
Targeted Perturb-seq enables genome-scale genetic screens in 
single cells

Daniel Schraivogel#1, Andreas R. Gschwind#2, Jennifer H. Milbank1, Daniel R. Leonce1, 
Petra Jakob1, Lukas Mathur1, Jan O. Korbel1, Christoph Merten1, Lars Velten1,4,*, Lars M. 
Steinmetz1,2,3,*

1European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, 
Germany

2Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, 
USA

3Stanford Genome Technology Center, Palo Alto, California 94304, USA

# These authors contributed equally to this work.

Abstract

The transcriptome contains rich information on molecular, cellular, and organismal phenotypes. 

However, experimental and statistical limitations constrain sensitivity and throughput of genetic 

screening with single-cell transcriptomics readout. To overcome these limitations, we introduce 

targeted Perturb-seq (TAP-seq), a sensitive, inexpensive, and platform-independent method 

focusing single-cell RNA-seq coverage on genes of interest, thereby increasing the sensitivity and 

scale of genetic screens by orders of magnitude. TAP-seq permits routine analysis of 1,000s of 

CRISPR-mediated perturbations within a single experiment, detects weak effects and lowly 

expressed genes, and decreases sequencing requirements up to 50-fold. We apply TAP-seq to 

generate perturbation-based enhancer-target gene maps for 1,778 enhancers within 2.5% of the 

human genome. Thereby, we show that enhancer-target association is jointly determined by 3D 

contact frequency and epigenetic states, allowing accurate prediction of enhancer targets 

throughout the genome. In addition, we demonstrate that TAP-seq can identify cell subtypes with 

only 100 sequencing reads per cell.
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Introduction

Genetic perturbation studies have been instrumental for delineating causal relationships 

between genes and phenotypes1,2. Compared with unimodal readouts, such as growth or 

reporter gene expression, single-cell transcriptomics provides a greater wealth of data on 

molecular and cellular phenotypes. Thus, pooled CRISPR screens that couple genetic 

perturbations with single-cell transcriptomics (‘Perturb-seq’, also referred to as ‘CROP-seq’, 

etc.) have emerged as powerful tools to characterize the consequences of genetic 

perturbations3–9. In these experiments, each cell stochastically receives one guide RNA out 

of a guide RNA library, enabling high numbers of perturbations to be assayed in a single 

experiment. Single-cell RNA-seq is then used to retrieve the identity of the gRNA in each 

cell along with its effect on the transcriptome, including changes in the expression of single 

genes4,7–9, as well as large transcriptomic rearrangements3–6,8. Diverse applications have 

been pursued, including the characterization of genetic regulators of signaling pathway 

activity6,8 and cellular differentiation5, or the mapping of gene regulatory networks7,9. 

Moreover, measuring gene expression in single cells obviates the need for cellular assays, 

and can be applied to any cell type, including rare populations5 and primary cells which 

cannot be cultivated extensively3.

However, three major factors currently limit a widespread use of Perturb-seq type of 

experiments. First, costs are prohibitive even for non-genome scale screens4. Second, lowly 

expressed genes and small effects are not measured efficiently4,7–9. Third, data analysis 

suffers from a potentially insurmountable multiple testing problem. For example in a 

hypothetical genome-wide Perturb-seq screen, 20,000 hypotheses on gene expression 

changes need to be tested for each of 20,000 knockouts (i.e. 400 million total tests). To deal 

with this problem, previous studies focused on hypothesis-driven analyses of just parts of the 

data generated in whole-transcriptome screens. For example, differential gene expression 

testing was restricted to pre-defined candidate genes7,9,10 or genes were grouped into gene 

signatures3,4,6,8. Alternatively cells were mapped to known reference cell (sub)types or 

states4,5,11,12, making effective use only of cell-state or cell-type specific marker genes. 

Measuring the entire transcriptome provides no clear benefit if a hypothesis on perturbation 

effects exists; in turn, a targeted readout of only relevant genes could overcome limitations, 

enable genome-scale screens, and open novel applications, such as combinatorial screens, 

screens in diverse genetic backgrounds, or diverse cell types.

Here, we demonstrate that targeted Perturb-seq (TAP-seq) turns the necessity of restricting 

the hypothesis space into a virtue for overcoming the hitherto prohibitive sequencing 

requirements and lack of sensitivity. By amplifying genes-of-interest, rather than the whole 

transcriptome from single cells, TAP-seq enables single-cell genetic and functional genomic 

screens at 50-fold higher scale and lower cost. TAP-seq identifies gene expression changes 

more sensitively, compared to Perturb-seq, and robustly distinguishes cell (sub-)types and 

differentiation stages. We demonstrate the use of TAP-seq by perturbing all putatively active 

enhancers in two large genomic regions and querying the effects on expressed genes in the 

same regions. This allowed us to sensitively identify enhancer target genes based on 

functional evidence, rather than predictions from indirect measures such as interactions in 
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3D space13,14. We thereby provide the first high-resolution function-based enhancer-target 

gene map for a sizeable fraction of the human genome.

Results

We have established targeted Perturb-seq (TAP-seq) (Figure 1a), that is designed to be 

compatible with various 3’ single-cell library preparation methods, and is implemented here 

for 10X Genomics15 and Drop-seq16. In these protocols, cellular and molecular barcodes as 

well as a universal PCR handle are introduced during reverse transcription. Following cDNA 

retrieval, TAP-seq uses the universal PCR handle and gene-specific primers to amplify 

transcripts-of-interest in two semi-nested multiplex PCRs, and a third PCR to add Illumina 

sequencing adapters (Figure 1a, Extended Data Figure 1). The gRNA-encoding CROP-seq6 

vector is also targeted during that process. A primer design pipeline that positions primers in 

a specified distance from the polyadenylation site while avoiding off-targets and primer 

dimers (Figure 1b) is provided as an R package on GitHub (https://github.com/argschwind/

TAPseq).

To evaluate TAP-seq, we first designed three primer panels, targeting 74 to 198 genes of 

widely varying expression levels, corresponding to between 3 and 43% of the transcriptome 

of K562 cells (panel 1, 2), two different mouse cell lines (panel 3), or two mouse primary 

cell types (panel 3) (Extended Data Figure 2a, Table S1, see Methods section for target gene 

selection, and Extended Data Figure 2b,c for a comparison of 10X Genomics15 and Drop-

Seq16). Across all panels and cell types, between 87 and 96 % of sequencing reads mapped 

to the selected target sequences (Figure 1c). When using a substantially larger panel of 1,000 

genes (Extended Data Figure 3), the mapping rate decreased to 81%. Thus, byproducts and 

off-target amplicons were rare, and the protocol amplified target genes irrespective of cell 

type and in primary cells.

To quantify TAP-seq’s molecular sensitivity, library complexity and enrichment 

performance, we sequenced TAP-seq and whole transcriptome libraries close to saturation. 

The number of molecules observed was generally higher than expected from the whole 

transcriptome analysis (Figure 1d), and the same on-panel capture efficiency was achieved 

by TAP-seq at a 10- to 100-fold lower sequencing depth (Figure 1e, Extended Data Figure 

4a,b). Detection efficiency of lowly expressed genes was increased (Figure 1f, Extended 

Data Figure 4). Together, these analyses show that the targeted PCR efficiently captures 

target genes without leading to a decrease in library complexity.

The reproducibility of TAP-seq between different replicate experiments with the same panel 

remains high (Pearson R = 0.98, Extended Data Figure 5a). Pearson correlations of absolute 

gene quantification between TAP-seq and whole transcriptome sequencing were between 

0.56 and 0.86, as expected from highly multiplexed PCR (Extended Data Figure 5b). For 

comparison, bulk RNA-seq and whole transcriptome 10X Genomics data displayed a 

Pearson correlation between 0.60 and 0.63 on the respective genes (Extended Data Figure 

5c). As shown below (Figure 2), TAP-seq allows highly sensitive detection of relative gene 

expression changes, and such measures do not depend on absolute expression level 

detection-accuracy. Using primer redesign and replacement experiments, we found that, 
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given accurate annotations of polyadenylation sites, no manual optimization of primers is 

necessary and TAP-seq is robust with regard to variations of primer sequence (see Note S1).

TAP-seq sensitively detects gene expression changes

To establish TAP-seq as readout for functional genomics screens, we generated a test dataset 

with a known ground truth. We infected dCas9-KRAB-expressing K562 cells with a pool of 

lentiviruses carrying 56 gRNA sequences17–19 targeting one of 10 promoters or 4 well-

described enhancers, as well as 30 control gRNAs (Figure 2a, Table S2 sheet ‘Chr. 8 control 

library’). These perturbations were designed to specifically down-regulate their known target 

genes in cis and exerted widely varying effect sizes (Extended Data Figure 6a,b), allowing a 

quantitative benchmarking of differential expression tests. For TAP-seq, we used a primer 

panel including the known promoter/enhancer target genes, 60 presumably unrelated genes 

of similar expression level (‘panel 2’), and the gRNA sequence from the CROP-seq6 vector.

In the resulting dataset, each gRNA was covered by a median of 268.5 cells and 0.8 million 

reads (Figure 2b). From the same pool of cells, we generated whole transcriptome Perturb-

seq data, covering each gRNA with a median of 415.5 cells and 8 million reads (Figure 2b). 

TAP-seq captured gRNA identity with an efficiency of 95%, as compared to 39% in the 

Perturb-seq setting or 89% in Perturb-seq with additional targeted gRNA amplification20 

(Figure 2c, Extended Data Figure 6c,d). Therefore, TAP-seq increased the fraction of 

informative cells available for differential gene expression testing over a classical Perturb-

seq design.

Despite lower cell numbers and 10-fold lower total sequencing depth, TAP-seq 

outperformed Perturb-seq in differential expression testing: 48 out of 56 (86%) perturbations 

(i.e. gRNAs leading to an expression change of a promoter or enhancer target) were 

identified from TAP-seq data, whereas only 41 perturbations (73%) could be identified with 

Perturb-seq (Figure 2d,e; see Extended Data Figure 7 and Note S2 for the choice of 

statistical test). Notably, Perturb-seq missed many enhancer perturbations which elicited 

weak effects (Figure 2d, Extended Data Figure 6b). For two genes (CCNE2 and PHF20L1), 

statistical power in TAP-seq was lower than in Perturb-Seq; these genes had 

disproportionally little coverage in TAP-seq, indicative of a lower amplification efficiency 

(Extended Data Figure 6e, Note S1).

To quantitatively compare the power of TAP-seq and Perturb-seq for differential expression 

testing, we downsampled to specific numbers of reads per cell, and numbers of cells per 

gRNA. We then computed the recall (or sensitivity) of the assay as the fraction of true 

gRNA-target gene pairs identified at a given read and cell coverage, as well as its precision, 

i.e. the fraction of positives that are true positives. Of note, precision is underestimated in 

these analyses, since true off-target effects are classified as false positives. We then derived 

precision-recall curves (Figure 2f, Extended Data Figure 8a,b) and computed the area under 

the curve (AUPRC) as a performance measure (Figure 2g). These analyses demonstrated 

that the same performance in differential gene expression testing is achieved in TAP-seq at a 

19- to 49-fold lower read depth, compared to Perturb-seq (Figure 2g). Importantly, for the 

analysis of the Perturb-seq experiment, only genes that were part of the 74 genes from the 

target panel were tested for differential expression. When the analysis was performed across 
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all detected genes, precision dropped drastically due to an excessive number of false positive 

hits (Figure 2f,g). These results emphasize the need for hypothesis-driven analysis in 

Perturb-seq and related experimental designs.

We quantified the absolute expression change required for an effect to be detected to be 

approximately 0.03 UMI/cell, corresponding to approximately one molecule per cell 

(Extended Data Figure 8c-f, Note S2). Further analyses of the ground truth dataset allowed 

us to derive recommendations for the experimental design of TAP-seq screens, provided in 

Note S2. These findings suggest that hypothesis-free analyses of single-cell genetic screens 

are strongly dominated by false positives and fail to robustly identify weak hits.

Function-based enhancer-target gene maps for 2.5% of the human genome

To demonstrate the performance of TAP-seq at scale, we set out to generate function-based 

enhancer-target gene maps in K562 cells, covering 2.5% of the human genome. Since 

enhancers predominantly affect genes in their proximity, assigning enhancer-target gene 

pairs (ETPs) is a well-suited task for TAP-seq. To comprehensively test all possible 

interactions within genomic regions, we perturbed all 1,778 putatively active enhancers 

predicted21 based on ENCODE data in two regions on chromosome 8 and 11, and identified 

effects on expressed protein-coding genes within the same regions (Figure 3a,b). Thus, in 

each cell, 68 (chr. 8) or 79 (chr. 11) target genes, plus control enhancers, were measured.

Four gRNAs were designed per target enhancer and introduced into K562 cells at a low 

multiplicity of infection, followed by selection for stable expression (Extended Data Figure 

9a,b, Table S2). An average of 37 cells per gRNA or 143 cells per enhancer were profiled, 

for a total of 7,055 gRNA perturbations in 231,667 cells (Figure 3c). For each enhancer and 

gRNA, we identified differentially expressed genes using the statistical test established in 

the preceding section. We observed a total of 81 significant cis-acting ETPs, involving 

24-32% of the genes profiled within the respective genomic region, and 4.4% of the tested 

enhancers (Figure 3d, Table S3). A previous study using Perturb-seq identified enhancers for 

only ~3.5-6% of expressed genes9, underscoring the higher sensitivity of TAP-seq. For the 

analyses below, we further classified our hits into 36 ‘strong’ ETPs supported by at least 

50% of the gRNAs targeting the enhancer, and 45 ‘weak’ ETPs (Extended Data Figure 9c).

To gauge the ability of TAP-seq to identify bona fide enhancers, we compared our results to 

published enhancer-target gene associations (Figure 3b, Extended Data Figure 9d). For 

example, we validated 4 out of 5 enhancers identified in a CRISPRi screen for HBE1 
enhancers using a fluorescent reporter22 (Figure 3b).

In an analysis of the whole dataset, we observed several trends. First, most enhancers, and 

virtually all enhancers from strong ETPs, are located close (10-50kb) to their respective 

target gene’s transcriptional start site (TSS, Figure 3e, Extended Data Figure 9e). However, 

in 48% of cases (33% of strong ETPs), at least one other gene was located between the 

enhancer and target TSS (Extended Data Figure 9f); these genes were on average expressed 

1,000-fold lower compared to the true enhancer target (Extended Data Figure 9g). Second, 

interaction frequencies from Hi-C were significantly elevated in strong and weak ETPs 

(Figure 3f) and contained more information on the potential to form functional interactions 
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than linear distance (see Figure 3h below). Third, enhancers of strong ETPs were enriched 

for active chromatin marks H3K27ac, H3K4me1/3 and RNA Polymerase II compared to 

non-significant ETPs with a similar distance to TSS distribution (Figure 3g, Table S4).

We next integrated these results into machine-learning models to predict ETPs. In a 

quantitative analysis across all genes with at least one associated enhancer, a joint model (of 

linear distance, interaction frequency, and epigenome features) identified 75% of all 61 

ETPs from 3,781 potential ETPs with an enhancer-TSS distance of below 300kb at a 

precision of 50% (Figure 3h, see Extended Data Figure 9h for an analysis of 34,493 

potential ETPs across the entire data set). A model trained on data from chromosome 11 

efficiently predicted ETPs on chromosome 8, and vice versa (Figure 3i). When trained on all 

data from this study, our model predicted ETPs identified in a Perturb-seq study9 (75% 

recall at a precision of 40%); the converse did not work effectively (Figure 3i, Extended 

Data Figure 9i). Together, these analyses demonstrate that a model based on enhancer 

activity and contact frequency can predict ETPs genome-wide. Furthermore, a model trained 

on TAP-seq data allows more accurate genome-wide predictions compared to a model 

trained on Perturb-seq data.

TAP-seq identifies cell-types and differentiation states with shallow sequencing

Single cell perturbation screens are also used to define changes in cell type abundance and 

cell state3,5,6. Typically, this is performed with whole transcriptome readouts, but potentially 

could be done with much fewer reads. Here, we applied TAP-seq to murine bone marrow 

(BM) to evaluate its ability to distinguish cell types, including similar progenitor cell states 

from immature, c-Kit+ BM23,24. Using a whole transcriptome reference dataset of total and 

immature BM cells25, we identified 184 genes which optimally distinguished 18 different 

cell types (Figure 4a, see Online Methods for gene selection using a whole transcriptome 

reference). TAP-seq libraries were then generated from the same BM fractions included in 

the reference dataset. Cell types were identified by unsupervised clustering and marker gene 

expression, and confirmed via label transfer26 from the whole transcriptome reference 

(Extended Data Figure 10a-b).

To compare the ability of TAP-seq and whole transcriptome readout to distinguish between 

cell states at lower sequencing depths, gene expression data were downsampled to defined 

average read depths. Unsupervised clustering was then applied and compared to ground truth 

labels obtained from our deeply sequenced reference. The results show that only 100 

average reads per cell reliably distinguish cell types and differentiation stages in TAP-seq 

(Figure 4b). A quantitatively similar performance is therefore achieved at a 7- to 12-fold 

lower sequencing depth (Figure 4c, d). Similar decreases in sequencing requirements were 

obtained when using supervised methods for cell type identification (i.e. label transfer from 

a reference data set)26 (Extended Data Figure 10d-f). In summary, TAP-seq outperforms 

non-targeted approaches in cell type mapping, and reliably identifies cell types and 

differentiation states at an extremely low sequencing depth.
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Discussion

In conclusion, targeted Perturb-seq (TAP-seq) enables genome-scale CRISPR screens that 

use transcriptomics as a readout. By focusing sequencing coverage on genes of interest, 

TAP-seq lowers sequencing requirements up to 50-fold, and solves the multiple hypothesis 

testing problem typically encountered in whole transcriptome screens. It increases the 

sensitivity towards small expression changes and lowly expressed genes, and retrieves the 

gRNA identity efficiently. Unlike previous high-throughput27–29 and low-throughput30 

targeted single-cell RNA-seq methods, its modular design ensures platform-independent, 

robust genetic screens.

TAP-seq is applicable to a broad range of functional genomics applications, including 

studies of gene regulatory networks7,19,31, signaling pathways6,32, and combinatorial 

regulatory logic7,32,33, where phenotypes of interest are represented by expression changes 

in small sets of genes. When applied to more complex transcriptomic signatures, e.g. of 

cellular differentiation/state, or immune cell activation, informative sets of genes can be 

defined a priori using a whole transcriptome reference. Alternatively, gene panels such as the 

L1000 panel34 could be used (Extended Data Figure 3), which has been shown to capture 

the majority of information contained in the full transcriptome across a wide range of 

perturbations34. We make L1000 primers for TAP-seq available upon request.

We applied TAP-seq to generate dense enhancer-promoter interaction maps within 2.5% of 

the human genome, screening over 7,000 distinct CRISPRi perturbations. Previous 

applications of Perturb-seq for enhancer targets7,9 had remained limited to large effect sizes 

and identified enhancers only for a small fraction of candidate genes (3.5-6% in ref. 9 

compared to 24-32% reported here). We identified ~80 novel enhancer-target gene pairs and 

found that physical proximity in 3D, and to a smaller extent chromatin activity, determine 

the regulatory potential of an enhancer. This allowed us to derive quantitative rules of 

enhancer-target gene interactions.

A potential caveat of these analyses is that dCas9-KRAB does not specifically inactivate 

enhancers, but rather inhibits transcriptional activity both at promoters and enhancers35. 

Since targeting dCas9-KRAB to gene-proximal sites with lower levels of H3K27 acetylation 

did not induce a measurable effect on the gene, the CRISPRi effect does not simply spread 

to the promoter along linear DNA; also, enhancers within 1kb of the target TSS were 

excluded. In future studies, results from CRISPRi-screens using dCas9-KRAB could be 

compared to dCas9-LSD35, or expanded by potentially stronger dual-activator and -inhibitor 

constructs36.

TAP-seq scales single-cell genetic screens to 1,000s of gRNA mediated perturbations. Based 

on the analysis of the comprehensive test dataset with known ground truth, we derive 

recommendations on experimental design and required sequencing depth (Note S2). In the 

future, a further increase in throughput can be achieved by combining TAP-seq with ongoing 

developments of ultra-high throughput single-cell capture strategies37,38. Taken together, 

targeted Perturb-Seq enables genetic screens at unprecedented resolution and throughput.
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Online methods

Vectors and cloning strategies

Lentiviral packaging vectors pMD2.G and psPAX2 were a gift from Didier Trono (Addgene 

plasmids #12259 and #12260). CROPseq-Puro was a gift from Christoph Bock (Addgene 

plasmid #86708). UCOE-SFFV-dCas9-BFP-KRAB was a gift from Jonathan Weissman 

(Addgene plasmids #60955 and #85969).

CROPseq-Puro-F+E was cloned by replacing the original tracrRNA with the optimized F+E 

tracrRNA sequence41 using site-directed mutagenesis and Gibson assembly. One whole 

CROPseq-Puro spanning PCR was done with overlapping mutagenesis primers fwd 5’-TGT 

TTA AGA GCT ATG CTG GAA ACA GCA TAG CAA GTT TAA ATA AGG CTA GTC 

CGT TAT CAA CTT GAA AAA G and rev 5’-TAT TTA AAC TTG CTA TGC TGT TTC 

CAG CAT AGC TCT TAA ACA GAG ACG TAC AAA AAA GAG CAA GAA G using 

LongAmp DNA polymerase (NEB). The PCR product was DpnI digested to deplete residual 

unamplified circular CROPseq-Puro template. The digested and gel-purified PCR product 

was then circularized with Gibson assembly Mastermix (NEB) to generate CROPseq-Puro-F

+E.

Cloning of individual sgRNAs

sgRNA sequences targeting MYC, GATA1, ZFPM2 and HS2 enhancers were described 

previously18,19 and sgRNAs targeting ZFPM2 enhancer42 were designed in Benchling. All 

protospacer sequences are shown in Table S2. sgRNAs were cloned into CROP-seq vectors 

using Gibson assembly or restriction ligation.

CROPseq-Puro or CROPseq-Puro-F+E was digested with BsmBI (NEB) and the backbone 

fragment (8.3 kb) was gel extracted. sgRNAs were ordered as ssDNA fwd and rev oligo 

pairs with 35 nt 5’ homology (5’-GGC TTT ATA TAT CTT GTG GAA AGG ACG AAA 

CAC CG, with the last G corresponding to the sgRNA transcriptional start G), 19 nt sgRNA 

sequence and 3’ homology to CROPseq-Puro (5’-GTT TTA GAG CTA GAA ATA GCA 

AGT TAA AAT AAG GC) or CROPseq-Puro-F+E (5’-GTT TAA GAG CTA TGC TGG 

AAA CAG CAT AGC AAG TT). Oligos were mixed at equimolar ratio and annealed by 

heating to 95 °C for 5 min and ramping to 4 °C over 5 min. Annealed oligos were cloned 

into CROPseq-Puro or CROPseq-Puro-F+E using Gibson Assembly Master Mix (NEB) or 

NEBuilder HiFi DNA Assembly Master Mix (NEB) at a backbone:insert ratio of 1:20. 

Reactions were transformed into NEB Stable chemically competent E. coli and were grown 

out at 30 or 32 °C to reduce the rate of plasmid recombination.

For sgRNA cloning using restriction-ligation, oligos were ordered with sticky-end overhangs 

matching the BsmBI digested CROPseq-Puro and CROPseq-Puro-F+E backbone, fwd and 

rev oligos were annealed and phosphorylated using T4 PNK and cloned into digested and 

dephosphorylated backbones using T4 DNA Ligase (NEB). Transformation was done as 

described above.
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Enhancer targeting sgRNA design

For the enhancer screen in Figure 3, candidate enhancers were defined as DNase 

hypersensitive sites with a histone modification pattern indicative of active enhancers. For 

each candidate enhancer, we included 4 gRNAs in the screen (Table S2). In detail, K562 

DNase hypersensitive (HS) hotspots were obtained from the ENCODE reference 

epigenome40 (experiment ENCSR921NMD) and chromatin annotations were obtained by 

GenoSTAN21, a chromatin state HMM model. DNase HS hotspots that overlapped with 

GenoSTAN active enhancer annotations (Enh.15, EnhWF.2, EnhF.10) by at least 50 bases 

were included as candidate enhancers. For each enhancer, candidate gRNAs were identified 

based on the presence of a PAM and ranked by putative on-target activity, as determined 

using the activity model from ref. 17. Candidate gRNAs were then aligned to the genome to 

determine off-target effects: Guides with alignment near a transcriptional start site (TSS) 

were always excluded. Guides with alignment to other genomic positions were excluded, if a 

sufficient number of guides with positive activity scores exist. After these filtering steps, the 

four gRNAs with the highest activity scores were selected.

Cloning of sgRNA libraries

Enhancer targeting libraries used in Figure 3 were ordered as 89 nt ssDNA SureGuide high-

fidelity libraries from Agilent, including 35 nt 5’ and 3’ homologies matching CROPseq-

Puro-F+E. All protospacer sequences are shown in Table S2. Libraries were amplified using 

5’-GTA TTT CGA TTT CTT GGC TTT ATA TAT CTT GTG G and 5’-GAC TAG CCT 

TAT TTA AAC TTG CTA TGC TGT TTC extending the homologies to 50 bp. 

Amplification was done with Q5 Hot Start HiFi 2x Master Mix (NEB), 0.5 μM fwd primer, 

0.5 μM rev primer and 2 nM sgRNA library using cycling conditions 95 °C 3 min – 14 x [98 

°C 10 sec, 51 °C 15 sec, 72 °C 10 sec] - 72 °C 1 min. Optimal cycle number was determined 

as highest cycle number before the appearance of concatemeric PCR products on a High 

Sensitivity dsDNA Bioanalyzer. Amplified sgRNA libraries were cloned into CROPseq-

Puro-F+E using NEBuilder HiFi DNA Assembly Master Mix (NEB) at a backbone:insert 

ratio of 1:20. Assembled libraries were transformed into electrocompetent Lucigen Endura 

E. coli and grown out on plates for 16 h at 30 °C for ≥ 100x library coverage. Colonies were 

pooled and plasmid preparations were done using Zymopure II Plasmid Maxiprep kit (Zymo 

Research). In parallel, > 20 colonies were picked per library and Sanger validated.

Libraries targeting known enhancers and promoters (see Table S2) as used in Figure 2 and 3 

were generated from ssDNA oligos, which were annealed and amplified in separate 

reactions, followed by pooled Gibson cloning into CROPseq-Puro-F+E as described above. 

sgRNA sequences targeting promoters and non-targeting sgRNAs were taken from CRISPRi 

v2 libraries17, sgRNA sequences targeting MYC, GATA1, ZFPM2 and HS2 enhancers were 

described above.

Cell culture

HEK 293FT cells were maintained in DMEM (Thermo, 41965039) supplemented with 10 % 

fetal bovine serum (FBS), 2 mM L-Glutamine, 1 mM Na-pyruvate, 0.1 mM NEAA, 500 

μg/ml G418 and Penicillin/Streptomycin (P/S) (Sigma Aldrich and Thermo). K562 (from 

ATCC, CCL-243) and stable clones thereof were cultivated in RPMI-1640 (Thermo 
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21875034) supplemented with 10 % FBS and P/S. NIH 3T3 cells were cultivated in DMEM 

(Thermo, 41965039) supplemented with 10 % FBS and P/S. Mouse embryonic stem cells 

(mESC) were cultivated under FCS/LIF conditions as described43.

Lentivirus production

Lentivirus was produced in HEK 293FT cells. Cells were grown to 90 to 95 % confluency in 

medium without G418 in 6-well plates. Lentiviral packaging vectors pMD2.G and psPAX2 

and the transfer plasmid were mixed 1:1:1 and transfected using Lipofectamine 3000 

(Thermo). 6 hours post-transfection, cells were split into a 10 cm plate in medium without 

G418. 3 days post-transfection, cell culture supernatant was collected, cleared through a 

0.45 μm filter and lentivirus was 20 x concentrated with Lenti-X concentrator (Takara/

Clontech).

Lentiviral transduction and generation of stable cell lines

For stable selection of K562 and K562 dCas9-KRAB cell lines, exponentially growing cells 

were diluted to 0.5 x 10^6 cells/ml and polybrene was added to a final concentration of 10 

μg/ml. Concentrated virus was added to cells or cells were added to virus. 24 hours post 

infection, cells were collected and resuspended in K562 medium for antibiotic or 

fluorescence activated cell sorting (FACS) selection.

K562 CRISPRi polyclonal cell line expressing dCas9-KRAB was generated by transduction 

of K562 with UCOE-SFFV-dCas9-BFP-KRAB at high multiplicity of infection (MOI). 4 d 

and again 7 d after infection, cells were sorted for high BFP expression and polyclonal cell 

line was checked regularly for the percentage of BFP-positive cells.

Infection of K562 CRISPRi with CROP-seq vectors was done at low MOI to get mostly 

single infected cells. To set MOIs, the timepoint of highest cell death and the maximum 

percentage of dead cells during Puromycin selection was determined: Cell death of around 

90 % 4 d after infection showed a low number of multiply infected cells as determined from 

CROP-seq vector reads in TAP-seq and whole transcriptome Perturb-Seq data. 24 h after 

infection, cells were collected and diluted to 0.5 x 10^6 cells/ml with medium containing 

Puromycin (Thermo) at a final concentration of 2 ng/μl. Cell growth was monitored during 

selection by cell counting and viable cell staining using Trypan-blue.

qPCR based measurement of CRISPRi effects

The CRISPRi effect on known enhancer-target gene pairs (ETPs) MYC, GATA1, HS2 

enhancer and ZFPM2 was measured using qPCR. K562 dCas9-KRAB polyclonal cells 

infected with CROP-seq vectors were harvested 10 to 14 days after infection and Puromycin 

selection. Supernatant was removed and total RNA was prepared using NucleoSpin RNA 

Plus (Macherey Nagel). RT was performed using DNaseI-digested RNA and SuperScript II. 

qPCR was done with SYBR-Green PCR master mix (Thermo). Data were processed using 

ddCt method and standard deviations of the 2^ddCt values from biological replicates were 

calculated. qPCR primer sequences: GAPDH fwd 5’-TGG TAT CGT GGA AGG ACT CAT 

GAC, GAPDH rev 5’-ATG CCA GTG AGC TTC CCG TTC AGC. ZFPM2 primer 
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sequences were taken from ref. 42, MYC/GATA1/HDAC from ref. 19, hemoglobin gene 

primers from ref. 18.

Primary cell samples

For bone marrow samples and lung samples, C57BL/6 mice were bred and housed under 

pathogen-free conditions at the central animal facility of the German Cancer Research 

Center (DKFZ) or EMBL.

Bone marrow was extracted and cells were sorted as described previously25. In short, 

femurs, tibiae, hips and spines were dissected and cleaned from surrounding tissue. Bones 

were crushed in cell suspension medium and dissociated cells were filtered, red blood cell 

lysis was performed and cells were lineage-depleted using Dynabeads Untouched Mouse 

CD4 Cells Kit. Lineage-depleted bone and bone marrow cells obtained following crushing 

and digestion were stained with FACS c-Kit antibody, and sorted as described. For the 

isolation of neutrophils, single viable cells were isolated using forward/sideward scatter and 

DAPI dye exclusion, and CD11b+/Ly6G+ neutrophils were isolated.

Lung mesenchymal cells were provided by the group of C. Scholl, DKFZ. In short, lungs 

were perfused with cold PBS and instilled with collagenase I. Lungs were removed while 

trachea was clamped. The lungs were cleaned from non-respiratory tissue and minced. 

Following depletion of erythrocytes, mesenchymal cells were sorted as Dapi–/Epcam–/

CD45–/CD31–/Pdgfra+/Sca1–/Npnt+.

Preparation of cells for scRNA-seq

After Puromycin selection for 14 days, K562 dCas9-KRAB cells infected with CROP-seq 

vectors were collected and resuspended in PBS. FACS was carried out on a BD FACSAria 

Fusion flow cytometer (BD Biosciences) selecting single cells using forward and sideward 

scatter, viable cells using Draq7 dye exclusion and dCas9-BFP-KRAB intermediate to high 

expressing cells using BFP signal. Sorted cells were collected by centrifugation for 9 min at 

200 g (RT) and resuspended in PBS to 1 x 10^6 cells/ml as determined by cell counting. 

Cells were stored on ice for up to 1 h. Cell counts were double-checked directly before 

loading on the 10X Genomics Chromium controller.

For NIH 3T3, mESCs, mouse lung mesenchyme, and mouse neutrophils, defined numbers of 

viable cells, as measured using dye exclusion with DAPI or Draq7, were sorted and pooled 

for 10X Genomics.

scRNA-seq with whole transcriptome readout

Whole transcriptome single-cell 3’ RNA-seq libraries were generated using 10X Genomics 

Chromium 3’ reagent kit v2 according to the manufacturer’s guidelines. Cell input was set to 

a targeted cell recovery of 8,000 cells per lane. Sample indexing was done using i7 

Multiplex Kit (10X Genomics).
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TAP-seq target gene selection

For the target gene panels 1 and 2 (used in Figures 1-3), genes were selected based on 

chromosomal location, while excluding non-expressed genes. For the large-scale enhancer 

screen, the highly expressed genes HBG1/2 were omitted from the panels to achieve higher 

cost efficiency. The K562 add-on panel (Figure 1c and S2a) was designed to target 48 genes 

expressed in K562 which are downstream targets of Oct4, as part of an experiment not 

included into this manuscript. Target genes are listed in Table S1.

For the target gene panel 3 (used in Figure 1 and Extended Data Figures 2,3) 150 genes were 

selected for relatively uniform expression between NIH 3T3 cells, mESCs, lung 

mesenchyme, and neutrophils. Average expression of all genes was calculated for each cell 

type using available whole transcriptome single-cell RNA-seq data (refs. 25,44–46), and 

used to calculate mean values and coefficients of variation across the four cell types. Mean 

values were stratified into 30 bins, and for each bin, 5 genes from the lowest decile of CV 

were randomly selected. Additionally, 12 genes with highly specific expression to each cell 

type were added to the panel.

For the bone marrow experiment in Figure 4, target genes were identified using a machine 

learning based workflow. Whole transcriptome data from total bone marrow and c-Kit+ bone 

marrow from mouse was downloaded from NCBI GEO (GSE122465, ref. 25), and the 

original cell type annotation from ref. 25 was used. For each cell type, we then identified the 

20 differentially expressed (DE) genes with the highest log-fold change compared to all 

remaining cell types to create a list of 267 candidate genes. We then used a generalized 

linear model of the multinomial family with a LASSO penalty to select an optimal set of 

genes whose expression distinguished all populations. Four final gene panels were compared 

in their ability to distinguish cell types, using a cross validation scheme: a) 238 genes 

selected using an optimal lambda penalty parameter, as determined by 10-fold CV, b) 126 

genes selected using a more stringent parameter, c) a list of 92 genes provided by an expert 

hematologist (S. Haas, DKFZ Heidelberg) and d) the union of b and c (192 genes). While a, 

b and d provided a similar well type classification performance (Cohen’s Kappa 0.8-0.85 in 

10-fold CV), c performed worse (Cohen’s Kappa 0.65). Panel d was selected because it 

contained several genes considered informative for the annotation of cell types (Figure 4b). 

Primers were successfully designed for 184 of the 192 target genes. Target gene selection for 

cell types using a whole transcriptome references is implemented in the TAP-seq R-package 

for primer design.

All primer panels used in this study are available from the corresponding authors upon 

request.

TAP-seq primer panel design

A customized pipeline based on Primer347,48 was devised to design targeted PCR primers. 

Primers were designed based on protein-coding exon annotations for the target genes 

(Gencode GRCh38.89). Available Drop-seq or 10X Genomics scRNA-seq data were used to 

identify expressed isoforms and likely polyadenylation (polyA) sites for every target gene of 

interest. If multiple polyA sites were found, the most downstream site was chosen. The most 
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downstream annotated 3’ end was used if no polyA site could be identified. If several 

transcript isoforms overlapped with the inferred polyA sites or no polyA sites were found, 

their annotations were merged (union) to form a consensus annotation for primer design. 

Transcript sequences were extracted (hg38) for all target genes and nested forward primers 

were designed around the 3’ end: Outer forward primers were selected to result in 350-500 

bp long amplicons, which were then used to design inner forward primers that yield 150-300 

bp long amplicons. The Drop-seq reverse primer used for all PCR reactions was provided to 

optimize compatibility. Ten forward and reverse primers were designed per target gene and 

aligned against a human genome and transcriptome database using blast to identify potential 

off-target annealing. The inner and outer primers with the fewest exonic, intronic and 

intergenic off-target alignments (in that order) were selected for every gene, and all primers 

were assessed for multiplex suitability with Primer3’s check_primers functionality. Primers 

were synthesized as separate oligos and purified by desalting (Sigma Aldrich). All TAP-seq 

gene panel primer sequences used in this study are listed in Table S1.

TAP-seq library preparation using 10X Genomics Chromium

The protocol described here was optimized using 10X Genomics 3’ reagent kit v2, but can 

be used for v3 chemistry, since the oligo handle sequence (PartialRead1) is identical 

between v2 and v3. All oligonucleotide sequences described here are shown in Table S6. A 

step-by-step protocol for TAP-seq is provided as Supplementary Protocol, and was made 

available at Protocol Exchange49.

Cell barcoding and reverse transcription—10X Genomics Chromium run for TAP-

seq was done with cells sorted as described above and following 10X Genomics user 

guidelines for 3’ reagent kit v2 with the following modifications: For GEM generation and 

barcoding, no 10X RT primer (containing the template-switch oligo) was added to the single 

cell master mix (10X v2 Protocol Step 1.1). To correct for the missing volume, 3.8 μl H2O 

or low-TE was added. For large-scale experiments in Figure 3, the 10X Chromium run was 

performed with a modified chip loading protocol (adapted from ref. 50): 28 μl of beads were 

loaded per 10X lane and 10X RT Enzyme was replaced by 10 μl Superscript IV (Thermo, 

200 U/μl). We then continued with the 10X 3’ reagent kit v2 protocol until GEM-RT 

incubation (10X v2 Protocol Step 1.5). After GEM-RT incubation, cDNA was cleaned up 

according to the manufacturer’s protocol, eluted using 35 μl Elution Solution I and stored at 

4 °C as input for TAP-seq PCR1.

PCR1 and PCR2 with gene-specific outer and inner primers—Pooled gene-

specific nested primers were used as forward primers in PCR1 and PCR2. A primer 

PartialRead1 annealing to the PCR handle on 10X Genomics 3’ beads served as reverse 

primer for both PCRs. Forward outer and inner primer panels were generated by pooling all 

single oligos (100 μM in H2O) in equimolar ratio. CROP-seq vector derived Polymerase II 

transcripts were amplified with CROPouter and CROPinner primers, which were added in 

8x excess relative to each single primer in the outer and inner primer mix. CROPouter and 

CROPinner primers were not added in mouse bone marrow TAP-seq experiments.
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PCR1 was done with 35 μl purified cDNA from 10X GEM-RT, 2.5 μl 100 μM gene-specific 

outer primer mix, 2 μl 12 μM CROPouter, 4 μl 10 μM PartialRead1 and 50 μl KAPA HiFi 

Hotstart Readymix in 100 μl total volume. Per 10X Genomics lane, one 100 μl reaction was 

set up. Cycling conditions were 95 °C 3 min – 11x [98 °C 20 sec, 67 °C 60 sec, 72 °C 60 

sec] – 72 °C 5min – 4 °C. Cycle number was increased to 12 cycles for the large-scale 

enhancer screen in Figure 3. PCR product was purified using 1.5x AMPure XP (Beckman) 

with two 80 % EtOH washes, elution was done in 30 μl Elution Buffer (Qiagen). Typical 

yield from PCR1 was 50 to 250 ng per reaction.

PCR2 was done with 10 ng PCR1 product, 2.5 μl 100 μM gene-specific inner primer mix, 2 

μl 12 μM CROPinner primer and 4 μl 10 μM PartialRead1 in a 100 μl reaction using KAPA 

HiFi Hotstart Readymix. Cycling conditions were 95 °C 3 min – 8x [98 °C 20 sec, 67 °C 60 

sec, 72 °C 60 sec] – 72 °C 5min – 4 °C. Product was purified as above and eluted in 30 μl 

Elution Buffer. Typical yield from PCR2 was 50 to 100 ng per reaction.

PCR3 with Illumina primers—PCR3 adds Illumina adapters to generate a sequencing-

ready library. PCR3 was done using 10 ng PCR2 purified product, 4 μl 10 μM Targeted10X 
and 2.5 μl 10 μM Illumina reverse primer N7XX in a 100 μl Reaction with KAPA HiFi 

Hotstart Readymix. Cycling conditions were 95 °C 3 min – 8x [98 °C 20 sec, 60 °C 15 sec, 

72 °C 45 sec] – 72 °C 5min – 4 °C. Product was purified as above and eluted in 30 μl 

Elution Buffer. Typical yield from PCR3 was 300 to 600 ng per reaction. Product was 

checked on a High Sensitivity DNA Bioanalyzer (Agilent). Sample bioanalyzer traces are 

shown in Extended Data Figure 1.

Illumina sequencing—TAP-seq produces Illumina sequencing ready libraries identical to 

10X Genomics single-cell 3’ libraries using standard Illumina Read 1 and Read 2 primers. 

The cell barcode and UMI is encoded in Read 1 (26 cycles), Read 2 contains the cDNA 

fragment (~58 cycles). Sample index sequences are sequenced as i7 index read (8 cycles).

TAP-seq library preparation from Drop-seq

The first steps of the Drop-seq protocol until Exonuclease I treatment were implemented as 

described16. The Drop-seq template switch oligo (TSO) was left out to avoid full-length 

cDNA amplification in parallel to targeted amplification. Starting with 2,000 beads from 

Exonuclease I treatment, TAP-seq was performed as described above, with the following 

modification: As reverse primer for PCR1/2, an oligo ISPCR was added instead of 

PartialRead1. As reverse primer for PCR3, Targeted10X was replaced by New-P5 smart 
PCR hybrid oligo. All oligonucleotide sequences are described in Table S6.

Methods for computational data analysis

All computational analysis methods are available in Note S3.

Data visualization

All plots were generated using the ggplot2 (v. 3.1.0), gviz (1.24.0), and pheatmap (v. 1.0.10) 

packages in R 3.5.1. Boxplots are defined as follows: The middle line corresponds to the 

median; lower and upper hinges correspond to first and third quartiles. The upper whisker 
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extends from the hinge to the largest value no further than 1.5 * IQR from the hinge (where 

IQR is the inter-quartile range, or distance between the first and third quartiles). The lower 

whisker extends from the hinge to the smallest value at most 1.5 * IQR of the hinge. Data 

beyond the end of the whiskers are called “outlying” points and are plotted individually51.

Statistics and Reproducibility

Statistical analyses were performed using R and scripts available at https://github.com/

argschwind/TAPseq_manuscript. Statistical details for each experiment are also provided in 

the figure legends.
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Extended Data

Extended Data Fig. 1. Sample bioanalyzer traces for libraries from TAP-seq and 10X Genomics.
a. Standard 10X Genomics protocol. b. TAP-seq library using panel 1 and cDNA from 10X 

Genomics K562 cells as input material. Strong peaks in TAP-seq profile correspond to 

highly expressed genes in the primer panel (HBG1, HBG2, HBE1), as validated by sub-

cloning of bands and Sanger sequencing (not shown). c-f. Remaining target gene panels 

applied to different cell types and cell lines.
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Extended Data Fig. 2. Choice of target genes and single cell capture platform.
a. Left panel: Expression ranks of genes used for the three test panels. An x-axis value of 1 

refers to highest expression. See y-axis labels for number of target genes, and refer to 

Methods section on ‘data visualization’ for a description of violin plot elements. Right 

panel: Fraction of the transcriptome covered by these panels, computed from a whole 

transcriptome reference data set from the same cell type (y-axis labels). For panels 1+2, 

K562 cells were used, panel 3 was applied to mouse embryonic stem cells (ESCs), mouse 

3T3 cells, mouse neutrophils (Neutr.), and mouse lung mesenchymal cells (Lung). b. Mean 

gene expression levels for 10X Genomics and Drop-seq based TAP-seq. Panel 1 was used in 

both cases. n=84 genes are shown. c. Number of UMIs observed per cell for both TAP-seq 

and whole transcriptome readout (Whole Tx), using 10X Genomics or Drop-seq for RNA 
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capture and reverse transcription. Experiments were downsampled to an average of 1,000 

reads per cell.

Extended Data Fig. 3. Analysis of the L1000 panel.
a. Spearman correlation in mean gene expression levels between TAP-seq and whole 

transcriptome readout (Whole Tx) for a panel targeting the L1000 gene set34. n=963 genes 

were covered in TAP-seq and are included in the plot. b. Principal component analysis of the 

TAP-seq dataset and the whole transcriptome dataset. Principal component loadings of all 

genes annotated in cyclebase v352 are shown, with the peak-time of expression color-coded. 

In the whole transcriptome dataset, PC1-3 were not significantly associated with GO-terms 

(not shown). n=8734 cells (TAP-seq) and 8282 cells (Whole Tx).

Schraivogel et al. Page 18

Nat Methods. Author manuscript; available in PMC 2021 April 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data Fig. 4. Analysis of library complexity in TAP-seq and whole transcriptome 10x 
Genomics.
a. Deeply sequenced TAP-seq and whole transcriptome (Whole Tx) libraries were 

downsampled to a given average number of reads per cell (x-axis). The average number of 

UMIs observed on the target panel (solid lines, shown for both methods) or across the entire 

genome (dashed line, only shown for whole transcriptome readout) is shown. See also 

Figure 1e. b. Deeply sequenced TAP-seq and whole transcriptome libraries were down-

sampled to a given average number of reads per cell (x-axis). The ratio in UMIs observed on 

the target gene panel between TAP-seq and whole transcriptome sequencing is plotted as a 

measure of enrichment efficiency c. For K562 cells and panel 1, gene detection levels were 

compared between genes of different expression levels. See also Figure 1f. d. Number of 

molecules observed per cell in different cell types at 160,000 reads per cell. n=109 3T3 cells, 

160 ESCs, 130 Lung cells and 55 Neutrophils. See Methods section on ‘data visualization’ 

for a description of box plot elements.
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Extended Data Fig. 5. Analysis of reproducibility in TAP-seq and whole transcriptome 10X 
Genomics.
a. Pearson correlation in mean gene expression levels across all genes of panel 2 (n=74 

genes) between three biological replicates. b. Pearson correlation between whole 

transcriptome 10X Genomics and TAP-seq for various panels and cell lines/cell types (see 

Extended Data Figure 2a for number of genes per panel). c. Pearson correlation between 

whole transcriptome 10X Genomics and bulk RNA-seq (GEO: GSM2343836), across the 

n=84 genes of panel 1 and the n=74 genes of panel 2.

Extended Data Fig. 6. Technical properties of the ground truth perturbation experiment.

Schraivogel et al. Page 20

Nat Methods. Author manuscript; available in PMC 2021 April 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



a. Gene expression level in K562 cells of the various gRNA target genes used. b. Enhancer 

gRNAs were validated by pooled transduction of K562 dCas9-KRAB cells with all four 

enhancer-targeting guides, and the effect on target gene expression was quantified by qPCR. 

HBE1 was analyzed as target gene for the HS2 enhancer. n=3 replicates. c. Histogram of the 

number of gRNAs identified per cell in the TAP-seq experiment of Figure 2. d. The number 

of gRNAs observed per cell (see also in c) was fitted with a generative model of gRNA 

capture efficiency and multiplicity of infection4,20. Log-likelihood is plotted as a function of 

the parameters; the maximum likelihood estimate is marked by a cross. Data from n=21,977 

(TAP-seq), n=7,994 (Perturb-Seq) or n=37,971 cells (Perturb-seq + gRNA amp.) was used. 

e. Mean expression per gene for whole transcriptome 10X Genomics compared to TAP-seq, 

with perturbation target genes highlighted. n=74 genes from panel 2 are shown. Two genes 

for which perturbation effects were detected with a lower efficiency in TAP-seq are 

highlighted in red.
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Extended Data Fig. 7. Comparison of differential expression testing methods.
a. Comparison using Precision-Recall curves, as in Figure 2f. TAP-seq data were 

downsampled to 10, 25, 50 or 100 cells per gRNA. For each sampling run, differential 

expression testing was performed using a simple (two-sided) Wilcoxon test, MAST53, 

DEsingle54 and scDD55, as well as MAST with the number of genes observed as an 

additional covariate. Precision-Recall curves were computed assuming that the intended 

gRNA targets constitute the full set of true positives. Data were normalized across cells 

using the censored mean, i.e. division with the mean expression of all genes not part of the 
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highest decile. b. Performance comparison in terms of area under the Precision-Recall curve 

for different data normalization strategies and tests. c. Performance comparison in terms of 

area under the ROC curve.

Extended Data Fig. 8. Additional analyses of the ground truth perturbation dataset.
a. Precision-Recall curves, as in Figure 2f. Potentially true gRNA off-target or downstream 

effects were identified by differential expression testing across all cells, and then excluded 

from the analysis. Points indicate performance at a nominal FDR of 0.05. See Note S3 
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section ‘Sensitivity analysis (differential expression)’ for detail on the statistical test used. b. 
Comparison of Area under the precision-recall curves (AUPRC) for n=100 cells per 

perturbation, sampled to various read depths. Potential gRNA off-target and downstream 

effects were treated as false positives (solid lines, same as in Figure 2g) or excluded (dashed 

lines). c. The absolute effect of a gRNA-mediated perturbation in UMIs/cell was quantified 

from non-downsampled whole transcriptome data (x-Axis). The probability of observing 

these effects as significant was the quantified by drawing 100 samples using 150 cells per 

sample and 1,000 average reads per cell (y-Axis). Lines derive from a logistic regression. 

The UMI difference required for achieving a 50% detection probability was used as a 

measure of molecular sensitivity (dotted line). Data from n=60,106 cells and 9,750 sampling 

runs. d. Like Figure 2g, but using molecular sensitivity as defined in panel c as the measure 

of sensitivity. Down-sampling was restricted to 50-150 cells per perturbation, since estimates 

of molecular sensitivity were otherwise driven by excessive sampling noise. Data from 

n=60,106 cells and 7,150 sampling runs. e. AUPRC plotted in relationship to number of 

cells per perturbation and total number of reads (data from Figure 2g). f. For of n=56 each 

gRNA targets, the absolute and relative expression change elicited by the perturbation, as 

well as the expression baseline, were computed from whole transcriptome data without 

subsampling (x-axis). Data from both methods were then downsampled repeatedly to 150 

cells per perturbation and 10,000 (Perturb-seq) or 1,000 (TAP-seq) reads per cell to 

determine the probability of detecting a change (y-axis). Refer to methods section on ‘data 

visualization’ for a definition of box plot elements.
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Extended Data Fig. 9. Additional analyses of the enhancer screen.
a. Number of detected gRNAs/perturbations per cell were plotted. b. Levenshtein edit 

distance between the consensus sequence of a gRNA in a given cell, and the template 

sequence, showing that in 93 % (chr. 8) or 95 % (chr. 11) of cases, there were no mismatches 

between consensus and template. c. Fold change in gene expression of enhancer targets is 

plotted in relation to the number of gRNAs supporting an enhancer-target gene pair (ETP). 

Number of ETPs per confidence level: 0=1, 1=21, 2=12, 3=11, 4=11. d. Zoom-in on a 

region surrounding the IFITM locus shows identification previously known enhancers56. e. 
Distance to transcription start site (TSS) was plotted against confidence level, as calculated 

from the number of individual gRNAs with a detected effect on the target gene. Number of 

ETPs per confidence level: 0=1, 1=21, 2=12, 3=11, 4=11. See Methods section on ‘data 

visualization’ for a definition of boxplot elements. f. Number of genes jumped between an 

enhancer and the identified target gene was plotted (main panel). Inset shows association 

strength, calculated from the proportion of gRNAs that support the ETP, plotted against the 

number of jumped genes. g. Histogram of log-fold expression differences between jumped 

genes and the respective true enhancer target. h. Like Figure 3h, but including all 34,493 

potential ETPs across the whole dataset, instead of just gene-proximal ETPs. i. Precision-

Recall curves for classifiers trained on the dataset generated in this study, and applied to the 
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dataset from ref. 9 (orange line), or classifiers trained on the dataset from ref. 9 and applied 

to this dataset.

Extended Data Fig. 10. Additional analyses of the mouse bone marrow experiment.
a. Heatmap depicting the expression of all 182 target genes across 11,794 cells, as measured 

by TAP-seq. Top row (‘Cluster’) depicts the result of unsupervised clustering, second row 

(‘Projection’) depicts the result of transferring labels26 from the whole transcriptome 

reference data set (see Figure 4a for color code). b. Gene expression correlations across 

populations. Mean gene expression for each gene in the mouse bone marrow panel was 

computed for each cell type, and the Pearson correlation between TAP-seq and whole 

transcriptome readout (Whole Tx) across n=18 cell types was computed. Main panel shows 

Pearson correlation coefficients for all tested genes across cell types. Inset shows expression 

of IFITM2 as measured by TAP-seq and whole transcriptome readout for each cell type 

(color code as described in Figure 4a). c. Data from both methods were downsampled to 

various average read depths and an identical number of cells, and labels were transferred26 

from the non-downsampled reference. For each cell type plotted on the x-axis, the fraction 

of cells projected to the cell types plotted on the y-axis was quantified (color code as 

described in Figure 4a). d. Average read depth per cell is plotted against the fraction of cells 
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correctly classified. e. The fold difference in sequencing reads between TAP-seq and whole 

transcriptome is plotted as a function of the fraction of cells correctly classified.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. TAP-seq permits efficient expression profiling of target genes in single cells.
a. Overview of the method UMI, unique molecular identifier; CB, cell barcode; RT, reverse 

transcription. b. Schematic presentation of the TAP-seq primer design pipeline. c. Fraction 

of reads mapping to target genes, comparing TAP-seq and whole transcriptome (Whole Tx) 

readout for all target gene panels used in this study. d. For three different panels and five 

different cell types, library complexity was quantified as the number of UMIs observed. 

Complexity of TAP-seq libraries as fraction of complexity of whole-transcriptome libraries 

(y-axis) is plotted against the fraction of the transcriptome targeted (x-axis). e. Deeply 

sequenced TAP-seq (panel 1, 74 target genes) and whole transcriptome libraries were 

downsampled to a given average number of reads per cell (x-axis). The average number of 

UMIs observed on the target panel (solid lines, shown for both methods) or across the entire 

genome (dashed line, only shown for whole transcriptome analysis) is shown. f. Data were 

downsampled as described in e, and for each gene from the panel, the fraction of cells 

displaying expression of that gene was computed. Genes were then classified into four bins 

based on their mean expression in whole transcriptome data, and average positivity scores 

across all genes in the bin are shown.
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Figure 2. TAP-seq sensitively detects gene expression changes.
a. Illustration of the experimental design. b. Number of cells and reads for each gRNA in 

whole transcriptome (Whole Tx) and TAP-seq experiments. n=86 gRNAs per group. See 

Methods section on Data Visualization for definition of box plot elements. c. gRNA capture 

efficiency was computed using a generative model that takes into account multiplicity of 

infection4,20. See also Extended Data Figure 6d. d. Benjamini-Hochberg adjusted p-values 

from differential expression tests, comparing cells carrying a given gRNA and cells carrying 

a non-targeting (‘scrambled’) control. For each target (x-axis labels), four guides (columns) 

were analyzed separately. Colored dots correspond to target genes, dark grey dots to all other 

genes in the panel. HBE1 was analyzed as target gene for HS2 enhancer. See Note S3 on 

‘Sensitivity analysis (differential expression)’ for the statistical test used. A total of 

n=60,106 cells were included into the tests, see panel b for the distribution of cells per 

gRNA. e. Venn diagram comparing gRNA targets identified by TAP-seq and whole 

transcriptome readout. g., gRNA ID. f. Data from both methods were downsampled to 

various average read depths per cell (different panels), and 10-150 cells per gRNA (line 

opacity). For each sampling run, differential expression testing was performed relative to 

500 cells containing scrambled gRNAs. Precision-Recall curves were computed assuming 

that the intended gRNA targets constitute the full set of true positives. See Extended Data 
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Figure 8a,b for an analysis accounting for off-target effects. g. Areas under the precision-

recall curves (AUPRC) are plotted as a function of sequencing depth (left panel). The fold 

cost reduction was estimated from the difference in sequencing depth quantified as a 

function of desired AUPRC (right panel). Data from n=60,106 cells and 9,750 sampling 

runs, see Note S3 section on ‘Sensitivity analysis (differential expression)’.

Schraivogel et al. Page 32

Nat Methods. Author manuscript; available in PMC 2021 April 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 3. A perturbation-based screen of enhancer targets across 2.5% of the human genome.
a. All enhancers in two regions of chromosome 8 and 11, as determined by the GenoSTAN 

HMM21, were selected, and four gRNAs were designed for each enhancer. All expressed 

genes on the same genomic regions, except HBG1/2, were selected for targeted readout. 

Highly expressed HBG1/2 were omitted from the screen to achieve a higher cost-efficiency. 

b. Top panels: The number of enhancers per gene (yellow), and the number of genes per 

enhancer (blue) across the selected region on chromosome 11. Bottom panels: Zoom-in on 

the HBE1 locus. Enhancers are connected to target genes via red arcs. Results are compared 

to p-values from a FACS-based CRISPRi screen of enhancers regulating HBE1 22, as well as 

H3K27Ac ChIP-seq signal. P-values are from linear regression as described in ref. 22. c. 
Number of cells profiled per enhancer perturbation depicted as a violin plot (n=1790 

enhancer perturbations). d. Number of enhancers identified for the 147 target genes. For 106 

genes, no candidate enhancer was identified. e. The distance between candidate enhancer 

and target gene transcriptional start site (TSS) is plotted against the TAP-seq p-value. The 

fraction of individual gRNAs per enhancer causing significant effects is color coded. Inset 
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shows x-axis in logarithmic scale. A total of n=231,667 cells were included in the tests, see 

panel c for the distribution of cells per perturbation and Note S3 section on ‘Enhancer screen 

analysis’ for a description of the statistical test used. f. Relationship between Hi-C 

interaction frequency39, linear distance of the enhancer to the TSS of the target gene, and 

TAP-seq result. ‘Strong’ enhancer-target pairs (ETPs) are supported by at least 50% of 

candidate gRNAs for a given enhancer, see also main text. Hi-C genomic bins are all 

measured interactions within the genomic regions used to estimate expected background 

interaction frequencies, see Note S3 section Hi-C and chromatin analyses section for details. 

See Methods section on Data Visualization for definition of box plot elements. g. 
Relationship between ChIP-seq signal of various chromatin marks40 and TAP-seq results. 

‘Strong’ enhancers have at least one target gene supported by at least 50% of gRNAs. p-

values are from Kruskal-Wallis tests assessing overall differences between ETP classes, see 

table S4 for p-values of pairwise comparisons and number of samples per group. h,i. 
Performance of machine-learning based classifiers in predicting ETPs. Only genes with at 

least one enhancer were included. h. Random forest classifiers were trained on the indicated 

set of features and performance was assessed in a 10-fold cross validation (CV) scheme. i. 
Random forest classifiers were trained on a given dataset (train data), and performance of 

the classifier on another dataset (test data) was tested. Areas under the precision-recall 

curves are shown, see Extended Data Figure 9i for curves.
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Figure 4. TAP-seq permits efficient identification of cell types and differentiation states at very 
low read depths.
a. Whole transcriptome (Whole Tx) sequencing data from mouse total bone marrow and c-

Kit+ bone marrow25 (GEO GSE122465) was projected using t-SNE (right panel). Cell type 

annotations were taken from ref. 25; abbreviations used: GMP, Granulocyte or Monocyte 

Precursor; LMPP, Lymhpoid-Primed Multipotent Progenitor; Mono, Monocyte; Mk, 

Megakaryocyte; Neutro, Neutrophil; Ery, Erythroid. A maximally informative gene set 

allowing to distinguish all cell types involved was then identified using LASSO (see 

methods). n=4,957 cells. b. t-SNE projection of whole transcriptome and TAP-seq data, 
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downsampled to an average read depth of 100 reads per cell. Color indicates the cell type 

identified in non-downsampled data (see panel a for color code). n=4,957 cells (Whole Tx) 

or 11,794 cells (TAP-seq). c. Data from both methods were downsampled to various average 

read depths and unsupervised clustering was performed using the Seurat pipeline26. Average 

read depth per cell is plotted against the overlap between clusters identified in downsampled 

data and reference clusters, as quantified by the adjusted Rand Index. d. The fold difference 

in sequencing reads between TAP-seq and whole transcriptome is plotted as a function of 

Rand Index.

Schraivogel et al. Page 36

Nat Methods. Author manuscript; available in PMC 2021 April 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Introduction
	Results
	TAP-seq sensitively detects gene expression changes
	Function-based enhancer-target gene maps for 2.5% of the human genome
	TAP-seq identifies cell-types and differentiation states with shallow sequencing

	Discussion
	Online methods
	Vectors and cloning strategies
	Cloning of individual sgRNAs
	Enhancer targeting sgRNA design
	Cloning of sgRNA libraries
	Cell culture
	Lentivirus production
	Lentiviral transduction and generation of stable cell lines
	qPCR based measurement of CRISPRi effects
	Primary cell samples
	Preparation of cells for scRNA-seq
	scRNA-seq with whole transcriptome readout
	TAP-seq target gene selection
	TAP-seq primer panel design
	TAP-seq library preparation using 10X Genomics Chromium
	Cell barcoding and reverse transcription
	PCR1 and PCR2 with gene-specific outer and inner primers
	PCR3 with Illumina primers
	Illumina sequencing

	TAP-seq library preparation from Drop-seq
	Methods for computational data analysis
	Data visualization
	Statistics and Reproducibility

	Extended Data
	Extended Data Fig. 1
	Extended Data Fig. 2
	Extended Data Fig. 3
	Extended Data Fig. 4
	Extended Data Fig. 5
	Extended Data Fig. 6
	Extended Data Fig. 7
	Extended Data Fig. 8
	Extended Data Fig. 9
	Extended Data Fig. 10
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

