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Plant virus nanoparticles (VNPs) are inexpensive to produce, safe, biodegradable and
efficacious as treatments. The applications of r plant virus nanoparticles range from
epitope carriers for vaccines to agents in cancer immunotherapy. Both VNPs and virus-
like particles (VLPs) are highly immunogenic and are readily phagocytosed by antigen
presenting cells (APCs), which in turn elicit antigen processing and display of
pathogenic epitopes on their surfaces. Since the VLPs are composed of multiple
copies of their respective capsid proteins, they present repetitive multivalent scaffolds
which aid in antigen presentation. Therefore, the VLPs prove to be highly suitable
platforms for delivery and presentation of antigenic epitopes, resulting in induction of
more robust immune response compared to those of their soluble counterparts. Since
the tumor microenvironment poses the challenge of self-antigen tolerance, VLPs are
preferrable platforms for delivery and display of self-antigens as well as otherwise
weakly immunogenic antigens. These properties, in addition to their diminutive size,
enable the VLPs to deliver vaccines to the draining lymph nodes in addition to
promoting APC interactions. Furthermore, many plant viral VLPs possess inherent
adjuvant properties dispensing with the requirement of additional adjuvants to
stimulate immune activity. Some of the highly immunogenic VLPs elicit innate
immune activity, which in turn instigate adaptive immunity in tumor micro-
environments. Plant viral VLPs are nontoxic, inherently stable, and capable of being
mass-produced as well as being modified with antigens and drugs, therefore providing
an attractive option for eliciting anti-tumor immunity. The following review explores the
use of plant viruses as epitope carrying nanoparticles and as a novel tools in cancer
immunotherapy.
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INTRODUCTION

Nanomedicine is an emerging area of multidisciplinary research that has already shown promise of
transforming into a disruptive innovative development (Farokhzad et al., 2008). Already, there are
dozens of products in clinical trials and even some on the shelf in some pharmacies across the world
though users are relatively few because of the rather prohibitive price tags of these innovative
products (Park, 2019). It is pertinent to state that while a lot has been proposed in terms of the
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anticipated efficacy of nanomedicines, opinions tend to vary
when it comes to the stage of a critical cost-benefit- analysis
for the availability of nanomedicines for use in the treatment of
cancer and other ailments (FDA Drug Reports, 2017).

Nanomedicines includes a wide array of nanomaterials with
particle size ranging from 1nm to more than 400 nm and are a
remarkably diverse group of materials (Zhang et al., 2008; Zhou et
al., 2012). They may be made up of entirely of a metal as in the
case of Gold and Silver nanoparticles (Paviolo and Stoddart,
2017), or a combination of liquids or a ternary system composed
of an assortment of several compatible materials giving rise in
most cases to a multifunctional entity often possessing stimuli
responsive attributes enabling it to respond to minute changes in
factors such as pH and temperature variations (Moreira et al.,
2016). Additionally, nanoparticles can be prepared with simple
polymeric materials such as cellulose and chitosan (Steinmetz and
Manchester, 2009).

Immunotherapy in cancer treatment simply refers to a strategy
with the objective of galvanizing the immune system of the
patient to resist the implanting of cancerous cells. There are
several approaches to achieve the desired end. One approach
involves the use of drugs known as “Immune checkpoint
inhibitors, to block immune checkpoints (Byun et al., 2017).
The checkpoints are a typical part of the immune system and
serve to modulate the immune response so that it does not come
as too strong. The net effect of this treatment modality is that the
blocking of these checkpoints makes it possible for the immune
cells to respond more strongly to cancer.

Plant virus-based nanoparticles (VNPs) have been explored as
a unique class of nanocarriers for biomedical applications (Pitek
et al., 2016). In addition to their ease of production and quality
control maintenance, plant virus VNPs offer a logical alternative
to synthetic nanoparticles as they are inexpensive to produce,
nontoxic and biodegradable (Rybickie, 2020). Plant virus
nanoparticles have been further improved for their
performance in terms of stimuli-responsivity (Brun, Gomez,
and Suh 2017).

Plant virus nanoparticles tend to be either rod shaped, such as
Tobacco mosaic virus (TMV) and Potato virus X (PVX), or
icosahedral shaped, such as Cowpea mosaic virus (CPMV).
Different shaped viruses respond differently as nanoparticles
in vivo. Tobacco mosaic virus can assemble into VLPs without
requiring its RNA genome carry a drug payload on the surface or
to a limited extent, within the inner channel of the nanoparticle.
Potato virus X, cannot self-assemble in the absence of its RNA
genome, and thus can only carry a payload on the outer surface.
Cowpea mosaic virus can be made to self-assemble into empty
virus like particles in the absence of its RNA genome and can thus
carry a payload both inside and outside of its protein shell
(Sainsbury et al., 2010). In this review, we provide a series of
examples to discuss how plant virus architecture contributes to
their applications in cancer diagnostics and therapy (Wen et al.,
2015a; Wen et al., 2015b). We discuss the architecture of plant
viruses, how they came to be used as nanoparticles in various
medical applications, and how they may be employed in the
future as novel cancer immunotherapies (Shahgolzari et al.,
2021).

Architecture of Plant Virus Nanoparticles
Viruses are composed of outer protein shells which encapsulate
the genomic material. The multiple copies of coat proteins that
form the virus outer shell of viruses are collectively known as the
capsid (Liu et al., 2016). Primarily, the capsid occurs in different
shapes and sizes and is meant to protect the genomic material to
keep viruses safe under extreme environments (Pokorski and
Steinmetz 2011). The immense diversity with respect to the
shape and size of plant viruses enables them to be tailored for
specific applications. The structural integrity of viruses remains
intact even when surface properties have been altered through
chemical and genetic modification; this allows control over
targeting ligands, drugs and contrast agents for imaging
(Rong et al., 2011). Various chemical and genetic approaches
are reported to control the virus surface properties without
affecting structural integrity, and allow control on the
attachment sites of drug molecules or contrast agents on the
virus surface (Rong et al., 2011). Plant-virus capsid pores are
also reported to be employed to encapsulate small therapeutic
molecules (Zeng et al., 2013).

Plant viruses have been used as virus like particles (VLPs) and
virus nanoparticles (VNPs) as epitope display systems for vaccine
production. VLPs are a subset of the VNPs but lack any nucleic
acid genome, thus making them non-infectious. VNPs and VLPs
based on plant viruses are both non-pathogenic to humans and
biodegradable (Steinmetz, 2010). VNPs and VLPs are
advantageous due to their ability to be generated quickly while
serving as highly versatile molecular scaffolds (Young et al., 2008;
Steinmetz and Evans, 2007]. Examples of plant viruses utilized as
VLPs include Cowpea mosaic virus (CPMV) and Tobacco mosaic
virus (TMV). An example of a plant virus utilized as a VNP is
Potato virus X (PVX). These are listed in Figure 1.

Tobacco mosaic virus (TMV) is the most well-studied plant
virus and was initially characterized in the 19th century. TMV
can be easily produced and purified in bulk amounts and can be
manipulated genetically due to its relatively simple particle
structure and genome organization. The rod-shaped virus
particle measures 300 nm in length and 18 nm in diameter
and contains a 6.7 kb viral RNA genome that is encapsulated
by 2,130 identical copies of the capsid protein assembled in a
helical arrangement. At neutral pH and in the absence of RNA,
the CP assembles itself into an 18 nm double disk, a 20S aggregate
or nano-ring containing two layers of 17 CP molecules which can
serve as a nanoscale scaffold.

Potato virus X (PVX) is a member of the family
Alphaflexiviridae, genus Potexvirus, an important plant
pathogen of the family Solanaceae, and specifically infects
potato, tomato and tobacco (Adams et al., 2004) (Massumi
et al., 2014). It has a 6.4-kb positive-stranded RNA genome
(Park et al., 2008). Multiple copies of CP assemble around the
genomic RNA to form the capsid. PVX can carry large payloads
due to its flexible and filamentous structure, making it possible to
use for pharmaceutical and imaging applications (Roder,
Dickmeis, and Commandeur 2019).

The PVX particle is 515 × 14.5 nm in dimension and
comprised of 1,270 subunits of CP, (Parker et al., 2002). The
C-terminus of each CP subunit is located internally and the
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N-terminus projected externally to the assembled particle, which
provides a suitable site for modification (Nemykh et al., 2008).
Unlike other reported viruses, the assembly of PVX CP subunits
into filamentous VLP, in vivo or in vitro, is not possible in the
absence of genomic RNA. This reflects the unique connection
between virus RNA and CP (Kwon et al., 2005).

The plant pathogen Cowpea mosaic virus (CPMV) belongs to
the Comovirus genus. CPMV is an icosahedral shaped virus with
a diameter of approximately 27 nm. It is composed of RNA-1 and
RNA-2 of 6 and 3.5 kb, respectively packed in 60 copies each of
Large and Small coat protein (Singh et al., 2007). CPMV is one of
the most developed VNPs for biomedical and nanotechnology
applications due to its ability to target specific tissues and act as an
efficient drug delivery system. It is also reported to be well-
adapted for the attachment of a variety of molecules to the coat
protein. Five reactive lysine residues of CPMV coat protein
provide sites to chemically conjugate to various compounds

such as fluorescent dyes (Steinmetz, 2010). CPMV can be
produced as empty virus like particles (eVLPs)
Meshcheriakova et al. (2017). eVLPs are non-infectious and
could be loaded with heterologous material, has increased the
number of possible applications for CPMV-based particles.

Biomedical Applications
VLPs can act as strong vaccine candidates as they simulate the
conformations of native viruses, utilizing their intrinsic
immunogenicity without compromising their safety. VLPs
evoke effectual immune responses as they are readily
internalized by antigen presenting cells (APCs) and are ideal
platforms for antigen processing and epitope presentation to
immune cells. VLPs are composed of multiple copies of their
capsid (coat) proteins, which when assembled appear as
repetitive, multivalent molecular scaffolds. As a result, the
multiple copies of coat protein can facilitate the multivalent

FIGURE 1 | (A) Tobacco mosaic virus structure, RNA is in red, protein subunits in blue Source: https://pdb101.rcsb.org/motm/109. (B) Cowpea mosaic virus
structure, Protein subunits in red and blue Source: fineartamerica. com. (C) An overview of a portion of the PVX virus (right). The three domains of the protein are shin in
yellow, green and cyan, the RNA in red. The magnification on the left displays only one single CP with a fragment of RNA.
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presentation of antigens fused to their surface. Therefore, VLP
vaccines afford superior immunogenicity compared to antigens
in their soluble states. Additionally, plant viral VLPs and VNPs
possess inherent adjuvant properties dispensing with the use of
additional adjuvants to evoke strong immune responses
(Table 1).

TMV VLPs have been utilized as epitope display systems in a
variety of settings, with a first example being a polio vaccine by
Haynes et al. (1986). Later, TMV was used as an epitope display
vehicle for a malaria vaccine and others, including foot and
mouth disease virus, human papillomavirus, norovirus,
hepatitis B virus, influenza virus and human
immunodeficiency virus (Turpen et al., 1995; Nooraei et al.,
2021). Röder et al. (2017), were able to fuse a fluorescent
protein to the C-terminus of the Tobacco mosaic virus (TMV)
coat protein (CP) and also carried an N-terminal Foot-and-
mouth disease virus (FMDV) 2A sequence. This enables the
fusion protein to be cleaved from TMV.

Potato virus X, in contrast to TMV, has a flexuous rod shape
and requires its genomic RNA to self-assemble. PVX has been
used extensively as an epitope display system for vaccine research.
For example, Uhde-Holzem et al. (2016), reported genetically
altered PVX which displayed Staphylococcus aureus protein A
fragments on its surface, and proved to be easily functionalized
with IgG to be used in biosensing plant viruses. VLPs of Papaya
mosaic virus (PapMV), of the Potexvirius family, has been
engineered for use as a seasonal flu trivalent vaccine (Carignan
et al., 2015; Balke and Zeltins, 2020).

CPMV has also been developed as an autonomously
replicating virus vector for the expression of either peptides or
polypeptides in plants (Shahgolzari et al., 2020). Examples of
CPMV used as an epitope presentation system include epitopes
from the outer membrane (OM) protein F of Pseudomonas
aeruginosa which were shown to protect mice against bacterial
challenge, and an epitope expressing the 30 amino acid D2
domain of the fibronectin-binding protein (FnBP) from
Staphylococcus aureus, which has been shown to be able to
protect rats against endocarditis (Liu et al., 2005).

Recently, Albakri et al. (2020), explored how CPMV particles
can activate human monocytes, dendritic cells (DCs) and
macrophages. Monocytes, upon incubation with CPMV
in vitro, released the chemokines CXCL10, MIP-1α and MIP-
1β into cell culture supernatants. Dendritic cells and monocyte-
derived macrophages were also activated after incubation with
CPMV, this activation is part of SYK signaling. Shukla et al.
(2020) were able to demonstrate that CPMV outperformed many
other types of VLPs to be a particularly strong immune stimulant.

The capacity for multifunctionality and multivalency makes
plant nanoparticle platforms an ideal choice for theranostic
applications (Beatty and Lewis 2019; Wang, 2019). Plant
nanoparticles are capable of precise molecular imaging to
achieve accurate cancer diagnosis and therapy (Ma et al.,
2017). Delivery of imaging probes through nanostructures can
improve the chances of early-stage cancer diagnosis through the
use of multiple modalities to improve resolution, sensitivity,
penetration, time, cost and on the top of all clinical relevance
compared to the single imaging modalities (Key and Leary, 2014;

Shahgolzari et al., 2020). Drug conjugated nanoparticles
administered intravenously target tumors, via the process of
enhanced permeability and retention (EPR) effect depending
on the type of tumor (Hansen et al., 2015).

Molecular imaging is an emerging biomedical field which
facilitates the visualization, of biological mechanisms in vivo.
Imaging technologies can include magnetic resonance imaging
(MRI), computed tomography (CT), positron emission
tomography (PET) and optical imaging, which enable the
monitoring of molecular and cellular processes in normal and
diseased conditions in living subjects. (Chung et al., 2020). Plant
VLPs can be beneficial for molecular imaging technologies than
synthetic nanoparticles, due to their short half-life in circulation
and their lack of side effects (Steinmetz, 2010). Furthermore,
plant VLPs can be developed to carry a wide array of contrast
agents and fluorescent labels, as they can be modified with
antibodies, peptides and aptamers to enable enhanced
targeting to specific tissues and cells.

Magnetic resonance imaging (MRI) is a promising technology
for the diagnosis of disease due to its high resolution and deep
contrast, however, virus-based nanoparticles have been used to
increase sensitivity (Pokorski et al., 2011). TMV can act as a
carrier to deliver high payloads of MRI contrast imaging agents to
diseased tissues (Michael A. Bruckman et al., 2013) and
fluorescent dyes for biosensing and bioimaging (Wen et al.,
2015). TMV’s biological compatibility and multi-valency
enables it to be a suitable carrier of in vivo imaging agents.
For example, TMV rods have been conjugated to “BF3,” a multi-
photon absorbing fluorophore which permitted mouse brain
imaging over an extended duration without crossing the
blood-brain barrier (Niehl et al., 2016). A bimodal contrast
agent has been prepared to target integrin α2β1by loading the
internal cavity of TMV nanoparticles with the complex of
dysprosium (Dy3+) and the near-infrared fluorescence (NIRF)
dye Cy7.5, as well as the externally conjugated with an Asp-Gly-
Glu-Ala (DGEA) peptide through a linker polyethylene glycol.
This nanoparticle (Dy-Cy7.5-TMV-DGEA) was stable, displayed
a low cytotoxicity and achieved a high resolution when targeted to
PC-3 prostate cancer cells (Hu et al., 2017).

Tobacco Mosaic Virus has been used successfully for CD
imaging, targeting atherosclerosis and thrombosis by using an
NIR dye as well as a targeting peptide conjugated to TMV [96].
These targeted TMV particles were able to identify
atherosclerotic lesions in ApoE−/− mice upon intravenous
injection, showing that TMV can be used as a platform to
detect at-risk lesions.

VNPs based on PVX have been conjugated to fluorescent
reporters as well [135]. As mentioned earlier, the small
fluorescent iLOV protein was expressed on the surface of PVX
through genetic engineering and served as a fluorescent probe
which could be of potential use in vivo imaging. Shukla et al.
(2018), reportedly produced PVX VNPs that displayed mCherry
or GFP on their N-termini in N. benthamiana plants.
Significantly, fluorescent PVX could successfully be used for in
vivo particle tracking in an HT-29 murine model, for in vitro
imaging of HT-29 cells, and for tracing viral infection within
plants.
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CPMV can also be engineered for intravital imaging (imaging
living cells while they are in a multicellular organism) and
improved permeability with a retention effect that improves
tumor penetration (Beatty and Lewis, 2019). For in vivo
imaging of tumors, CPMV-based VNPs have been successfully
engineered to target specific tissues (Cho et al., 2014). These
tumor targeting VNPs also provide biocompatible platforms for
cancer therapy and intravital imaging (Beatty and Lewis, 2019).

Clinical treatment for cancer has been routinely addressed by
chemotherapy (Hu et al., 2017). Regardless, the high recurrence
of cancers as well as the fast clearance of anti-cancer drugs and
non-targeted drug delivery necessitate the administration of
maximum tolerable doses of drugs in cancer therapy, leading
to increased toxicity and lower performance (Cano-Garrido et al.,
2021). Therefore, drug delivery technologies that are highly
targeted and promote active drug accumulation in tumors, in
concert with reductions of dose requirements, could alleviate
these concerns and augment treatment outcomes.

Plant virus VLPs have several attractive features that make
them appropriate for targeted administration of therapeutic
molecules. The anti-cancer drug doxorubicin (DOX), has been
successfully delivered using VNPs and VLPs. TMV- and PVX-
derived VLPs and VNPs have been successfully used to deliver
DOX (Finbloom et al., 2018). In this context, helical plant VNPs
such as TMV and PVX, with high aspect ratios, have proven to be
of great use in effective drug delivery. VNPs have shown great
promise since their cargo-RNA functions as a ruler establishing
the length of the virus particle and simple adsorption of DOX on
their surface was shown to be effective for reducing tumor growth
(Bruckman et al., 2013; Pitek et al., 2016).

TMV can be used as a carrier of peptides with therapeutic or
targeting activity against various cancers. Trastuzumab is a cancer
cell inhibiting monoclonal antibody that uses the binding sites of
human epidermal growth factor receptor 2 (HER2).
Trastuzumab-binding peptides (TBP) are immunogenic in
nature and capable of initiating production of HER2-inhibiting
antibodies to seize the growth of HER2-carrying cancer cells.
TMV particles displaying TBP have been created to activate this
immunogenicity (Tyulkina et al., 2011). Similarly, a delivery
system reported as PhenPt-TMV, with anticancer drug
phenanthriplatin loaded into a hollow TMV carrier, serves as
an example of stimuli responsive system, as the release of drug is
induced in the presence of acidic environment (Czapar et al.,
2016). Along these lines, Tian et al. (2018) demonstrated that the
Transacting Activation Transduction (TAT) peptide, conjugated
to the external surface of TMV, augmented internalization along
with an increased ability to escape endo/lysosomal
compartments. Most of these VLPS exhibited uptake by
dendritic cells and macrophages and proved to be highly
immunogenic. Thus, therapeutic nucleic acids can be easily
delivered to immune cells during cancer treatments.

Plant virus VNPs have been used for targeted administration
of platinum-based drugs against cancer. This is important as 50%
of chemotherapy treatments involve the use of these platinum-
derived drugs. TMV has been demonstrated to efficiently deliver
Cisplatin (Franke et al., 2018) and Phenanthriplatin (Vernekar
et al., 2018), both of which are platinum-based drugs. The drugs

were loaded into the TMV VNP cavity using charge-driven
interactions or by synthesizing stable covalent adducts. Such a
TMV-based drug delivery system was proven to enable superior,
targeted cytotoxicity as well as increased ease of uptake by cancer
cells in in vitro systems using HepG2 andMCF-7 cancer cell lines
(Liu et al., 2016).

Another anti-cancer drug, mitoxanthrone (MTO), is a
topoisomerase II inhibitor and has been shown to be
encapsulated by TMV (Lin and Steinmetz, 2018). VNPs
exhibited superior tumor-reduction in mouse cancer models,
while precluding severe cardiac outcomes that sometimes
accompany direct delivery of MTO. Yet another anti-
neoplastic and antimitotic drug, valine-citrulline monomethyl
auristatin E (vcMMAE), was bound to the exterior of TMVVNPs
which targeted non-Hodgkin’s lymphoma. Internalization into
endolysosomal compartments was reported (Kernan et al., 2017),
most likely accompanied by the protease-mediated release of the
drug. This system was efficient in terms of cytotoxicity towards
the in vitro Karpas 299 non-Hodgkin’s lymphoma cell line with
an IC50 of 250 nM.

Helical plant virus nanoparticles (VLPs) have also been used as
combination therapies to augment their immune efficacy. The
PVX-DOX (doxorubicin) (Lee et al., 2017) combination was
shown to be highly effective in stimulating cytokine/
chemokine levels while prolonging the survival of mice in
melanoma models compared to that obtained through the
administration of either PVX or DOX alone.

PVX displaying TNF related apoptosis inducing ligand
(TRAIL) was used to promote the recruitment and activation
of death receptors in vitro in HCC-38 primary ductal carcinoma,
BT-549 ductal carcinoma and the MDA-MB-231 breast cancer
cell lines (Le et al., 2017; Röder et al., 2018). In vivomouse models
also demonstrated that the PVX-TRAIL formulation potently
inhibited tumor growth. PVX has also been used by displaying
tumor necrosis factor (TNF)-related apoptosis inducing ligand
(TRAIL) on the surface of VNPs. Multivalent display of TRAIL
enabled increased recruitment and stimulation of death receptors
expressed on cancer cell lines (Le et al., 2019). Similarly, this
formulation was shown to successfully suppress tumor growth in
mice breast cancer models.

An efficient and new drug delivery system has been reported
for Non-Hodgkin’s B cell lymphomas (NHL) based on PVX
binding affinity towards malignant B cells. PVX loaded with
monomethyl auristatin (MMAE) and administered to tissues
harboring malignant B cells lead to inhibition of NHL growth
in a mouse model (Shukla et al., 2020). Jobsri et al., 2015 reported
a study in which PVX was conjugated to an idiotypic (Id) tumor-
associated antigen (TAA) recombinant through a biotin/
streptavidin linker, that elicited a 7 times higher anti-Id IgG
response compared to Id alone in a mouse B-cell lymphoma
model. Cytokine profiling in these mice revealed that the
induction of IFN-α and IL-12, also that TLR7 was essential for
viral RNA recognition.

PVX nanoparticles are increasingly being used for
immunotherapy of tumor microenvironments. The
monoclonal antibodies of Herceptin or Trastuzumab can be
loaded onto PVX nanofilaments, which successfully induced
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apoptosis in breast cancer cell lines (Esfandiari et al., 2016). PVX
was used as an expression vector for a mutant form of the HPV16
E7 oncoprotein, by fusing it with lichenase. This elicited
protection against tumor progression in mice by inducing a
robust cytotoxic T-cell response (Demurtas et al., 2013).

Steinmetz et al. (2009), found that CPMV nanoparticles could
bind to vimentin, a protein found on the surface of most cells.
Vimentin is upregulated during tumor progression, making it an
attractive target for cancer therapy. The fact that surface vimentin
expression correlated with CPMV uptake in this study
demonstrated the ability of CPMV to detect invasive cancer cells.

The tumor microenvironment poses a great challenge to
immune clearance by virtue of being immunosuppressive and
favoring immune escape of the tumors through the inhibition of
anti-tumor T-cells (Chung et al., 2020). CPMV VLP
nanoparticles were shown to decrease tumor growth in murine
models of lung melanomas, ovarian, colon and breast tumors
(Lizotte et al., 2016; Wang et al., 2019). Mechanistically, CPMV
has been shown to reprogram the tumor microenvironment by
recruitment of natural killer cells and neutrophils, while enabling
the transition of M2 to M1 anti-tumor macrophages. This innate
immune cell population subsequently combats the tumor leading
to cell lysis. Most recently, Mao et al. (2021) have deduced which
TLRs are responsible for these properties.

The icosahedral shape of CPMV capsid can be loaded with
precise drug cargos to target tumor and cancer cells. CPMVVNPs
have also been formulated as slow-release aggregates along with
polyamidoamine generation 4 dendrimers (CPMV-G4) (Czapar
et al., 2018), where they were shown to be effective in combating
ovarian cancer in murine models, even when provided as a single
dosage.

CPMV VLPs have been attached to TAAs (tumor associated
antigens) using chemical conjugation, genetic fusion and
enzyme-mediated ligation techniques. For example, the human
epidermal growth factor receptor 2 (HER2) epitope, when
conjugated to the icosahedral CPMV, was successfully
delivered to the lymphatic system with enhanced uptake and
activation of APCs that led to an augmented anti-HER2 immune
response. The CPMV HER2 candidate vaccine slowed tumor
progression and metastasis in mouse models, enhancing survival
(Shukla et al., 2013). Importantly, CPMV-HER2 stimulated a
predominantly Th1 immune response while Sesbania Mosaic
Virus-HER2 and CCMV-HER2 induced mostly a Th2
response in mouse models, thus proving that the nature of the
epitope carrier itself plays an essential role in regulating the Th1/
Th2 bias. This could be due to differences in epitope display on
the surface of the VNPs as well as the capsid.

Cancer vaccines against carbohydrate antigens associated with
tumors (TACAs) could be useful for diminishing tumor
progression. Nevertheless, carbohydrates are weakly
immunogenic and therefore, plant viruses used as carriers of
these molecules could enhance the immune response to TACAs.
CPMV-TACA conjugates targeting the Tn antigen (GalNAc-
α-O-Ser/Thr) (Yin et al., 2012) were demonstrated to induce
enhanced IgG titers, implicating heightened T-cell mediated
immunity and antibody isotype switching in mouse models.

IgG binding to the Tn antigens were observed in experiments
wherein mice sera were added to breast cancer cell lines.

The chemotherapeutic cyclophosphamide, when used in
combination with CPMV VNPs, profoundly elicited tumor cell
death, releasing extracellular TAAs and stimulating immune cell
invasion in addition to augmenting TAA recognition and antigen
presentation (Cai et al., 2019) in mouse tumor models. CPMV
VNPs have also been administered in combination with CD47-
blocking antibodies (Wang and Steinmetz, 2019) which proved to
have synergistic effects in combating tumor growth in murine
ovarian tumor models, where it activated phagocytes, leading to
stimulation of the adaptive immune response. Similar synergistic
effects were observed when CPMV VNPs were used in
combination with the anti-programmed cell death-1
checkpoint inhibitor (Lam et al., 2018). In addition to this,
CPMV has been used successfully in promoting anti-tumor
effects, when combined with radiation therapy. In this
instance, CPMV was shown to enhance the recruitment of
APCs, which in turn targeted the extracellular TAAs and
phagocytosed them to induce a prolonged effectual immune
response (Patel et al., 2018) in mice and canine models.

The CPMV-DOX conjugate was developed using eighty
molecules of the chemotherapeutic drug doxorubicin (DOX),
covalently bound to carboxylates at the external surface of the
CPMV nanoparticle. This drug delivery vehicle was found to be
more cytotoxic than free DOX when used in low concentration,
however, CPMV-DOX cytotoxicity is time-delayed at higher
concentrations (Aljabali et al., 2013). Cancer cells manage to
resist immunotherapies owing to the immunosuppressive nature
of tumors. CPMV nanoparticles have been reported as an in situ
vaccine to stimulate an anti-tumor response and overcome local
immunosuppression (Shukla et al., 2020). CPMV is also shown to
be effective for ovarian cancer. The strategy for immunotherapy
resulting antitumor efficacy is promising and involved the
formation of aggregates of CPMV and polyamidoamine
generation 4 dendrimers (CPMV-G4). Administration of
CPMV-G4 effectively reduced ovarian cancer (Czapar et al.,
2018). CPMV nanoparticles thus provide a therapeutic
application for tumor targeting, intravital imaging and cancer
therapy (Yildiz et al., 2013). Further exploration into the
pharmacology of CPMV nanoparticles will further elucidate its
roles in the immune response (Nkanga et al., 2021).

Patel et al. (2018), used CPMV nanoparticles in conjunction
with radiotherapy to delay ovarian tumor growth in a mouse
model. The treatment was able to result in an increase in tumor
infiltrating lymphocytes (TILs), suggesting that this combined
treatment could act as a future in situ tumor vaccine. Further
studies by Wang and Steinmetz (2019) found that a protein
known as CD47, that is widely expressed on tumor cells, prevents
the action of T cells and phagocytic cells. The authors used a
combination therapy of CD47-blocking antibodies and CPMV
nanoparticles to act synergistically and elicit an anti-tumor
immune response. The same research group also used low
doses of cyclophosphamide (CPA) and CPMV nanoparticles
as a combination therapy to successfully reduce mouse tumors
in vivo (Wang and Steinmetz, 2019).
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CONCLUSION AND FUTURE DIRECTIONS

The use of plant virus nanoparticles (VNPs) as drug delivery
carriers for the treatment of infectious and chronic diseases
including cancer are advantageous when compared with naked
drugs (Shoeb and Hefferon, 2019; Hefferon, 2018). The most
promising nanoparticle systems have been adopted from
naturally occurring plant viruses. Plant viruses are ideal for
drug delivery as they are safe, non-infectious and nontoxic to
humans (Beatty and Lewis, 2019). Cancer cells exhibit specific
antigens on the surface of tumor cells which can be identified and
targeted by plant-virus based nanoparticles, thus providing a
clinical application of diagnosis and therapeutics for cancer. The
most promising nano-scale systems have been adopted from
naturally occurring plant viruses such as Tobacco mosaic virus
(TMV), Cowpea mosaic virus (CPMV), Potato virus X (PVX)
and many more. Currently, these new strategies are only
applied in small scale production. As these approaches
undergo further development, we will witness a spectrum of
possible applications in the fields of medicine and biomedical
engineering.

In the future, plant virus nanoparticles will need to be
developed for high throughput manufacturing. This will
require the dedication of facilities that can produce many
grams of plant virus nanoparticles using tens of thousands of
plants (McNulty et al., 2021). Today, manufacturing facilities
have been generated for plant molecular farming, and adaptations
could be tailored for nanoparticles (Fausther-Bovendo and
Kobiger, 2021). The regulatory pathway will require more
exploration to speed the process. More research regarding how
plant virus nanoparticles act upon the immune system is
underway and will be needed (Mao et al., 2021). Finally, the
use of plant virus chimeras or semi-synthetic plant virus
nanoparticles with novel properties must be explored, as well
as novel modes of administration, such as microneedle patches
(Boone et al., 2020).
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