
May 2017 | Volume 7 | Article 931

PersPective
published: 12 May 2017

doi: 10.3389/fonc.2017.00093

Frontiers in Oncology | www.frontiersin.org

Edited by: 
Joshua Pesach Rosenzweig,  

Cell-El Ltd., Israel

Reviewed by: 
Emily R. Levy,  

National Institutes of Health, USA  
Daniel Olive,  

Institut national de la santé et  
de la recherche médicale  

(INSERM), France

*Correspondence:
Assia L. Angelova  

a.angelova@dkfz-heidelberg.de

Specialty section: 
This article was submitted  

to Cancer Immunity and 
Immunotherapy, a section of the 

journal Frontiers in Oncology

Received: 22 March 2017
Accepted: 25 April 2017
Published: 12 May 2017

Citation: 
Angelova AL, Witzens-Harig M, 
Galabov AS and Rommelaere J 

(2017) The Oncolytic Virotherapy Era 
in Cancer Management: Prospects of 

Applying H-1 Parvovirus to Treat 
Blood and Solid Cancers.  

Front. Oncol. 7:93.  
doi: 10.3389/fonc.2017.00093

the Oncolytic virotherapy era in 
cancer Management: Prospects  
of Applying H-1 Parvovirus to treat 
Blood and solid cancers
Assia L. Angelova1*, Mathias Witzens-Harig2, Angel S. Galabov3 and Jean Rommelaere1

1 Department of Tumor Virology, German Cancer Research Center, Heidelberg, Germany, 2 Department of Hematology, 
Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany, 3Department of Virology, The Stephan 
Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria

Non-Hodgkin lymphoma (NHL) and leukemia are among the most common cancers 
worldwide. While the treatment of NHL/leukemia of B-cell origin has much progressed 
with the introduction of targeted therapies, few treatment standards have been estab-
lished for T-NHL/leukemia. As presentation in both B- and T-NHL/leukemia patients is 
often aggressive and as prognosis for relapsed disease is especially dismal, this cancer 
entity poses major challenges and requires innovative therapeutic approaches. In clinical 
trials, oncolytic viruses (OVs) have been used against refractory multiple myeloma (MM). 
In preclinical settings, a number of OVs have demonstrated a remarkable ability to sup-
press various types of hematological cancers. Most studies dealing with this approach 
have used MM or B- or myeloid-cell-derived malignancies as models. Only a few describe 
susceptibility of T-cell lymphoma/leukemia to OV infection and killing. The rat H-1 par-
vovirus (H-1PV) is an OV with considerable promise as a novel therapeutic agent against 
both solid tumors (pancreatic cancer and glioblastoma) and hematological malignancies. 
The present perspective article builds on previous reports of H-1PV-driven regression of 
Burkitt’s lymphoma xenografts and on unpublished observations demonstrating effective 
killing by H-1PV of cells from CHOP-resistant diffuse large B-cell lymphoma, cutaneous 
T-cell lymphoma, and T-cell acute lymphoblastic leukemia. On the basis of these studies, 
H-1PV is proposed for use as an adjuvant to (chemo)therapeutic regimens. Furthermore, 
in the light of a recently completed first parvovirus clinical trial in glioblastoma patients, 
the advantages of H-1PV for systemic application are discussed.

Keywords: oncolytic virotherapy, oncolytic H-1 parvovirus, glioblastoma, pancreatic ductal adenocarcinoma, 
oncolytic (parvo)virotherapy of hematological malignancies, diffuse large B-cell lymphoma, cutaneous  
t-cell lymphoma

Abbreviations: ALL, acute lymphoblastic leukemia; BL, Burkitt’s lymphoma; OV(s), oncolytic virus(es); H-1PV, parvovirus 
H-1; PDAC, pancreatic ductal adenocarcinoma; MM, multiple myeloma; CV, coxsackievirus; VSV, vesicular stomatitis virus; 
NHL, non-Hodgkin lymphoma; R-CHOP, rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone; DLBCL, diffuse 
large B-cell lymphoma; CTCL, cutaneous T-cell lymphoma; HDACi, histone deacetylase inhibitor.
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iNtrODUctiON

viruses and Human Health, a two-edged 
sword: chronology of virus rehabilitation
1898: viruses are discovered as “minute living things capable of 
reproducing themselves.” After the pioneering work of Adolf 
Eduard Mayer, Dmitri Ivanovsky, and Martinus Beijerinck, two 
German researchers, Friedrich Loeffler and Paul Frosch, were the 
first to contradict the “contagium vivum fluidum” (contagious 
living fluid) hypothesis to define a virus (the foot-and-mouth 
disease virus) as a tiny particle and to suggest that “the causative 
agents of numerous other infectious diseases of man and animals 
may also belong to this group of minute organisms” (1). Thus, at 
the beginning of the 20th century, the door opened to a new and 
exciting research area: virology.

Twentieth century: viruses as triggers of human infectious 
diseases. In the course of the 20th century and as predicted by 
Loeffler and Frosch, viruses were identified as the unquestion-
able causative agents of many human infectious diseases, from 
yellow fever (2), rabies (3), and poliomyelitis (4) to the acquired 
immunodeficiency syndrome (5). And this was not the end of the 
story: new disease-causing viruses, such as human bocaviruses, 
continue to emerge (6). It never rains but it pours…

Further bad news: viruses and human cancer. In addition to 
their vicious role as causative agents of numerous human infec-
tious diseases, viruses are also involved in cancer development. 
This was first demonstrated at the beginning of the 20th century. 
Some 15–20% of all human cancers are attributed to viruses, 
notably Epstein–Barr virus, papilloma viruses, hepatitis B and 
C viruses, human herpesviruses, and human T-lymphotropic 
virus 1 (7). The molecular mechanisms underlying virus-induced 
carcinogenesis are diverse and complex. In addition to causing 
direct effects such as induction of genomic instability, DNA 
damage, and viral oncogene-triggered cell transformation (8, 9),  
oncogenic viruses can establish a chronic infection allowing 
them to escape from the host’s immune system while produc-
ing proteins that control cell death and proliferation. Chronic 
infection also leads to inflammatory reactions promoting cancer 
development (10). In nasopharyngeal cancer, certain lympho-
mas, cervical cancer, liver cancer, Kaposi’s sarcoma, and human 
adult T-cell leukemia/lymphoma, malignant transformation is 
likely to be initiated by host cell infection by an oncogenic virus. 
And yet…

Two sides to every coin: viruses have a bad side and an 
“oncolytic” side. Breakthrough observations at the start of the 
20th century and findings peaking in the 1950s made it clear 
that “severe (virus) infections may on occasion favorably modify 
the course of far-advanced neoplastic disease…” (11). A sig-
nificant drop in leukocyte counts associated with some clinical 
improvement was documented in children diagnosed with acute 
lymphoblast leukemia (ALL) having simultaneously acquired 
a varicella virus infection (11). At least five cases showing 
Hodgkin’s disease regression after measles virus infection were 
described (12–14). Similar observations were made in patients 
having developed viral hepatitis during Hodgkin’s lymphoma 
progression (15). In 1971, Bluming and Ziegler published a case 
report on Burkitt’s lymphoma (BL) regression associated with 

measles virus infection (16). Today, more than a century after 
the first report on virus infection-associated clinical remission in 
cancer patients, virotherapy with oncolytic viruses (OVs) is the 
focus of a rapidly growing research field. Studies in this field have 
brought convincing evidence that oncolytic virotherapy, alone 
or in combination with surgery, chemotherapy, or radiotherapy, 
may significantly impact cancer mortality and improve patients’ 
quality of life.

Oncolytic viruses As Anticancer tools: 
From Bench to clinical trials
Oncolytic viruses form a diverse biological group whose mem-
bers belong to at least 10 different virus families, contain either an 
RNA or a DNA genome, and vary considerably as regards genome 
size, particle complexity, and natural host preferences (17). OVs 
naturally possess? or are engineered to acquire the capacity to 
selectively infect, replicate in, and destroy tumor cells (oncolysis) 
while sparing their normal counterparts (17, 18). Multiple factors 
explain this oncoselectivity: altered expression by tumor cells of 
virus entry receptors and/or intracellular permissiveness factors, 
rapid tumor cell division and high metabolic activity, deficient 
antiviral type I interferon responses in tumor cells, etc. (19). 
Furthermore, there is mounting evidence that OV infection of 
tumor cells induces an immunogenic process, with neo-antigen 
recognition and establishment of specific antitumor immune 
responses (20). The remarkable potential of OVs as cancer 
therapeutics has been well documented in a number of preclinical 
studies, and the resulting knowledge has been translated into an 
expanding wave of clinical trials (21, 22). In 2015, talimogene 
laherparepvec was the first OV to receive FDA approval as an 
anticancer drug (23) based on the fact that this herpes simplex 
virus type 1-based oncolytic immunotherapy has demonstrated 
therapeutic benefit against metastatic melanoma in a phase III 
clinical trial (24). In 2016, there were about 40 OV-based clinical 
trials recruiting cancer patients (19).

H-1 PArvOvirUs (H-1Pv) AGAiNst 
PANcreAtic cANcer AND GLiOMA:  
tHe BrAve LittLe cANcer FiGHter

With a particle diameter of only 22 nm, the non-enveloped ssDNA-
containing H-1 parvovirus is the smallest of the OVs. Its natural 
host is the rat. Humans are not naturally infected with H-1PV, 
no firm association between this virus and any human disease 
has been established, and no preexisting H-1PV immunity has 
been detected in the human population (25). Failure to observe 
any virus-related pathogenic effects in two early studies of H-1PV 
administration to human cancer patients (26, 27) prompted fur-
ther therapy-oriented H-1PV research. Considerable preclinical 
evidence has accumulated over the last 30 years [reviewed in Ref. 
(28–30)] providing straightforward proof that H-1PV has broad 
oncosuppressive potential. In particular, pancreatic carcinoma 
and glioblastoma have attracted major attention as parvoviro-
therapy targets. In the respective preclinical models, efforts have 
been made to unravel the mechanisms and improve the efficacy 
of H-1PV treatment.

http://www.frontiersin.org/Oncology/
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tABLe 1 | Oncolytic viruses (Ovs) targeting hematological malignancies: 
preclinical evidence.

Ov Malignancy Malignant cell 
type

reference

DNA viruses
Myxoma virus (Poxviridae) MM, AML Plasma, myeloid (52–54)
Vaccinia virus (Poxviridae) MM Plasma (55)
Adenovirus (Adenoviridae) MM, 

lymphoma
Plasma, B-L (56, 67, 68)

Herpes virus (Herpesviridae) Lymphoma B-L, T-L (69)

rNA viruses
CVA21 (Picornaviridae) MM Plasma (57)
Reovirus (Reoviridae) MM, 

lymphoma
Plasma, B-L (58–60, 70)

VSV (Rhabdoviridae) MM, AML, 
CLL

Plasma, myeloid (61, 66, 71)

Measles virus 
(Paramyxoviridae)

MM, 
lymphoma, 
leukemia

Plasma, B-L, T-L (62–65, 
72–76, 87)

H-1PV (Parvoviridae) Lymphoma, 
leukemia

B-L, T-L, myeloid (77–79)

MM, multiple myeloma; AML, acute myeloid leukemia; B-L, B-lymphocyte; T-L, 
T-lymphocyte; CVA21, coxsackie virus A21; VSV, vesicular stomatitis virus; CLL, 
chronic lymphocytic leukemia.
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Pancreatic cancer
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive 
tumor, often unresectable at the time of initial diagnosis. Median 
overall survival is only 6–9 months. As current therapies for PDAC 
patients fail to improve significantly their quality of life and to 
prolong survival (31), it is urgent to develop novel curative strate-
gies. Extensive work by our team on H-1PV-based virotherapy for 
PDAC has yielded the following key findings: (i) H-1PV efficiently 
kills PDAC cells, including gemcitabine-resistant ones (32);  
(ii) H-1PV infection of pancreatic cancer cells results in active 
cathepsin B translocation to the cytosol (32) and in extracellular 
HMGB1 danger signaling (33); (iii) some predictive markers of 
PDAC permissiveness to H-1PV infection and lysis, e.g., SMAD4, 
have been identified (34); (iv) in an orthotopic PDAC model, 
H-1PV causes tumor regression and prolongs animal survival, 
without affecting bone marrow activity, liver function, or kidney 
function (32); (v) H-1PV-induced tumor suppression is potenti-
ated under conditions of gemcitabine pretreatment (the current 
gold standard in pancreatic cancer therapy) (32); (vi) H-1PV 
oncosuppressive effects involve the participation of immune 
cells, which become activated either after an abortive infection 
with the virus (35) or through induction of immunogenic fac-
tors such as NK cytotoxicity receptor ligands (36) in H-1PV-
infected PDAC cells; (vii) the vaccination potential of H-1PV, in 
combination with IFN-γ, extends to the treatment of peritoneal 
carcinomatosis, an untreatable condition traditionally managed 
with palliative measures only (37). Current preclinical achieve-
ments and prospects for pancreatic cancer parvovirotherapy are 
summarized in Ref (38, 39).

Glioma
Glioblastoma is the most aggressive human primary brain tumor. 
Life expectancy remains very poor, despite standard and alterna-
tive therapeutic attempts (40). Our team has shown that oncolytic 
H-1PV infection of human glioma cells results in efficient cell 
killing (41). High-grade glioma stem cell models are also permis-
sive to lytic H-1PV infection (42). The cellular mechanism of 
virus-induced glioma cell killing has been elucidated and is based 
on active lysosomal cathepsin B translocation and accumulation 
in the cytosol of H-1PV-infected glioma cells but not normal cells 
(astrocytes) (43). Enhanced glioma cell killing has been observed 
when the virus was applied shortly after tumor cell irradiation, 
suggesting that this protocol might be translated to cases of non-
resectable recurrent glioblastoma (44). In animal models, local, 
systemic, or intranasal administration of H-1PV has been found 
to cause regression of advanced tumors, virus replication being 
restricted to tumor tissues (45, 46). The favorable safety profile of 
local or systemic treatment with medical-grade GMP-produced 
H-1PV has been confirmed in a study using a permissive animal 
model (47, 48).

On the basis of the above preclinical evidence, the first phase 
I/IIa clinical trial (ParvOryx01) of an oncolytic parvovirus 
(H-1PV) in recurrent glioblastoma patients was launched in 2011 
(49) and successfully completed in 2015. This trial, in addition 
to confirming the excellent safety and tolerability of H-1PV, 
yielded valuable observations, which strongly encourage further 

clinical development of this virus as an anticancer therapeutic. 
Particularly essential is the evidence suggesting that H-1PV  
(i) crosses the blood–brain barrier after systemic administration 
and (ii) may induce immunogenic conversion of the tumor micro-
environment. In 2015, a second phase I/IIa trial was launched in 
inoperable metastatic PDAC patients. The outcome of this study 
is eagerly awaited.

Glioblastoma and pancreatic cancer are far from being the 
only tumor types sensitive to H-1PV-induced oncotoxicity, since 
it has also been demonstrated in preclinical models of breast, 
gastric, cervical (29), and colorectal (50, 51) cancer. H-1PV thus 
has the potential to treat not only brain and pancreatic but also a 
variety of other tumors.

ONcOLYtic (PArvO)virUses AGAiNst 
HeMAtOLOGicAL MALiGNANcies

Preclinical experience
Lymphoma and leukemia are the two cancer types tightly 
associated with the dawn of the oncolytic virotherapy era. Later, 
however, they were superseded as oncolytic virotherapy targets 
by solid tumors, such as breast, ovarian, bladder, skin, colon, and 
lung carcinomas. Nevertheless, a substantial set of preclinical data 
shows that several OVs can selectively lyse hematopoietic stem 
cells or downstream blood cell lineages (Table 1). As shown in 
the table, the predominant preclinical model is multiple myeloma 
(MM), followed by leukemia/lymphoma of B-lymphoid, myeloid, 
or T-lymphoid origin. Myxoma virus, a poxvirus whose natural 
tropism is restricted to European rabbits and is non-pathogenic 
for other vertebrates, has been demonstrated to selectively induce 
apoptotic death in MM cells (52–54). MM has also been success-
fully targeted by a double-deleted vaccinia virus (55), adenovirus 

http://www.frontiersin.org/Oncology/
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serotype 5 (56), coxsackievirus A21 (57), reovirus (58–60), 
vesicular stomatitis (VSV) virus (61), and measles virus (62–65). 
Furthermore, myxoma and VSV infections are oncotoxic to acute 
myeloid leukemia cells (66), while adeno- (67, 68), herpes- (69), 
reo- (70), VSV (71), and measles virus (72–76) are reported to 
induce killing/suppression of B- and T-lymphoma or leukemia-
derived cells/xenografts.

First proofs of the capacity of H-1PV to infect and destroy 
human blood cancer-derived cells date back to the 1980s, when 
Faisst et al. screened for H-1PV permissiveness and killing a panel 
of BL, adult T  cell leukemia-derived, and in  vitro-transformed 
lymphoblastoid cell lines (77, 78). Further proof-of-concept 
was provided by Angelova et al., who showed that African and 
European BL cells, including those lacking CD20 and hence 
resistant to the CD20-targeting therapeutic rituximab, are highly 
susceptible to H-1PV-induced killing, in contrast to normal  
B lymphocytes from healthy donors. In a SCID mouse lymphoma 
model, a single intratumoral H-1PV injection was sufficient to 
cause full tumor suppression and disease-free survival for the 
whole period of observation (70  days). This striking oncosup-
pression was observed even when the virus was applied late after 
tumor initiation, so as to mimic an advanced disease stage (79).

clinical state of the Art
The rapid development of gene therapy and immune modula-
tion approaches in recent years has led to greatly improving the 
management of many hematological cancer types. Several clinical 
trials are currently examining the effects of RNA interference, 
suicide gene therapy, and immune modulation in myeloma, 
lymphoma, and leukemia patients (80). In the development of 
new therapies, the most progress has been made in the treatment 
of B-cell leukemia/lymphoma. These account for over 80% of all 
non-Hodgkin lymphomas (NHL). The current standard treatment 
is a combination of the anti-CD20 antibody rituximab and chemo-
therapy, e.g., the CHOP regimen (rituximab, cyclophosphamide, 
doxorubicin, vincristine, and prednisone) (81, 82). In contrast, 
NHL/leukemia of T-cell origin remains a therapeutic challenge, 
and treatment advances lag behind those for B-NHL. For example, 
treatment outcome is worse in pediatric T-ALL patients than in 
pediatric B-ALL patients (83). Adult T-ALL poses even greater 
treatment difficulties and no current option prolongs survival 
satisfactorily (84). In both B- and T-NHL/leukemia patients, 
outcomes of relapsed disease are usually dismal. Late effects and 
systemic toxicities related to conventional strategies (chemo- and 
radiotherapy) must also be considered. This spells out a continu-
ing need for innovative approaches, especially for patients with 
relapsed B-NHL or newly diagnosed/relapsed T-NHL. Targeted 
therapies (85), immunotherapy (86), and oncolytic virotherapy 
have triggered growing interest and are the focus of much atten-
tion. Two OVs, the wild-type reovirus and an engineered measles 
virus, have successfully reached the clinical testing phase (87).1,2 

1 Oncolytics Biotech Inc. – Clinical Trials. Available from: http://www.oncolyticsbio-
tech.com/reolysin/clinical-trials/
2 ClinicalTrials.gov: Vaccine Therapy With or Without Cyclophosphamide in Treating 
Patients With Recurrent or Refractory Multiple Myeloma. Available from: https://
clinicaltrials.gov/ct2/show/NCT00450814

In particular, a non-randomized phase I study conducted in 
Switzerland and involving cutaneous T-cell lymphoma (CTCL) 
patients with accessible lesions allowing intratumoral measles 
virus application has already yielded promising results as regards 
both the safety and efficacy of this OV treatment (87). One should 
note, however, that OV trials currently recruiting hematological 
cancer patients are restricted to refractory MM and that they 
are strikingly fewer than, for instance, melanoma or glioma OV 
trials. Given the promising preclinical data that demonstrate 
the potential of several other OVs to induce oncolytic effects in 
myeloid, B- and T-cell lymphoma/leukemia models, further clini-
cal development of this anticancer approach is to be expected, and 
also hoped for, in the case of hematological malignancies. A recent 
study by Kishore and Kishor, comparing mortality rates between 
parvovirus-B19-infected and uninfected pediatric ALL patients 
has raised the intriguing hypothesis that natural B19 infection may 
exert unexplored oncolytic effects (88).

ONcOLYtic H-1Pv As A cANDiDAte  
FOr FUrtHer DeveLOPMeNt iN 
ONcOHeMAtOLOGY

After the first demonstration that H-1PV could induce efficient 
BL cell killing in vitro (77, 78) and BL regression in animal models 
(79), the question arose: might H-1PV be used against other types 
of hematological cancers? This question is of general interest, since 
BL is mostly seen in Uganda and Nigeria and is a rare condition 
outside Africa (89). It prompted us to conduct further studies to 
assess the capacity of this virus to target cells derived from other 
hematological malignancies. A panel of commercially available 
ATCC cell lines derived from aggressive or indolent lymphomas/
leukemias of B- or T-cell origin was tested in vitro (A. Angelova, Z.  
Raykov, J. Rommelaere, unpublished data). First, encouraging 
results were obtained as shown in Table 2. Only one mixed type 
B-cell lymphoma and one Sézary syndrome CTCL were resistant 
to H-1PV-induced cell death. This resistance was associated with 
either the absence (Hut78 cells) or a low level (Farage cells) of 
progeny virion production and was not due to blockage of virus 
entry. In contrast, large B-cell-lymphoma-derived cells supported 
high levels of H-1PV progeny virion production and were almost 
totally eradicated by very low virus doses. Notably, DLBCL cell 
lines (e.g., Pfeiffer) with upregulated expression of aldehyde dehy-
drogenase 1A1 conferring CHOP resistance (90) were among the 
most sensitive H-1PV targets. These results suggest a potential 
use of H-1PV in chemoresistant DLBCL cases. Furthermore, 
H-1PV was able to replicate in T-ALL and some CTCL cells, with 
striking cytopathic effects. Although CTCL is a relatively rare 
condition, its incidence has increased about threefold over the 
last 2–3 decades in the United States (91) and in other regions of 
the world (92). Advanced disease stages with blood involvement 
require systemic therapies and, in general, the quality of life of 
CTCL patients is greatly affected. We are, therefore, now expand-
ing the panel of in vitro models to test the antineoplastic potential 
of H-1PV in several, mostly T-cell-derived, types of hemato-
logical cancers, including CTCL. The failure of CHOP-based 
chemotherapies in CTCL patients has led to the development 
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tABLe 2 | responsiveness of lymphoma- and leukemia-derived cell lines to oncolytic H-1Pv infection.

cell line Disease H-1Pv-induced killing/sensitivitya H-1Pv progeny virion productionb

B-cell malignancies

Farage ATCC® CRL-2630™ B-lymphoblast NHL (mixed type) Resistant +
Toledo ATCC® CRL-2631™ DLBCL ++ ++
Pfeiffer ATCC® CRL-2632™ DLBCL +++ ++
DB ATCC® CRL-2289™ B-lymphoblast large cell lymphoma +++ +++
RL ATCC® CRL-2261™ B-lymphoblast NHL + ++

t-cell malignancies

CCRF-CEM ATCC® CCL-119™ T-ALL ++ ++
Loucy ATCC® CRL-2629™ T-ALL + +
SUP-T1 ATCC® CRL-1942™ T-lymphoblast NHL + ++
Hut78 ATCC® TIB-161™ CTCL (Sézary syndrome) Resistant No
HH ATCC® CRL2105™ CTCL +++ ++

Myeloid malignancies

HL-60 ATCC® CCL240™ Acute promyelocytic leukemia ++ +

Malignancies of undetermined cellular origin

SR ATCC® CRL-2262™ Large cell immunoblastic lymphoma +++ n.a.

aSensitivity to H-1PV-induced killing is scored as +++, ++, and + when the virus dose required to cause death of 50% of the cells was <5, 5–10, or 10–50 plaque-forming units 
(pfu)/cell, respectively. Cells were considered “conditionally resistant” when the virus dose required to achieve 50% cell death exceeded 50 pfu/cell.
bThe capacity for H-1PV progeny virion production was scored as +++, ++, or +, when the ratio of the virus titer 72 h postinfection to the titer 12 h postinfection was >100, 
10–100, or <10, respectively.
NHL, non-Hodgkin lymphoma; DLBCL, diffuse large B-cell lymphoma; T-ALL, T-cell acute lymphoblastic leukemia; CTCL, cutaneous T-cell lymphoma; n.a., not analyzed.
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B-cell lymphomas and T-cell leukemia/lymphoma, which currently 
pose a major therapeutic challenge. These first results strongly 
encourage further preclinical studies aimed at substantiating the 
oncolytic and adjuvant potential of H-1PV against hematological 
cancers, both as single agent and as a component of combination 
treatments. These studies should pave the way toward innovative 
improvements of current standard therapies, for the benefit of 
chemotherapy-resistant and relapsing patients.
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and subsequent FDA approval of two histone deacetylase inhibi-
tors (HDACis), vorinostat and romidepsin (93–95). As patients 
often fail to reach or sustain a 50% partial response to these 
drugs, other agents have to be added in a combinatorial manner, 
in order to overcome resistance to HDACi (94). OVs, notably 
H-1PV, appear as potential candidates, as it was recently shown 
by Li et al. that another HDACi, valproic acid, when combined 
with oncolytic H-1PV, increases parvovirus-mediated cytotoxic-
ity toward cervical and pancreatic cancer cells, thus resulting  
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