells were transfected with scrambled or SL1 subunit TAFI41 (TAF1D) small interfering RNAs (siRNAs). rDNA-

promoter occupancy by Top2a, Pol I subunit A135 and SL1 subunit TAFI110 (TAF1C) in these cells was analysed by ChIP using Top2a, A135 and TAFI110

antibodies; data in bar graphs are from three independent ChIP experiments, normalized to control IgG samples; s.d. is shown. (g) Control for f showing

pre-rRNA levels from cells transfected with scrambled siRNA (lane 1) or TAFI41 siRNA (lane 2) as analysed by S1 nuclease protection.
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Effects of Top2 inhibition on Pol I transcription. To investigate
a role for Top2a in early Pol I transcription events, we first tested
the effects of inhibition of Top2 activity on Pol I transcription,
using 3H-uridine pulse-chase labelling of (pre-)rRNA in cells. We
observed a negative effect on Pol I transcription of etoposide
treatment of U2OS cells (Supplementary Fig. S4). However, there
is evidence to suggest that this was likely to be indirect and as a
consequence of ataxia telangiectasia mutated (ATM)-38 and p53-
dependent DNA-damage signaling39,40, activated by double-
strand DNA breaks arising from trapped Top2–DNA cleavage
complexes1. Therefore, to assess whether inhibition of Top2
activity could induce any effects on Pol I transcription
independent of DNA-damage signalling, we treated cells with

alternative Top2 inhibitors and/or used cell lines that could not
elicit a p53-dependent DNA-damage response.

Crucially, treatment for up to 15 h of U2OS cells with
merbarone (a Top2 catalytic inhibitor blocking DNA
cleavage41) and of p53-null H1299 cells with etoposide
(Fig. 3a–c) produced no significant effects on Pol I
transcription. As inhibition of Top2 activity for up to 15 h does
not have a detectable direct effect on Pol I transcription in
actively growing cell populations, this suggests that Top2 activity
is not essential for transcription (re-)initiation or elongation of
rRNA transcripts. Notably, Top2 inhibitor treatments for 24 and
48 h, of U2OS cells with merbarone or HCT116 (p53 null) cells
with etoposide, resulted in significant decreases in Pol I
transcription (Fig. 3d–f). These findings imply a potential role
for Top2 in Pol I transcription, outside of (re-)initiation or
elongation.

Top2a depletion negatively affects Pol Ib assembly/stability.
To further explore the possibility of a role for Top2a in Pol I
transcription, we analysed rRNA transcripts from HTETOP cells
specifically depleted of the a-isoform of Top2 by treatment with
tetracycline (Tet) for 48 h (Fig. 4a and b). In common with other
cells depleted of Top2a protein or treated with Top2 catalytic
inhibitors (reviewed in Nitiss1), this impairs sister chromatid
segregation causing aberrant anaphases and cytokinesis16,33. After
48 h in Tet, the only mRNA transcripts to be dramatically
depleted in HTETOP cells are those encoding Top2a itself42.
Nevertheless, we detected an Btwofold reduction in Pol I
synthesis of the 47S pre-rRNA transcript, with no effect on pre-
rRNA processing (Fig. 4c). Pol I was immunoprecipitated from
the Top2a-depleted and control cells in equivalent amounts, as
determined by the non-specific Pol I transcription activities of the
immunoprecipitates (Fig. 4d). Yet, there was significantly less
promoter-specific transcription activity associated with Pol I
immunoprecipitates from the Top2a-depleted cells (Fig. 4d) and
a reduced amount of RRN3 protein in these immunoprecipitates
(Fig. 4e), compared with those of the control cells. These data
suggest the presence of fewer initiation-competent Pol Ib
complexes in Top2a-depleted cells. Such a decrease could
account for the observed two-fold reduction in Pol I
transcription in Top2a-depleted cells. Taken together, these
results suggest that Top2a can influence the assembly and/or
stability of initiation-competent Pol Ib at the rDNA promoter,
and thereby PIC formation, in cells.

We reasoned that in a population of actively growing cells, at
any one time, most of the active rDNA promoters are engaged in
multiple-round transcription, with relatively few requiring de
novo PIC formation and activation of transcription. De novo PIC
formation is required at actively transcribing rDNA genes
following DNA replication (on one set of duplicates). Lack of
de novo PIC assembly would lead to a predicted B50% reduction
in Pol I transcription with each cell cycle. Our data (Figs 3 and 4)
suggest that in the absence of Top2a activity, there may be a
gradual accumulation of rDNA promoters requiring de novo PIC
formation to achieve transcription.

Top2a facilitates assembly of Pol I PICs. To investigate the
involvement of Top2a in de novo PIC formation, we sought a
system in which de novo functional PIC formation was required
for Pol I transcription at the majority of rDNA promoters. Pol I
transcription can be downregulated by serum starvation of cells
and activated by serum refeeding43,44. Starved U2OS cells exhibit
decreased levels of Pol I transcription (Fig. 5a), accompanied by
reduction of SL1 and Pol I from the rDNA promoter (Fig. 5b)
and the disappearance of Top2a from the rDNA promoter
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(as determined by ChIP) (Fig. 5b) and the nucleolus (as
determined by indirect immunofluorescence; Supplementary
Fig. S5). Activation of Pol I transcription occurs in starved
H1299, U2OS and HTETOP cells following serum refeeding
(Fig. 6a–c, respectively). This activation correlates with an
increase in SL1, UBF and Pol I promoter occupancies and the
reappearance of Top2a at the rDNA promoter (Fig. 6d,e), as well
as increased Top2a expression and co-localisation of Top2a with
Pol I in the nucleolus (Fig. 6f and Supplementary Fig. S5b).
Therefore, de novo functional PIC formation appears to be
required for transcription at the majority of rDNA promoters re-
activated in serum-refed cells. There are several hundred copies of
the rRNA genes per cell, but only about half are active in cycling
cells and sensitive to psoralen cross-linking, and these are in an
open chromatin configuration. Despite the changes in Pol I
transcription caused by starvation or growth-stimulation of cells,
the proportion of rRNA genes in an open chromatin
configuration remains constant43,45. This suggests that the
rRNA genes requiring de novo PIC formation for activation
upon serum refeeding are likely to be from the pool of genes
sensitive to psoralen cross-linking. We exploited this system to
investigate the requirement for Top2a in de novo PIC formation
in Pol I transcription.

There was a marked (Btwofold) reduction in activation of
Pol I transcription in starved H1299 and U2OS cells treated with
Top2 inhibitors etoposide and merbarone, respectively, then
resupplied with serum, as determined by S1 nuclease protection
of the first 40 nucleotides of the pre-rRNA (Fig. 6a,b) and by
3H-uridine pulse-chase labelling (Supplementary Fig. S6a,b).
Top2 inhibitor ICRF-193 similarly reduced activation of Pol I
transcription in U2OS cells (Supplementary Fig. S6d,e). These
data suggested a defect in the early stages of transcription. There
was a corresponding reduced occupancy of SL1, UBF and Pol I,
with little Top2a detectable, at the rDNA promoter in the H1299
cells (Fig. 6d), suggesting that, inhibition of Top2 activity reduces
the efficiency of PIC formation and, thereby, the efficiency of Pol
I transcription activation. This defect in activation is likely to be
independent of DNA-damage signalling through p53 and ATM
as it occurred in p53-null cells (H1299) (Fig. 6a) and could not be
rescued by incubation of cells with caffeine (an inhibitor of ATM/
ATR [ataxia telangiectasia and Rad3-related] signalling) (Fig. 6g).

HTETOP cells depleted of Top2a protein, serum-starved, then
resupplied with serum, also showed reduced activation of Pol I
transcription and a corresponding reduced promoter occupancy
of SL1, UBF and Pol I (Fig. 6c,e and Supplementary Fig. S6c),
complementing the results obtained by pharmacological
inhibition of Top2.

Taken together, these results suggest that Top2 activity,
specifically that of the a-isoform of Top2, facilitates the
efficient de novo assembly of PICs in Pol I transcription.

Top2a induces DNA cleavage at the rDNA promoter in
activation. We hypothesized that Top2a might influence de novo
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PIC formation in activation of Pol I transcription by producing
topological changes at the rDNA promoter that would support
efficient assembly of the PIC. We reasoned that double-strand
DNA (dsDNA) cleavage would arise at the rDNA promoter from
such Top2 activity, although short-lived, due to the re-ligation
activity of Top2. Therefore, we analysed the rDNA-promoter
region for DNA breaks. To this end, cells were fixed and per-
meabilized at different time points following serum refeeding,
incubated with biotin-11–deoxyuridine triphosphate (dUTP) and
deoxynucleotide transferase (TdT) to label DNA breaks, and
then, DNA containing breaks was captured on streptavidin beads
and analysed by qPCR, as described19. Strikingly, a significant
increase in DNA cleavage at the rDNA promoter was detectable
during the activation of Pol I transcription (Fig. 7a). The time
course demonstrates that the DNA cleavage is transient, peaking
at the first detection of transcription activation and Top2a
occupancy of the rDNA promoter. Importantly, no such DNA
cleavage was detectable at the rDNA promoter in the Top2a-

depleted and starved HTETOP cells upon serum refeeding
(Fig. 7b). Note that although enhanced DNA cleavage has been
observed at other regions of the rDNA in some experiments upon
serum refeeding and Pol I transcription activation, this was not a
reproducible effect. In other control experiments, we did not
observe any increase in DNA cleavage at the promoters of the
glyceraldehyde-3-phosphate dehydrogenase and peptidylprolyl
isomerase A genes upon serum refeeding (Supplementary
Fig. S7).

Our data imply that, in activation of Pol I transcription, Top2a,
specifically, induces the transient appearance of double-strand
DNA breaks in the rDNA-promoter region, reflecting its dsDNA
cleavage, strand passage and re-ligation activity. Taken together,
the data suggest that Top2a activity at the rDNA promoter
facilitates the efficient de novo assembly of functional PICs, which
include SL1, UBF and Pol Ib (Fig. 7c).

Discussion
This study identifies a novel function for a Top2 in facilitating
de novo PIC formation and activation of Pol I transcription of
the rRNA genes in human cells.

We present evidence of a role for the Top2a isoform in Pol I
transcription. Our data suggest that active Top2a is a component
of the initiation-competent Pol Ib complex, targeted to the rDNA
promoter, at least in part, through the interaction of its isoform-
specific C terminus with the RRN3 component of Pol Ib, which
interacts with promoter-bound transcription factor SL1. Deple-
tion of Top2a negatively affects the assembly and/or stability of
initiation-competent Pol Ib and decreases Pol I transcription in
cells, implying that Top2a can influence the assembly and/or
stability of initiation-competent Pol Ib at the rDNA promoter
and, thereby, PIC formation in cells. De novo PIC formation is an
event expected to occur at the active rDNA gene promoters
following DNA replication (on one set of the duplicates) during
each cell cycle. De novo functional PIC formation is also required
for activation of Pol I transcription at the majority of rDNA
promoters upon refeeding of serum-starved cells, and we
discovered that Top2a facilitates efficient activation of Pol I
transcription from such promoters and that this is accompanied
by Top2a-dependent DNA cleavage and accumulation of PIC
components and Top2a at the rDNA-promoter region. Our data
suggest a role for Top2a in de novo PIC formation, and we
propose that Top2a facilitates efficient activation of Pol I
transcription through its ability to cleave, passage and re-ligate
dsDNA and, thereby, to alter the topology of the rDNA promoter,
alleviating topological constraints to PIC assembly and stability
(Fig. 7c).

At the rDNA promoter, the local topology or higher-order
structure46,47 of the DNA can influence transcription of the
rRNA gene and can be affected by chromatin context, including
binding of the architectural protein UBF, which bends and
supercoils the promoter48,49, and nucleosome positioning50.
TBP–TAF complex SL1 directs Pol I PIC formation and
stabilizes UBF at the rDNA promoter51. We envisage that, in
activation of Pol I transcription, SL1 binds to the rDNA
promoter, RRN3 binds to SL1 and Top2a is recruited through
its interaction with RRN3, and then Top2a-mediated cleavage,
passage and re-ligation of dsDNA at the rDNA promoter creates
a topological state conducive to the efficient de novo assembly
and stabilization of a functional PIC, including SL1, UBF and
initiation-competent Pol Ib, so that transcription can now be
initiated and re-initiated. Lack of Top2a catalytic activity during
de novo PIC formation would reduce Pol I transcription
activation by affecting the equilibrium of SL1 and UBF binding
to the promoter and, thereby, the efficiency of Pol I recruitment.
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Top2a could also, potentially, facilitate efficient de novo PIC
formation upon activation of rDNA transcription by stimulating
promoter escape and Pol I processivity in the pioneering round of

transcription. In actively growing cells, a relatively high density of
Pol I complexes facilitates Pol I clustering52. Consequently,
positive supercoils ahead of the transcribing complex and
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negative supercoils behind7,12 could potentially be dissipated by
the actions of the adjacent polymerases52, such that
topoisomerase activity would not be required, except perhaps
ahead of a stalled polymerase or in regions where the density of
polymerases is sparse. A polymerase pioneering the first round of
activated transcription, without the advantage of an adjacent
polymerase to dissipate the supercoiling it generates as it
transcribes the rDNA would require topoisomerase cleavage. In
the absence of Top2a, the observed decrease in occupancy by PIC
components of the rDNA promoter might be accounted for if
pioneering polymerases were stalled, due to the topological
constraints imposed by failure to resolve supercoiling at or before
promoter escape, thereby preventing the productive interaction of
incoming PIC components with the rDNA promoter.

We considered the possibility that Top2a might affect serum-
activated de novo PIC formation by influencing the assembly of
nucleosome remodelling machineries for repositioning of nucleo-
somes through a mechanism similar to that proposed for DNA
topoisomerase IIb (Top2b) in ligand (hormone)-stimulated
activation of Pol II promoters19, which involves recruitment of
DNA-damage response proteins. However, such a mode of action
seems unlikely, as key components of the repair machineries
(such as Ku70, Ku80 and DNA-PK) were not detectable by ChIP
analysis at the activated rDNA promoters (our unpublished
results), suggesting that, if Top2a affects nucleosome positioning

in activation of Pol I transcription, then it achieves this through
alternative means.

Our findings reveal a novel dimension to the efficacy of Top2
inhibitors used in cancer treatment4–6 and, potentially, to the
search for Top2a-specific anti-cancer agents5,53. De novo PIC
formation and activation of Pol I transcription occur during each
cell cycle at newly replicated rRNA genes and might also be
required for the upregulation of Pol I transcription linked to
cancer26,27. We have demonstrated that the Top2 inhibitor
etoposide, an effective anti-cancer drug, can reduce de novo PIC
assembly and activation of Pol I transcription, independently of
the p53 status of cells and the ATM/ATR-dependent DNA-
damage response pathways. This suggests that this Top2 inhibitor
might function in part to restrict Pol I transcription by limiting
de novo activation of rRNA genes, which, ultimately, could lead
to the abrogation of Pol I transcription, even in p53-null cells.
This would have devastating consequences for protein synthesis,
constraining the runaway growth associated with cancers. Indeed,
maintenance of elevated levels of Pol I activity in cancer cells
appears critically important for the process of malignant
transformation and cancer cell survival. For instance, CX-5461,
a selective inhibitor of Pol I transcription, induced
p53-dependent apoptotic cell death in the majority of Em-Myc
lymphoma cells at concentrations that reduced Pol I transcription
about 50% (ref. 54). Recent studies have illustrated the
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effectiveness of targeting Pol I transcription in anti-cancer
therapy for haematological malignancies54 and solid tumours55.
Therefore, we speculate that inhibitors specifically designed to
target Top2a in Pol I transcription (which may be less likely to
cause secondary cancers than those targeting the b-isoform53)
could be effective non-genotoxic tools for use in the battle against
cancer.

Methods
Cell-culture conditions and Top2 depletion or inhibition. U2OS cells in McCoy’s
5A medium plus 10% FBS, H1299 cells (homozygous partial deletion of p53) in
RPMI plus 10% FBS and HTETOP cells (derivative of human fibrosarcoma cell line
HT1080) in DMEM high glucose (4.5 g l� 1) plus 10% FBS and other additives33

were grown to B60–70% confluency, washed twice with Dulbecco’s PBS and then
serum-starved for 20 h in DMEM low glucose (1 g l� 1). For activation of Pol I
transcription, serum-starved cells were incubated in DMEM low glucose (1 g l� 1)
containing 20% FBS. For Top2 inhibition, Top2 poison etoposide (100 mM final
concentration; Merck) or catalytic inhibitors ICRF-193 (50 mM) and merbarone
(100 mM; Merck) were added (except Fig. 6g). For Top2a depletion, HTETOP
medium was supplemented with 1 mg ml� 1 Tet for 48 h.

Cell and in vitro expression of GFP-Top2a fusion proteins. HTETOP cells
expressing GFP-Top2a were as described (Clone H33). Stop codons were
introduced into pGFP-Top2a33 by Quickchange site-directed mutagenesis (Agilent
Technologies; see Supplementary Fig. S2). pGFP-Top2a-WT (full-length human;
1,531 amino acids) or pGFP-Top2a-st1 (stop-codon mutant) plasmids33 (NotI-
linearized) were electroporated into HTETOP cells, puromycin-resistant colonies
were selected and single GFP-positive colonies were expanded. In vitro
transcription/translation experiments used pGFP-Top2a-WT and -st5.

Immunocytochemistry. Cells were fixed (10 min, 4% paraformaldehyde),
permeabilized (10 min, 1% Triton X-100) and blocked (10 min, 1% donkey serum
in PBS), and then incubated (1 h) with antibodies (Supplementary Table S1) in the
blocking buffer, washed X3 for 10 min in PBS and incubated (1 h) with labelled
secondary antibodies (Supplementary Table S1). After washes, cells were mounted
with Vectashield containing 40 ,6-diamidino-2-phenylindole and visualized using
confocal microscopy.

RNA labelling in cells and rRNA analysis. Labelling of RNA in cells (B70%
confluent or B50% for starved/refed) involved 10 mCi 3H-uridine for B0.2–
0.4� 105 cells per well of a six-well plate. In pulse-chase labelling, cells were
incubated for 2 h with 3H-uridine, washed and incubated in unlabelled medium
containing 0.5 mM uridine (þ /� Top2 inhibitors). RNA was extracted (RNeasy
Mini Kit (Qiagen)). An amount of 2 mg of 3H-labelled total RNA was run on a 1%
formaldehyde agarose gel at 130 V for 90 min in X1 MOPS, blotted onto Hybond-
N membrane (Amersham), cross-linked (ultraviolet cross-linker; UVP), analysed
by tritium imaging using Fuji Tritium image plate (or following PerkinElmer
En3Hance spray, exposed to Kodak Biomax XAR film at � 80 �C) and then
quantified using Aida software.

S1 nuclease protection analysis of pre-rRNA levels. Total RNA isolation from
cells (B70% confluent or B50% for starved/refed) and S1 nuclease protection
analysis were performed with a 50 end-labelled oligonucleotide probe com-
plementary to the first 40 nucleotides of the 47S pre-rRNA transcript44.

In vitro transcription assays. Non-specific transcription assays were performed
as described28. Run-off transcription reactions were performed essentially as
described37, using immobilized rDNA fragments containing the human rRNA gene
promoter, supplemented with purified SL1 and recombinant UBF56. Reactions
were terminated by addition of RTL buffer and RNA transcripts (purified using
RNeasy mini kits (Qiagen)) were electrophoresed on denaturing 4% acrylamide/
8 M urea gels, visualized by phosphorimaging FLA-7000 (Fuji) and analysed with
Aida software.

Decatenation assay. DNA topoisomerase II activity was assayed by analysing
decatenation of kinetoplast DNA (TopoGen), according to the manufacturer’s
protocols. AMP-PNP was substituted for ATP (200 and 100 mM) or Top2 inhibitor
etoposide (250 and 100mM) was included in some reactions. DNA products were
resolved on a 1% agarose gel in TBE buffer.

Immunoblotting and immunoprecipitation. Antibodies used for immunoblotting
and immunoprecipitations (IPs) are listed (Supplementary Table S1). IP of nuclear
extracts, prepared as described57, from U2OS and HTETOP cells (±1 mg ml� 1

Tet) transfected (FuGENE HD reagent; Roche) with Flag-CAST expression vector
pcFCAST32 used anti-Flag M2 magnetic beads (Sigma) (for Pol I IP) for 2 h at 4 �C.

The beads were washed three times in TM10/0.15 M KCl (TM10 buffer: 50 mM
Tris-HCl pH 7.9, 12.5 mM MgCl2, 1 mM EDTA, 10% glycerol, 1 mM sodium
metabisulphite and 1 mM dithiothreitol). Washed precipitates were analysed by
immunoblotting. IP of nuclear extracts from HTETOP GFP-Top2a cells used anti-
GFP-antibody magnetic beads (for Top2a IP).

Protein–protein interaction assays. Far-western analysis was performed as
described28. Pol Ia and b fractions were subjected to SDS–PAGE and transferred to
an Immobilon-P (Millipore) membrane. After renaturation, the membrane was
probed with FLAG-purified, 35S-methionine-labelled hRRN3 and human Top2a
antibody.

Interactions of GFP-tagged Top2a-WT and Top2a-st5 with Flag-tagged human
RRN3 were analysed using 35S-labelled in vitro-translated proteins (TNT-coupled
reticulocyte lysate; Promega) in in vitro binding assays. Proteins were
immunoprecipitated from the labelling reactions using anti-GFP, anti-FLAG and
anti-HA antibody magnetic beads. Human RRN3 was eluted from washed beads
using Flag-peptides and incubated with GFP-Top2a-WT/-st5 on beads. After
binding (75 mM KCl in TM10 buffer with 0.015% NP40 and 1 mg ml� 1 BSA) for
30 min on ice, beads were washed (0.1 M KCl in TM10) and bound proteins were
analysed by SDS–PAGE and autoradiography.

ChIP assay. Cells were subjected to cross-linking (1% formaldehyde, room
temperature, 10 min; terminated by addition of glycine to a final concentration of
0.125 M for 5 min) and then chromatin was isolated as described58 and sheered to
B300 bp of average-size fragments (Bioruptor; Diagenode). A single ChIP used
chromatin from 2.5� 105 or 1� 106 cells and antibodies as in Supplementary
Table S2, incubated overnight at 4 �C, and then for 2 h with Protein A/G beads
(Invitrogen) at room temperature. Beads were washed five times in 450 ml volume
of RIPA ChIP buffer59 and twice with 200ml TE buffer with aid of the Precipitor
(Abnova). DNA on washed beads59 was eluted, and cross-link reversal was
performed in one stage as described60. DNA was purified (IPure kit; Diagenode
with Precipitor; Abnova) and analysed by qPCR (QuantiFast Multiplex PCR Mix;
Qiagen) in triplicates using primer combinations and probes covering regions of
rDNA repeat (Supplementary Table S3) on Light Cycler 480-II (Roche). Results
were expressed as percentage of input chromatin and normalized to control IgG
levels. Bar graphs show the average from three independent experiments (n¼ 3);
s.d. and statistical significance (probability values: ***Po0.001; **Po0.01; and
*Po0.05, for drug-treated versus control cells) have been calculated using one- and
two-way analysis of variance on R software (open-source statistical computing and
graphics software).

DNA double-strand break detection assay. Cells were fixed, permeabilized
in situ and DNA breaks were labelled with biotin-11–dUTP and terminal TdT as
described19. In brief, cells (15 cm dish per single experimental point) were washed
with 37 �C PBS and fixed for 20 min with Streck Fixative (0.15 M 2-bromo-2-
nitropropane-1,3-diol, 0.1 M diazolidinyl urea, 0.04 M zinc sulphate heptahydrate,
0.01 M sodium citrate dihydrate and 50 mM EDTA) at room temperature and
permeabilized by further incubation for 15 min at room temperature in PM buffer
(0.1 M Tris-HCl, pH 7.5, 50 mM EDTA and 1% Triton X-100). Cells were washed
six times with 10 ml of water before one wash with 3 ml of X1 TdT buffer
containing 0.005% Triton X-100. Cells were subsequently incubated in 4 ml
reaction buffer (X1 TdT buffer, 0.005% Triton X-100, 45 mM biotin-11–dUTP
(Fermentas) and 250 U ml� 1 terminal deoxynucleotidetransferase (Promega)) for
90 min at 37 �C on rotating platform. Cells were washed twice with 10 ml ice-cold
TBS (50 mM Tris-HCl pH 7.5, 150 mM NaCl) and then carefully collected with a
large cell scraper, pelleted by centrifugation and lysed in 200ml lysis buffer (50 mM
Tris-HCl pH 8.0, 10 mM EDTA and 2% SDS) for 15 min at 37 �C. Chromatin was
sheared using the Bioruptor (Diagenode) to 500 bp of average-size fragments, and
diluted and biotinylated DNA fragments were captured with 50 ml of Streptavidin
M280 magnetic beads (Invitrogen) for 2 h at room temperature. Beads were washed
five times in 450 ml of RIPA ChIP buffer59 and twice in 200 ml TE buffer with the
aid of a Precipitor (Abnova). DNA elution was performed as described60. Purified
DNA was analysed by qPCR using QuantiFast Multiplex PCR Mix (Qiagen)
and the rDNA promoter-specific combination of primers and probe (see
Supplementary Table S3) on Light Cycler 480-II (Roche). For the glyceraldehyde-3-
phosphate dehydrogenase promoter control, we used the following forward and
reverse primers: 50-CAACGGATTTGGTCGTATTGG-30 and 50-TGATGGCAAC
AATATCCACTTTACC-30 with the probe 50-TCACCAGGGCTGCTT-30 (Applied
Biosystems). For the peptidylprolyl isomerase A gene promoter, the primers were
as follows: 50-CAAATGGTTCCCAGTTTTTCATC-30 and 50-TTGCCAAACACC
ACATGCTT-30 with the probe 50-CACTGCCAAGACTG-30 (Applied Biosystems).
PCR parameters were set as recommended by PCR Mix manufacturer (Qiagen). All
PCR reactions were performed in triplicate and averages; s.d. and statistical
significance (***Po0.001; **Po0.01; *Po0.05; by analysis of variance) were
derived from three independent experiments (n¼ 3). Results were expressed as
percentage of input chromatin and normalized to control reactions where no
biotin-11–dUTP was added at the labelling stage.
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