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physics-informed Deep Learning 
for Dual-energy computed 
tomography image processing
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Dual-energy ct (Dect) was introduced to address the inability of conventional single-energy computed 
tomography (SECT) to distinguish materials with similar absorbances but different elemental 
compositions. However, material decomposition algorithms based purely on the physics of the 
underlying attenuation process have several limitations, leading to low signal-to-noise ratio (SNR) in 
the derived material-specific images. To overcome these, we trained a convolutional neural network 
(CNN) to develop a framework to reconstruct non-contrast SECT images from DECT scans. We show 
that the traditional physics-based decomposition algorithms do not bring to bear the full information 
content of the image data. A cnn that leverages the underlying physics of the Dect image generation 
process as well as the anatomic information gleaned via training with actual images can generate higher 
fidelity processed DECT images.

In conventional, single-energy computed tomography (SECT), a single X-ray tube emits a polychromatic beam 
that passes through the tissue to be captured by a detector array. Such projection data acquired from multiple 
angular directions is then reconstructed into tomographic images that encode the photon attenuation of the tissue 
encountered by the X-ray beam. A drawback of SECT, recognized in many studies, is its inability to distinguish 
materials with similar absorbances but different elemental compositions (e.g. calcium, hemorrhage, or iodine), as 
they are represented by similar intensity values in the CT image1–6. This may present a problem during radiologic 
interpretation when two materials with the same or similar Hounsfield Units (HU) could be present in a given 
anatomic location. For example, it is difficult to distinguish hemorrhage from dilute iodinated contrast when the 
density is in the 30–100 HU range3,7–10. Dual-energy CT (DECT), introduced in the mid-2000s, overcomes this 
problem.

DECT takes advantage of the fact that X-ray absorption is predominantly a result of Compton scattering and 
photoelectric effect6. While the former is only weakly dependent on X-ray photon energy, the latter strongly 
depends on it – particularly at the X-ray photon energies used in medical imaging and for materials with high 
atomic numbers6. Both of these attenuation processes are affected by the X-ray energy level used for imaging and 
the atomic composition of the voxel being imaged. Therefore, acquisitions at two different energy levels may be 
used to determine the photoelectric and Compton scattering components of the attenuation. This information is 
then used to characterize materials and distinguish tissues with the same or similar attenuations at SECT.

In practice, low- and high-energy DECT scans – usually 80–100 kVp and 140–150 kVp respectively – are 
acquired and combined to produce a simulated single-energy image that is comparable to SECT1,3. Both low- and 
high-energy DECT scans utilize a low radiation dose, so the combined scan dose is similar to or slightly greater 
than a conventional SECT scan. Using vendor specific post-processing software, one can apply a 2- or 3-material 
decomposition algorithm to the low- and high-energy images using the targeted materials’ mass-attenuation 
coefficients and atomic numbers5,6,11,12 to obtain material-specific images that represent pre-selected materials. 
For example, using such an algorithm, one can “subtract” out the iodine from a contrast-enhanced DECT scan to 
create both an iodine image and a “virtual non-contrast” (VNC) image13.

However, a material decomposition algorithm that is based purely on the physics of the underlying attenua-
tion process has several fundamental limitations. Based on the assumption that each voxel is comprised of a linear 
combination of pre-selected target materials (e.g., iodine and water), a physics-based decomposition algorithm 

1Department of Radiology, Massachusetts General Hospital, Boston, MA, USA. 2Technical Medicine, University 
of Twente, Enschede, The Netherlands. 3Harvard Medical School, Boston, MA, USA. 4Cerebrovascular Research 
Laboratory, Spaulding Rehabilitation Hospital, Boston, MA, USA. *email: RGupta1@mgh.harvard.edu

open

https://doi.org/10.1038/s41598-019-54176-0
http://orcid.org/0000-0003-1937-7978
http://orcid.org/0000-0002-9366-1566
http://orcid.org/0000-0002-3073-9821
http://orcid.org/0000-0003-4109-9361
http://orcid.org/0000-0002-8282-2619
http://orcid.org/0000-0003-0236-7319
http://orcid.org/0000-0001-9673-9907
mailto:RGupta1@mgh.harvard.edu


2Scientific RepoRtS |         (2019) 9:17709  | https://doi.org/10.1038/s41598-019-54176-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

splits the overall dose in order to generate the two material specific images. The decomposition process, therefore, 
results in decreased signal-to-noise ratio (SNR) in the derived material-specific images as compared to conven-
tional unenhanced SECT images13. For example, after virtual subtraction of iodine, a virtual non-contrast image 
has much inferior SNR as compared to a true non-contrast image which, in turn, may reduce diagnostic perfor-
mance of virtual non-contrast images14.

Another limitation of the conventional decomposition process – informed purely by the physics of photoelec-
tric effect and Compton scattering – is that it ignores the anatomic context and location of a voxel when process-
ing low and high-energy slices. The elemental composition of a voxel, and consequently its intensity value on the 
low and high-energy images, is strongly constrained by its anatomic location. For example, a voxel located in the 
bone will have a very different pair of intensity values on low- and high-energy images as compared to a voxel 
located in the gray matter. Such location-specific information is not available to a purely physics-based decompo-
sition technique. In theory, incorporating this information could improve the quality of the images derived from 
the DECT decomposition process. As a final point, the manual post-processing of standard material decomposi-
tion precludes batch processing and renders large-scale applications cumbersome and prone to human error15–17.

In order to overcome these disadvantages of conventional material decomposition algorithms used in prac-
tice, and to incorporate anatomy-specific information in the DECT material decomposition process, we trained 
a convolutional neural network (CNN) to develop a fully automated framework for DECT image processing. 
The training was supervised by True Non-Contrast (TNC) images acquired immediately prior to a dual-energy 
contrast-enhanced CT scan. The trained CNN was then used to generate predicted non-contrast head CT images, 
dubbed Deep Non-Contrast (DNC) images, from the DECT images. The same DECT dataset was also used to 
generate Virtual Non-Contrast (VNC) images using vendor-provided standard physics-based decomposition 
algorithm. The three sets of images – namely, the TNC, VNC, and DNC images – were quantitatively and quali-
tatively compared.

Results
The relative fidelity of the DNC and S-VNC images vis-à-vis the TNC images, as measured by the root mean 
square error (RSME) and Spearman’s rank correlation coefficient, is shown in Fig. 1.

On the independent test sets, The DNC images had RMSE = 12.8 ± 1.61 (mean ± 95% C.I.) for Data Set 1 and 
25.6 ± 6.24 for Data Set 2. By comparison, the S-VNC images generated by physics-based material decomposition 
algorithm had an RMSE = 25.9 ± 1.63 and 28.6 ± 3.33 for Data Sets 1 and 2, respectively. Therefore, as measured 
by the RMSE error, the predicted DNC images demonstrated significantly higher similarity to the TNC images 
(i.e., significantly lower RMSE error) in the test datasets. A 2-way ANOVA (Data Set x image type – S-VNC vs. 
predicted DNC) showed p < 0.01 for the image type, without a significant main effect of Data Set or interaction 
effects. Thus, predicted DNC images were significantly more similar to TNC images regardless of the Data Set. 

Figure 1. RMSE and Spearman’s Rank Correlation between TNC images versus S-VNC images reconstructed 
using a standard material decomposition algorithm and predicted DNC images generated using the proposed 
CNN. RMSE and correlations were assessed on the independent test sets. In addition to the summary box plots, 
RMSE and rank-correlation values for each individual image are shown as filled (S-VNC), and empty (DNC) 
circles.
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Figure 2. Comparison of representative examples of predicted DNC images generated using the proposed 
CNN (middle column, display window (40, 80)), TNC images (left column (display window (40, 80)), and 
S-VNC images reconstructed using a conventional material decomposition algorithm (right panel, display 
window (20, 60)) in the evaluation of hemorrhagic stroke. Reduced SNR on the S-VNC images erroneously 
de-emphasizes areas of acute hemorrhage. In comparison, the predicted DNC images demonstrate increased 
conspicuity of normal brain anatomy and various intracranial pathologies, including vasogenic edema, 
hemorrhagic infarction and subarachnoid hemorrhage. Moreover, the predicted DNC images have less noise 
than the TNC images, improving the visibility of subtle intracranial hemorrhage. First row: 49-year-old male 
presenting with unilateral weakness and aphasia secondary to acute ICH within the left basal ganglia. Vasogenic 
edema surrounding the ICH is more easily identified on the DNC image than the S-VNC image. Second 
row: 47-year-old unresponsive female with a large acute ICH in the right basal ganglia and intraventricular 
hemorrhagic extension. There is trans-ependymal CSF flow, consistent with acute hydrocephalus as a result 
of intraventricular hemorrhagic extension, which is well-visualized on the predicted DNC and TNC images 
and not well seen on the S-VNC image. Third row: 72-year-old female with acute subarachnoid hemorrhage 
and acute ICH secondary to a ruptured anterior communicating artery aneurysm. The TNC and predicted 
DNC images depict multifocal acute subarachnoid hemorrhage and trans-ependymal CSF flow from acute 
hydrocephalus, which are not identifiable on the S-VNC image. Note that the differentiation and extent of 
acute subarachnoid hemorrhage is improved on the predicted DNC image compared to the TNC image, 
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RMSE outliers in the predicted DNC images in the Data Set 2 group (Fig. 1, left panel) were due to slight mis-
alignment between DECT and TNC images, and thus between DNC and TNC images, leading to a comparison 
of skull voxels to brain voxels.

The Spearman’s rank correlation coefficient, encoding the rank orderings of relative pixel intensities and the 
correspondence between TNC and predicted DNC images, were ρ = 0.71 ± 0.02 and ρ = 0.62 ± 0.02 for the Data 
Sets 1 and 2, respectively. These coefficients were significantly higher than that between TNC and S-VNC images 
generated by the standard material composition algorithm (ρ = 0.35 ± 0.03 and 0.28 ± 0.02 for Data Sets 1 and 2, 
respectively). A 2-way ANOVA yielded p < 0.01 for main effects of Data Set and image type (S-VNC vs. predicted 
DNC) without any significant interaction (p = 0.48).

Discussion
Since the advent of DECT, various data processing techniques have been employed to expand applications and 
improve diagnostic quality of this novel imaging modality. These techniques include material decomposition, 
generation of virtual monochromatic images for improved soft tissue contrast and differentiation (e.g., in the 
assessment of bone and cartilage invasion by tumor), and metal-artifact reduction12. While these processing 
techniques increase the versatility of DECT, they all suffer from the same problem: inherently low SNR and poor 
overall image quality of the post-processed data sets. Moreover, data post-processing is manually performed and 
as a result, time-consuming and prone to human error17.

The key contribution of our work is to show that the traditional physics-based decomposition algorithms uni-
versally used for DECT post-processing do not bring to bear the full information content of the image data. We 
demonstrate that a deep convolutional neural network that leverages the underlying physics of the dual-energy 
image generation process and the anatomic information gleaned via training with actual ground-truth images can 
generate higher fidelity imaging as compared with that reconstructed via traditional material decomposition algo-
rithms. The system can function as an independent platform for processing DECT post-processing. The predicted 
non-contrast images (i.e., DNC images) show a substantially higher correlation with the true non-contrast (i.e., 
TNC) images than standard physics-based virtual non-contrast images. They have higher image quality, lower 
mean square error, and suffer from less information loss when compared to imaging produced from conventional 
material decomposition algorithms. We found no systemic relation between error from the predicted DNC and 
TNC images and anatomy or pathology.

While there are a number of state-of-the-art material decomposition algorithms, we had to rely only on 
physics-based virtual non-contrast images constructed using Syngo.Via. This was necessitated by the fact that 
processing raw dual-energy (as opposed to single-energy) CT data requires the knowledge of many proprietary 
aspects of a CT scanner such as the two X-ray spectra, detailed engineering specifications of the beam filters used, 
and many other relevant details that are intrinsic to the scanner. However, once the network is trained, it becomes 
a vendor independent platform for processing DECT images. This is one of the strengths of our approach.

The improved image quality of DNC imaging in comparison to standard VNC imaging is visually apparent 
by qualitative assessment of both hemorrhagic and ischemic strokes in our results. Representative cases of hem-
orrhagic and ischemic strokes are shown, respectively, in Figs. 2 and 3. Upon evaluation of each column in these 
cases, the predicted DNC images demonstrate the increased conspicuity, and in some cases more complete char-
acterization, of various intracranial pathologies, including intraparenchymal hemorrhage, subarachnoid hem-
orrhage, and parenchymal vasogenic edema. There is also improved anatomic definition on DNC images with 
enhanced gray-white matter differentiation within the brain parenchyma when compared to the VNC images. 
These observations further support the diagnostic utility of our generated images for not only the visualization of 
brain anatomy but also brain pathology.

Our results are consistent with, and supplement a prior study showing that convolutional networks can pro-
vide excellent performance in noise suppression on DECT images. Zhang et al18. reported a remarkable, up to 
95%, reduction in noise standard deviation in tissue, bone, and mixture regions on a digital phantom recon-
structed from dual-energy projections. Since the primary target of this work was noise reduction, Zhang et al. 
used the mean and SD of the noise level in selected region of interest (ROI). While this is an excellent method to 
assess performance when the ground truth is known (in this case, digital phantom and projection data), it is not 
directly applicable to the current study, where clinical images (not phantoms) at two energy-levels (and not the 
projection data) are used to train the network. Therefore, a direct comparison of performance to this prior work 
is not immediately possible.

Our approach relied on global measures of performance because the overall image quality is important in 
routine day-to-day clinical practice. For example, when evaluating intracerebral hematoma for evidence of expan-
sion at DECT, it is important to have a high-fidelity representation of both the virtual non-contrast image and 
the iodine overlay image. Our images show a marked improvement in the generated virtual non-contrast images 

most notable along the anterior left frontal lobe. Fourth row: 64-year-old male presenting with altered mental 
status secondary to a large right parietal ICH, which is better evaluated in extent on the predicted DNC image 
compared to the S-VNC image. The extent of surrounding vasogenic edema is also better characterized on TNC 
and predicted DNC images. Slight posterior morphological differences between the TNC and other images are 
secondary to registration inaccuracy. Fifth row: 80-year-old male presenting with acute-onset right facial droop, 
right-sided weakness and expressive aphasia secondary to an acute ICH involving the left basal ganglia and 
left insula. Both TNC and predicted DNC images better delineate normal anatomy and the extent of vasogenic 
edema surrounding the ICH. Moreover, the predicted DNC image demonstrates reduced noise in comparison 
to the TNC image, allowing for better gray-white matter differentiation.
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that rivals true non-contrast images. While the intracranial contents of the processed images were superior, the 
proposed framework resulted in extracranial artifacts on some images. Given the scope and focus of the current 
study, and the fact that these artifacts were readily identified, their presence was deemed clinically unimportant. 
Thus, this novel, physics-informed deep learning framework represents a superior approach over the traditional 
material decomposition process, both on objective (i.e. reduced error rate) and subjective (i.e. visual inspection) 
scales.

Our results indicate that the visibility of anatomy and pathology on the predicted DNC images may even 
surpass TNC images because of increased SNR, as judged by qualitative inspection (Figs. 2 and 3). For example, 
our model’s increased sensitivity for subtle intracranial hemorrhage would be valuable in selecting patients with 
acute infarction for tissue plasminogen activator (tPA) therapy. In addition to more sensitive detection of intrac-
ranial hemorrhage, our results also demonstrate improved visibility of acute ischemic stroke. The DNC imaging 
displayed in Fig. 3 more accurately depicts the true size and location of acute ischemic strokes in comparison to 
TNC imaging, as confirmed by DWI imaging.

Prior work has shown that deep learning networks (e.g., RED-CNN, wavelet residual networks, generative 
adversarial networks), can provide significant improvements in image quality of conventional (i.e. single-energy) 
CT images19–22. These studies have demonstrated that approaches based on deep convolutional networks can offer 
significant advantages by allowing images to be acquired with lower doses of radiation. However, it should be 
noted that our approach is applicable to reconstruction of images from the raw DECT data. It does not represent 
a classical noise reduction technique. A direct comparison with classical noise reduction algorithms is therefore 
not possible.

In addition to their potential for improved image quality, deep learning pipelines allow for accelerated 
workflow by automatically generating individual DNC images. By removing the human intervention in DECT 
post-processing, the fully automated character of the proposed framework will enable more efficient imag-
ing throughput and make material decomposition less prone to human error. In clinical practice, faster image 
post-processing allows for more efficient radiologic interpretation and reporting and decreases overall exam-
ination turnaround times. Rapid image availability can also better guide clinical decision-making and patient 
management in acute clinical scenarios. Similarly, in the research setting, automated post-processing facilitates 
larger-scale image production and utilization. This method is completely generalizable on other DECT paradigms 

Figure 3. Comparison of representative examples of diffusion-weighted images (first column), S-VNC images 
reconstructed using a conventional material decomposition algorithm (second column, display window of 
(20, 60)), predicted DNC images generated using the proposed CNN (third column, display window (40, 
80)), and TNC images (fourth column, display window (40, 80)) in the evaluation of acute ischemic stroke. 
Decreased SNR on the VNC images results in poor delineation of true infarct size and location. In contrast, the 
improved image quality of the predicted DNC images allows for better visualization of normal brain anatomy 
and pathology, as confirmed by DWI. First row: 75-year-old male with acute-onset left facial droop and left 
arm weakness secondary to an acute ischemic infarct within the anterior right middle cerebral artery territory. 
Loss of gray-white matter differentiation and local sulcal effacement secondary to the infarct are best visualized 
on the predicted DNC image in comparison to the VNC and TNC images. Of note, identification of the infarct 
is particularly difficult on the VNC image. Second row: 51-year-old unresponsive female who presented with 
a large acute left middle cerebral artery territory infarction. The true size and location of the acute infarct, 
as confirmed by DWI imaging, is most conspicuously identified on the predicted DNC image secondary to 
improved SNR.
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such as kVp-switching, twin-beam, and dual-layer scanners. In fact, truly multispectral photon counting detec-
tors are even more promising for this approach as they provide perfectly registered images in multiple energy 
bins.

Outlook
The generation of high-quality, non-contrast DNC images may obviate the need for separately obtaining 
non-contrast images in situations where they are routinely acquired in conjunction with contrast-enhanced 
images, thereby reducing the overall radiation dose to individuals. When coupled with photon counting detec-
tors, where multi-spectral data will be available to the CNN to perform multi-level coincident material decompo-
sitions, image quality and material decomposition may be further improved. However, in vivo validation with a 
wider range of patients and pathologies will first be required to assess our model’s generalizability.

Methods
patient population. This retrospective study was approved by the Partners HealthCare Institutional Review 
Board (protocols #2010P001506 and #2015P000607) and conducted in accordance with HIPAA guidelines. Since 
the data was acquired as part of the routine clinical care and analyzed retrospectively, requirement for informed 
consent was waived by the IRB. The authors had control of the data and information presented in this manuscript. 
Data used in the study are available from the corresponding author by request.

This study included scans of patients who were referred for dual-energy head CT between November 2014 
and August 2018 for evaluation of hemorrhagic or ischemic stroke. All scans were performed using the standard 
departmental protocol at our institution, which includes a non-contrast head CT followed by a contrast-enhanced 
Dual-Energy head CT. The inclusion criteria were availability of an artifact-free conventional unenhanced 
non-contrast, single-energy CT scan prior to contrast administration as well as low and high-energy components 
of a contrast-enhanced dual-energy CT scan performed immediately afterwards.

Scans from 209 adult patients were included. This cohort was comprised of 107 patients with intracranial 
hemorrhage and 102 with acute ischemic stroke. Twenty-one patients were excluded because either one or both 
dual-energy components of the scan were not saved in our Picture Archiving and Communication System (PACS) 
or were unreadable. Six additional individuals were excluded as their DECT scans were obtained at energy levels 
that did not follow the standard departmental protocol. Thus, the final cohort comprised 182 patients, provided 
37,611 two-dimensional (512 × 512) image slices for training, validation, and testing of the convolutional neural 
network (described below in detail).

Data acquisition. All DECT images were obtained using two dual source CT scanners (Somatom Definition 
Force™ or Flash™, Siemens Healthineers, Erlangen, Germany) and post-processed using the vendor provided 
analysis platform (syngo.via, Siemens Healthineers, Erlangen, Germany). This proprietary software is provided 
by the vendor, and employs engineering specifications of the beam filters used, the X-ray spectrum and other 
scanner intrinsic details. The two X-ray sources were set at the tube voltages of 80 kVp and 150 kVp-Sn for 
Flash™ (n = 78 patients) and 100 kVp and 150 kVp-Sn for Force™ (n = 104 patients). The designation “Sn” in the 
high-energy component of the DECT scan denotes that a tin filter was used to increase the spectral separation 
between the high- and low-energy spectra. The difference in scanners (and scan protocol) approximately at the 
midpoint of our study is due to the change of our Emergency Department dual-energy CT from Somatom Flash™ 
to Somatom Force™ scanner.

The following scan protocol was used: tube A at 80 or 100 kVp; tube B, with tin filter, at 150 kVp; effective tube 
currents of 714 and 168 mA for tubes A and B, respectively; and a collimation of 14 × 1.2 mm. The effective dose 
of a dual-energy CT scan was comparable to that of a conventional CT scan (~3 mSv per scan). Each image stack 
consisted of a low- and high-kVp series, both with a voxel resolution of 1 mm3.

Of the 37,611 image slices that were analyzed, 13,635 were obtained as 80 kVp - 150 kVp-Sn energy pairs (Data 
Set 1) and the remaining 23,976 were obtained as 100 kVp - 150 kVp-Sn energy pairs (Data Set 2). All image slices 
were partitioned into training, validation, and independent test data sets in the following proportions: 74.5%, 
14.5%, and 11.0% for Data Set 1, and 74.4%, 15.0%, and 10.6% for the Data Set 2, such that images from a given 
patient were kept within only one data set.

image pre-processing. The image data for each patient consisted of an unenhanced “True” Non-Contrast 
(TNC) single-energy scan, followed by a contrast-enhanced dual-energy scan of the brain. The dual-energy scans 
were post-processed using syngo.via (Syngo Dual Energy Brain Hemorrhage, Siemens Healthcare) to obtain 
three-material decomposition from the low- and high-kVp images. The decomposition was performed using 
water and hemorrhage as the base materials, and any measured deviations from the linear combination of the 
attenuations of the two base materials were attributed to the third material, in this case, the contrast material 
(iodine). The post-processing algorithm used an iodine ratio of 2.12, slice thickness of 1 mm, and all other param-
eters set to their default values in order to generate the virtual non-contrast (hereafter referred to as S-VNC 
image). All images were reconstructed at 1 mm slice thickness, with a 0.6 mm slice spacing, and an average 
field-of-view of 228 mm (range: 197–285 mm).

For direct comparison, the S-VNC and TNC scans were co-registered to a standard space and re-sliced using 
the SPM12 toolbox (v.7219; Functional Imaging Laboratory, Welcome Trust Centre for Neuroimaging, Institute 
of Neurology at University College London, UK) for MATLAB 2018a (MathWorks, Inc., Natick, Massachusetts, 
US). After co-registration, skull-stripping was performed using a validated automatic implementation of the 
FSL 6.0 Brain Extraction Tool with 3D Gaussian smoothing using σ = 1 mm3 kernel size23,24. Skull-stripping 
was supervised by two of the authors (R.H.U.B. and M.G.P.) to guard against software failures and possible 
elimination of brain parenchyma adjacent to the inner table of the skull. To further minimize artifacts at the 
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boundary secondary to co-registration and skull-stripping, the final brain mask was eroded using a spherical 
5-pixel × 5-pixel spherical structuring element and cropped.

Generation of deep non-contrast images. Physics-informed Lookup VNC (L-VNC) Generation. By 
design, S-VNC captures the physics of the underlying material decomposition process. It describes how pairs 
of low- and high-energy value pairs are combined to provide an intensity that represents contrast-free attenu-
ation. Subsequently, the mapping between S-VNC intensities and low- and high-energy pairs was used to cre-
ate a 2-dimensional “lookup image” (Fig. 4). Any non-mapped points were imputed using an iterative inter/

Figure 4. Raster plot of the relationship between images at different DECT energies and S-VNC images 
constructed using a material decomposition algorithm (syngo.via, Siemens Healthineers, Erlangen, Germany). 
The x- and y-axes show pixel values for low- and high-energy images, respectively. The value at a specific x-y 
location indicates the corresponding pixel value on S-VNC images.

Figure 5. A high-level representation of the analysis framework.
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extrapolation method based on a penalized least squares method25,26 for 100 iterations. Any remaining missing 
input-output relations were filled with zeros. The mapping encoded in the lookup image was then applied to gen-
erate lookup-VNC images (hereafter referred as to L-VNC image) for all DECT low- and high-energy image pairs 
in the training set. L-VNCs were median filtered using a 5-pixel × 5-pixel kernel to minimize noise.

Network architecture. To correct the error between the previously described L-VNC and TNC we developed and 
trained a supervised 2-dimentional convolutional neural network (CNN) based on the ResNet architecture27. The 
ResNet architecture allows for increased network depth; reducing overfitting and allowing increased abstraction 
while retaining relative trainability. The network consists of three sets of each three residual blocks, with increas-
ing dilation factor of 1, 2, and 4 (see Fig. 5 inset). Dilation factor of deeper layers increases to account for features 
of different scales. Residual connections ensure the learning of residual mappings instead of ‘plain’ mappings. 
In deeper networks, it is easier to optimize weights of these residual mappings. Network depth was established 
empirically, as increased depth proved to be too hard to train, and a shallow network reduced performance sub-
stantially. Further architectural details are described elsewhere in the literature27,28.

The network was implemented in Python 3.6.5 using Keras 2.2.3 as the high-level API and TensorFlow 1.12.0 
as the backend. Training was done on a Nvidia GeForce GTX 1080 Ti graphics processing unit (GPU). The 
training batch size was eight, and images were down sampled to 256 × 256 due to memory constraints. Adam 
optimization with L2 regularization, default weight initialization, and a constant learning rate of 10−5 was used 
for training. An L2 regularization value of 0.02 was used during weight optimization, with a dropout of 0.5. 
Performance analysis on the training and validation sets was limited to the voxel constituting to the brain paren-
chyma using a brain mask, to prioritize performance enhancement in this area. The error, i.e. performance, was 
computed by the root mean squared error between these two sets of included voxels. Two models with the same 
CNN architecture – one for the Data Set 1 and the other for the Data Set 2 – were trained separately. This entailed 
generating different lookup images, L-VNC images, and DECT image pair inputs for the CNN models.

The input to the network were three sets of input images, namely, the low-energy (80 or 100 kVp) and 
high-energy (150 kVp-Sn) DECT image pair and the corresponding L-VNC image. The training was super-
vised by the difference between the TNC images and the generated L-VNC image. Consequently, the output of 
the trained network generated the expected difference between true non-contrast (TNC) and L-VNC images. 
Therefore, adding this predicted difference to L-VNC image should yield a predicted non-contrast CT image 
that approximates the TNC image. We labeled these generated images as Deep Non-Contrast or DNC images 
(see Fig. 5). Models were trained until the validation loss function reached a plateau. It took 30 epochs spanning 
9 hours for validation loss to plateau at 5.65 HU for Data Set 1, and 33 epochs (14 hours) at 19.12 HU for Data 
Set 2.

performance assessment. Absolute values of pixel intensities (in Hounsfield Units) of the predicted DNC 
images were compared with the TNC images using root mean squared error (RMSE). Similar analysis was applied 
to S-VNC vs TNC images. From a practical, radiologic perspective, relative rank ordering of pixel intensities 
between different images is more important than their absolute values. For example, while factors such as win-
dow and level may change the overall pixel intensities, as would adding a DC offset to an image, the relative order 
of pixel values is not changed by these operations. To assess the fidelity with which the relative order of pixel 
intensities is replicated in the DNC and S-VNC images as compared to the TNC images, we also used Spearman’s 
rank-order correlation to quantify similarity between original and predicted images. Both performance meas-
ures were calculated for batches of 32 randomly selected images to stratify for number of brain voxels in each 
performance measurement. All statistical analyses were performed using R Language for Statistical Computing 
(version 3.5.1).
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