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Abstract

Multi-omics data allow us to select a small set of informative markers for the discrimination of specific cell types and study
of cellular heterogeneity. However, it is often challenging to choose an optimal marker panel from the high-dimensional
molecular profiles for a large amount of cell types. Here, we propose a method called Mixed Integer programming Model to
Identify Cell type-specific marker panel (MIMIC). MIMIC maintains the hierarchical topology among different cell types and
simultaneously maximizes the specificity of a fixed number of selected markers. MIMIC was benchmarked on the mouse
ENCODE RNA-seq dataset, with 29 diverse tissues, for 43 surface markers (SMs) and 1345 transcription factors (TFs). MIMIC
could select biologically meaningful markers and is robust for different accuracy criteria. It shows advantages over the
standard single gene-based approaches and widely used dimensional reduction methods, such as multidimensional scaling
and t-SNE, both in accuracy and in biological interpretation. Furthermore, the combination of SMs and TFs achieves better
specificity than SMs or TFs alone. Applying MIMIC to a large collection of 641 RNA-seq samples covering 231 cell types
identifies a panel of TFs and SMs that reveal the modularity of cell type association networks. Finally, the scalability of
MIMIC is demonstrated by selecting enhancer markers from mouse ENCODE data. MIMIC is freely available at https://github.
com/MengZou1/MIMIC.
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Introduction

Cell sorting aims to separate a heterogeneous mixture of cells
according to an intracellular process (e.g. DNA, RNA and protein
interaction). Accurate sorting of cells is crucial for many aspects
of biological and clinical practice and is a driving force in the
move from population-based studies to single-cell studies [1, 2].
The success of cell sorting is highly dependent on the marker
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panel used to distinguish different cell types. In the hematopoi-
etic system, specific cell surface markers (SMs), and particularly
the ‘cluster of differentiation’ CD antibody series, have been
highly successful in enabling the elucidation of specific devel-
opmental steps in hematopoietic development [3]. Transcription
factors (TFs) specifically mark cellular lineages and can also be
used to purify distinct cellular populations that emerge during in
vitro endoderm differentiation of human embryonic stem cells
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by multi-channel fluorescence-activated cell sorting (FACS) [4].
The ability to classify other developmental lineages in a rigorous
manner would be a significant advance for developmental biol-
ogy and for regenerative medicine, which greatly depends upon
understanding and selecting pure populations of precise cellular
types.

Thanks to the large consortia such as ENCODE, Roadmap
Epigenomic projects and FANTOM5, extensive data on transcript
abundance are available across many tissues and cell types.
These rich data offer an exciting opportunity to dig out cell
type-specific marker panels for cell sorting. However, one key
challenge is complex hierarchical topology that the cell types
are organized into. In addition, the candidate marker genes
are buried in very high-dimensional data, for example ENCODE
provides tens of thousands of genes’ expression profiles by RNA-
seq, and the millions of functional elements from DNA acces-
sibility profiles [5]. This may lead to the well-known ‘curse of
dimensionality’. How to overcome these difficulties and identify
cell type-specific markers remains a problem that needs further
study.

Many approaches have been proposed to identify cell type-
specific marker genes that can discriminate each cell type
[6–9]. They mainly identify the cell type-specific genes based
on their high and specific expression in a small number of cell
types by comparing with other cell types. For example, Yu et al.
[7] developed a computational approach based on expression
enrichment and statistical significance for each gene in each
tissue. Liu et al. [6] developed a database named TiGER (Tissue-
specific Gene Expression and Regulation) based on this method.
However, almost all these methods focused on each gene in each
cell type and thus do not fully consider the genetic interactions
among molecules and the hierarchical topology of cell types.
Pierson et al. developed a tissue-specific gene regulation network
based on the prior information of relationship between different
tissues, but the parameter space was large, which might lead to
incorrect or difficult to interpret results [10]. In addition, the
combinations of makers required to distinguish different cell
types were not fully considered. Recently, Newman et al. [11]
proposed a computational approach to identify the composition
of complex tissues using gene signatures, but the biological
meaning of these signatures remains unknown.

In this paper, we provide a novel method, Mixed Integer
programming Model to Identify Cell type-specific marker panel
(MIMIC), to identify cell type-specific marker panels for cell iden-
tification and sorting. MIMIC selects an optimal set of cell type-
specific markers while maintaining the hierarchical topology of
the cell types. The cell type-specific markers could distinguish
different cell types and enhance the biological interpretation.
Additionally, the hierarchical relationship could demarcate sim-
ilar cell types. Specifically, we implemented a mixed integer
programming method to identify an optimal panel with a fixed
number of selected markers k. By varying the parameter k, we
could get different panels to distinguish different cell types
then selected a relatively small number of markers as a panel.
MIMIC is distinct from existing approaches in that it (i) uti-
lizes the topology among cell types to select marker panels,
(ii) takes a rigorous optimization framework to find an exact
solution, (iii) combines SM and TFs together and (IV) improves
the computation scalability by using a linear programming relax.

We systematically applied MIMIC to the RNA-seq dataset for
29 diverse tissues in mouse ENCODE [12] and then extended
to a larger RNA-seq collection including 231 cell types [13].
MIMIC outperforms the existing methods in accuracy and in
biological interpretation. In addition, the selected marker panel

with SMs and TFs provides a rich resource for cell soring.
Finally, we extended MIMIC to a linear programming method,
which showed good performance in selecting cell type-specific
enhancers as potential markers.

Methods
Overview of the optimization model MIMIC

We propose a MIMIC to distinguish different cell types (Figure 1).
The model aims to maintain the hierarchical topology among
different cell types and simultaneously select the minimal mark-
ers with the best cell type specificity. To maintain the hierar-
chical topology, we minimize the total and pairwise cell type
difference calculated with the selected markers and the entire
set of markers. Simultaneously, we maximize the sum of speci-
ficity score for the selected genes. Finally, two parameters are
introduced to combine the three objective terms into a mixed
integer programming model. Solving the model, we could obtain
a cell type-specific marker panel for the potential follow-up cell
sorting.

Quantification of difference between cell types

Given the gene expression profiles Smn with m cell types and
n genes, where sil is the gene expression level for a gene l in
cell type i, i = 1, 2, · · · m; l = 1, 2, · · · n. Specifically, Si denotes the
expression profile for cell type i and the difference between two
cell types is given by the following fold change for the gene l,

yijl =
{ Sil+1

Sjl+1 if Sil
Sjl

> 1
Sjl+1
Sil+1 otherwise

(1)

where j = 1, 2, · · · m. When yijl is a bit larger than 1, then it
is hard to distinguish the two cell types i and j by gene l. It
is reasonable to assume that yijl larger than 4 is good enough
to distinguish two cell types by gene l. Therefore, a smoothed
sigmoid function is utilized to transform the fold change scores
yijl within a specified range. When the fold change score tends
to be 1, the function value tends to be zero. When the saturation
begins, the growth slows down. At maturity, growth stops. Here,
we take the following sigmoid function to meet the requirement.
Concretely, we define the difference between two cell types for
genel as follows.

zijl = 1
1 + exp

(−θ
(
yijl − y0

)) (2)

Where θ is a parameter to adjust the tendency for zijl tends to
be 0 when yijl tends to be 1. Largerθ means that zijl tends to be 0 in
a faster way when yijl tends to be 1. y0 is the sigmoid’ s midpoint
for yijl value. Here, we set the default θ = 10, y0 = 3 then zijl tends
to be 2.1 × 10−9 (nearly to zero) when yijl tends to be 1.

Cell type specificity score for each gene

To evaluate the cell type specificity for gene l in cell type j, we
separate cell type j from other cell types and treat other cell types
as background. Then, we construct two vectors, observed vector
ujl and idealized pattern vjl, and compare the difference of ujl and
vjl by calculating score dsjl. The observed vector ujl consists of
the expression level of cell j and the background. The expression
of background cell type is obtained by the third quartile of the
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cross-context expression levels of the gene l. The elements in
this vector are divided by the sum so that the normalized vector
sums up to 1. For the idealized pattern vjl, the vector was formed
by setting 1 in cell j and zeroes in the background cell types.
Then, the difference score to evaluate the two vectors could
be calculated by the entropy-based measure of Jensen–Shannon
divergence (JSD):

dsjl = JSD
(
ujl, vjl

)
(3)

Then, we define the specificity score ssjl as follows:

ssjl = −log10

(
dsjl

)
(4)

Finally, the specificity score for gene l is obtained by the
maximal score across all cell types,

ssl = max
j

ssjl (5)

Optimization model for cell type-specific marker
identification

Our goal is to identify the smallest possible cell type-specific
marker panel that can still accurately discriminate between the
target cell types and background cell types. To achieve this,
we propose a novel optimization model to maximize the cell
type specificity score of selected genes, to minimize pairwise
differences between the selected genes and all genes (i.e. to
simultaneously maintain the hierarchical topology of the cell
types) and to fix the number of selected genes to ensure the
panel with desired small size. Balancing the two objectives with
one constraint, we could formulate this problem as a mixed inte-
ger programming problem. By solving this problem, an optimal
panel can be obtained and used to distinguish differentiate cell
types.

Formally, we introduce an integer variablewl, which takes 1
for selecting gene l and takes 0 for not selecting gene l. Then,
the topology maintenance objective is constructed as follows.
We first evaluate the difference between two cell types using the
selected genes as follows:

dij =
n∑

l=1

wlzijl (6)

The sum of pairwise difference using the entire gene set
could be

D =
∑

1≤i<j≤m

n∑
l=1

zijl (7)

If the selected genes are good enough to maintain the topol-
ogy of cell types, two terms should be simultaneously mini-
mized, i.e. the total discrepancy D − ∑

1≤i<j≤m dij and the pair-
wise discrepancy 1

k dij − 1
n

∑n
l=1 zijl. For the second-term pairwise

discrepancy, a tolerant error ξij is introduced to minimize the
difference between normalized distance of using selected genes
1
k dijand using all genes 1

n

∑n
l=1 zijlfor the pair samples.

The specificity maximization objective is straightforward.
The term

∑n
l=1 wlssl should be maximized to select the cell type

specificity genes.

Therefore, an optimization model could be formulated,

minwl ,ξij
D −

∑
1≤i<j≤m

dij + λ
∑

1≤i<j≤m

ξij − μ

n∑
l=1

wlssl (8)

Subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dij = ∑n
l=1 wlzijl∑n

l=1 wl = k
1
k dij + ξij ≥ 1

n

∑n
l=1 zijl

wl ∈ {0, 1} ; ξij ≥ 0

The first term in the objective function D − ∑
1≤i<j≤m dij is

the total discrepancy between using selected genes and using
the entire gene set. The second term in the objective function∑

1≤i<j≤m ξij is the pairwise discrepancy between the selected
genes and all genes. We minimize these two terms to maintain
the topology (pairwise distance for samples) in a low dimension.
The third term in the objective function −∑n

l=1 wlssl is the neg-
ative sum of the specificity score of the selected genes, and we
minimize it to select cell type-specific genes. Two parameters
λ and μ are introduced to balance the three objectives. This
converts a multiple objective optimization problem to a single
objective optimization. We notice that if μ = 0 the optimization
model will be reduced to a dimensional reduction model to
select features by dropping the prior information on the cell type
specificity of the genes. Moreover, if μ = λ = 0, then the model
will be converted to the multidimensional scaling (MDS) with
feature selection.

The first constraint in model (8) is the distance between two
cell types as defined in Equation (6). The second constraint is to
fix the number of selected genes for biological interpretability
and removing redundancy. The third constraint is to make the
normalized cells’ pairwise distance by using selected genes as
close as possible to the one using entire genes.

Taken together, we formulate an optimization model to iden-
tify the smallest, most cell type-specific marker panel while
maintaining the hierarchical topology of the cell types. To solve
the mixed integer linear programming problem, CPLEX soft-
ware (IBM) was used. In practice, we can vary the parame-
ter k and solve our model for each k. After obtaining results
for all ks, we can compare the model accuracies and find the
best k to determine our best panel. In addition, we test λ =
1, 10, 100, 1000, 10 000 and μ = 0, 1, 10, 20, 50, 100, 1000, 10 000 to
select the parameters balancing the three terms in the objective
function.

Model evaluation for different criteria

To assess how well the cell types are separated by the selected
gene set (marker panel), we propose three criteria to evaluate
the model accuracy by counting the percentage of pairwise
cell relationships can be correctly maintained with the selected
panel.

Criterion 1 uses dij to obtain the model accuracy,

C1 = 2
m (m − 1)

∑
1≤i<j≤m

I
(
dij > T

)
(9)

where I(x) is the indicator function and I(x) = 1 when x > 0
otherwiseI(x) = 0. T is a threshold to determine the cell type
separation and set to 0.5 in our study.
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Figure 1. Flowchart of the operations of MIMIC. The gene expression profiles of different cell types are obtained from RNA-seq. A mixed integer programming MIMIC

is proposed to identify the cell type-specific marker panel. Specifically, MIMIC optimizes two objectives: maintaining the hierarchical cell type topology and selecting

cell type-specific genes. Simultaneously, MIMIC prefers to select the smallest marker panel via minimizing the number of selected genes. Finally, the cell type-specific

genes combination selected could help in cell sorting.

Criterion 2 defines that pairwise cell is different if at least one
gene’s fold change between two cells is larger than y0

(
0.5 in our

study). That is to say, zijl is larger than 0.5 for gene l,

C2 = 2
m (m − 1)

∑
1≤i<j≤m

I
(
#

(
zijl > 0.5; wl = 1

))
(10)

where #(x) denotes the number satisfying the condition.
Criterion 3 uses pairwise cell is different if at least two genes’

fold change between two cells is larger than y0
(
0.5 in our study

)
,

C3 = 2
m (m − 1)

∑
1≤i<j≤m

I
(
#

(
zijl > 0.5; wl = 1

) − 1
)

(11)

Network construction and module detection

To decipher the biological function for cell type-specific marker
panel identified by MIMIC, we construct the cell type association
network by using these selected markers. Specifically, we apply
mutual information to measure the dependence between a pair

of cell types [14]. The mutual information of cell type i (Si) and
cell type j (Sj) is calculated as follows:

MI
(
Si, Sj

) =
∑
x∈Si

∑
y∈Sj

p
(
x, y

)
log

(
p

(
x, y

)
p1(x)p2(y)

)
(12)

where p
(
x, y

)
is the joint probability of Si and Sj, and p1(x) and

p2(y)are the marginal probability of Siand Sj,respectively. Here,
Si only contains the markers identified by MIMIC. To compute
the mutual information, we implement the fast calculation of
pairwise mutual information method by using a Gaussian kernel
estimator to estimate the distribution [15]. Then, we set a cutoff
as 0.25 to get the cell type association network.

To reveal the structural information in the cell type associa-
tion network, we apply Newman’s fast algorithm [16] to partition
the network into several modules, which have dense connec-
tions between the nodes within modules, but sparse connections
between nodes in different modules. In addition, the modularity
measure Q could be calculated to assess the module structure
in the network. Q = 1 indicates that the network has a perfect
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module structure and Q = 0 means that there is no clear
modular structure in the network. A higher value means better
modularity [16].

Extending MIMIC to a linear programming

To make MIMIC scale up to a high-dimensional dataset, we
relaxed the integer variable in model (8) to allow an efficient
algorithm. We have three objectives in MIMIC: (i) maintaining
the cell hierarchical topology, (ii) selecting a minimal number
of genes and (iii) maximizing the cell type specificity score for
selected genes.

We first relax the integer decision variable wl ∈ {
0, 1

}
to a

continuous variable wl ≥ 0. But the decision variable wl ≥ 0
could not ensure ξij ≥ 0. Therefore, we let ξij = ξ+

ij − ξ−
ij , where

ξ+
ij , ξ−

ij ≥ 0. Then, the first objective could be
∑

i,j

(
ξ+

ij + ξ−
ij

)
.

The second objective could be achieved by minimize
∑n

l=1 wl.
The third objective could be kept the same as MIMIC. Again,
we can use two parameters, λ andμ, to convert the multiple
objective optimization problem to be a single objective optimiza-
tion problem. In this way, MIMIC could be extended to a linear
programming problem as follows:

minwl ,ξ
+
ij ,ξ−

ij

∑
i,j

ξ+
ij +

∑
i,j

ξ−
ij + λ

n∑
l=1

wl − μ

n∑
l=1

wlssl (13)

Subject to

{∑n
l=1 zijl − ∑n

l=1 wlzijl = ξ+
ij − ξ−

ij

wl, ξ+
ij , ξ−

ij ≥ 0

If we let μ = 0, then it is also a dimensional reduction
problem, which is the same as MIMIC. The parameter selection
is the same as MIMIC.

Datasets

We validated MIMIC using both expression profiles of SMs and
TFs. Those expression profiles are measured by RNA-seq and are
derived from the mouse ENCODE project [12]. Starting from the
experimental matrix (https://genome.ucsc.edu/ENCODE/dataMa
trix/encodeDataMatrixMouse.html), we selected 29 tissues with
RNA-seq data generated from the UW lab, to avoid any bias intro-
duced by data produced in other labs (Supplementary Table 1).
Those tissues are from nine biological systems (muscular, cir-
culatory, nervous, respiratory, digestive, excretory, endocrine,
lymphatic and stem systems). The tree structure of the 29 tissues
is shown in Supplementary Figure 1 available online at https://
academic.oup.com/bib.

Then, we extracted the following subdatasets to validate
MIMIC: (i) TFs’ expression profiles in 29 tissues, (ii) SMs’
expression profiles in 29 tissues and (iii) the combination of TFs
and SMs’ expression profiles of 29 tissues. The TF list is from the
AnimalTFDB database (http://www.bioguo.org/AnimalTFDB/)
[17]. The SM list is from manual literature curation. The SMs and
TFs used in this study are listed in Supplementary Tables 2 and
3 available online at https://academic.oup.com/bib. Additionally,
we used a collection of RNA-seq data that contain 231 cell types
or tissues [13]. Briefly, public RNA-seq data were uniformly
reanalyzed using a RNA-seq pipeline adapted from Hutchins
et al. [18]. The full list of samples is in Supplementary Table 4
available online at https://academic.oup.com/bib.

Finally, we used the DNase-seq data from mouse ENCODE
project to validate MIMIC in high-dimensional data. We com-
piled a comprehensive enhancer annotation and quantified the
openness/accessibility from DNase-seq data for 54 mouse cell
types or tissues [19].

Results
MIMIC outperforms MDS

To demonstrate the performance gain of the mixed integer
programming model in dimensional reduction, we compared the
MDS technique with MIMIC without maximizing specificity (i.e.
with parameterμ = 0). MDS is a method to visualize data points
in a lower-dimensional manifold [20]. MDS used the dissimilar-
ity matrix and maintained the pairwise distance in the lower-
dimensional space. Here MDS was implemented by MATLAB
R2018a.

We first applied MIMIC and MDS to the expression profiles
containing 29 cell types with 43 SMs. MIMIC identified an SM-
based panel consisting of Cd24a, Lamp2, Csf1r, Dpp4, Cxcr4,
Cd3g and Cd79b (λ = 100). To make the comparison fair with
MIMIC, we checked MDS’s clustering results by selecting the
same number of signatures (Figure 2A and B). Both methods
found closely related cell type/tissue pairs: T-Naive (CD4+) and
Thymus, Whole brain (E18.5) and Whole brain (E14.5), Liver-
C57bl6 (E14.5) and Liver-129 (E14.5), G1E and G1E-ER4 (Gata1-
erythriod cells), Cerebellum and Cerebrum. Overall, MIMIC
could find more detailed subtypes than MDS. For example,
MIMIC found endocrine cell types: Fat pat and Gonadal fat
pad but MDS failed. Furthermore, MIMIC found a group of
cells consists of A20 (B-lymphoma cell), CH12.LX (CH12 B
cell lymphoma), B cell (CD43-), B cell (CD19+), Spleen, T-
Naive (CD4+), Thymus. Importantly, all these cells belong to
the lymphatic cell type, but MDS could only found a small
cluster. This demonstrates that MIMIC could find a larger
group of cell types having similar biological function than
MDS. Regarding the biological interpretation, MIMIC could select
specific sets of gene panels, rather than the broad signatures
from MDS. This feature meant that MIMIC could identify the
specific expression genes in a subgroup or tissue. For example,
Cxcr4 was specifically expressed in lymphatic cells, similarly,
Cd7b for B cells and Cd3g for T cells. In summary, MIMIC
shows advantage over MDS in the identifying gene panels
of SMs.

Then, we further demonstrated the performance gain of
MIMIC in dimensional reduction using an extended expression
profile dataset containing 29 tissues with 1345 TFs. MIMIC
found a minimal TF panel consisting of the eight TFs: Basp1,
Hopx, Nfib, Lbh, Myc, Zfp36, Uhrf1 and Satb1, with λ = 100.
Similarly, we compared the cluster results by MIMIC and MDS
(see Supplementary Figure 2A and B available online at https://
academic.oup.com/bib). MIMIC could identify more detailed
subtypes than MDS. MDS found B cell (CD43−) and B cell
(CD19+), Whole brain (E18.5) and Whole brain (E14.5), Liver-
C57bl6 (E14.5) and Liver-129 (E14.5), G1E and G1E-ER4 (Gata1-
erythriod cells), Fat pad and Gonadal fat pad. In addition to
the above five subtypes, MIMIC could find the embryonic cell
types: ES-E14 (embryonic stem cell line E14) and Embryoid
body. Furthermore, MIMIC found similar cell types while
MDS failed. For instance, large intestine and Liver-adult-8wks
both belong to the digestive system and they were adjacent
in clustering results from MIMIC. Similarly, two lymphatic
cell types, CH12.LX and MEL, were clustered close together

https://genome.ucsc.edu/ENCODE/dataMatrix/encodeDataMatrixMouse.html
https://genome.ucsc.edu/ENCODE/dataMatrix/encodeDataMatrixMouse.html
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab235#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab235#supplementary-data
https://academic.oup.com/bib
http://www.bioguo.org/AnimalTFDB/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab235#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab235#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab235#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab235#supplementary-data
https://academic.oup.com/bib
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Figure 2. Clustered heatmaps of SMs identified by MIMIC (A), MDS (B) and t-SNE (C). MIMIC and MDS could identify similar cell types (gray rectangle). Moreover, MIMIC

could find two endocrine cell types: gonadal fat pad and fat pad (bold red rectangle) but MDS failed. MIMIC further revealed a larger group of similar cell types (bold

green rectangle). t-SNE failed to find a similar cell types.

by MIMIC (see Supplementary Figure 2A available online at
https://academic.oup.com/bib). In addition, MIMIC found a
larger group of lymphatic cells: B cell (CD43−), B cell (CD19+),
Spleen, T-Naive (CD4+), Thymus, MEL and CH12.LX, while MDS
found only a partial one (see Supplementary Figure 2A and B
available online at https://academic.oup.com/bib). In summary,
MIMIC showed consistent advantages over MDS in dimensiona
l reduction.

MIMIC outperforms t-SNE in dimensionality reduction

t-SNE is a widely used technique in dimensionality reduction to
visualize high-dimensional data in a two- or three-dimensional
map [21]. t-SNE produces significantly better visualizations by
reducing the tendency to crowd points together in the center of
the map and shows good performance in creating a single map
to reveal structure. We then compared the performance of MIMIC
to t-SNE in dimensionality reduction.

In the 29 tissues, using 43 SMs dataset, MIMIC could cluster
closely related cell types, while t-SNE failed (Figure 2C). For
example, MIMIC could find T-Naive (CD4+) and Thymus, Whole
brain (E18.5) and Whole brain (E14.5), Liver-C57bl6 (E14.5) and
Liver-129 (E14.5), G1E and G1E-ER4 (Gata1-erythriod cells),
Cerebellum and Cerebrum, Fat pat and Gonadal fat pad were
all identified by MIMIC as closely clustered cell types, while
t-SNE failed to cluster cell types close together. Moreover, MIMIC
could find a large group of similar cell types, such as the
lymphatic cells: B cells (CD43−), B cells (CD19+), Spleen, T-Naive
(CD4+), Thymus, MEL and CH12.LX, while t-SNE failed. Similar
results could also be obtained when using the TF dataset (see
Supplementary Figure 2C available online at https://academic.
oup.com/bib). In summary, MIMIC showed consistently better
performance in dimensionality reduction.

MIMIC outperforms a standard single gene approach
to identify core genes

To further demonstrate the performance gain of MIMIC in iden-
tifying cell type-specific genes, we compared MIMIC with a stan-
dard single gene-based approach to identify candidate core TFs
for cell sorting [22]. This approach evaluated the specificity score
of each gene in a query cell type by calculating the difference

between the observed and ideal patterns, and the difference
was assessed by the entropy-based measure of JSD. Here the
specificity score of genelin tissuejwas calculated as in Equation
(3) by using the third quantile of the expression level of all the
tissues as the background.

We applied MIMIC and the standard approach to the expres-
sion profiles of 29 cell types with 43 SMs. MIMIC identified a
cell type-specific gene panel consisting of eight SMs: Cd24a,
Lamp2, Cxcr4, Cd79b, Cd19, Rhag, Cd3g and Csf1r (λ = 100,
μ = 10) (Supplementary Table 5). To make a fair comparison with
MIMIC, we selected the same number of SMs using a standard
(simple) approach (see Supplementary Figure 3 available online
at https://academic.oup.com/bib). Specifically, we collected the
best SMs in all cell types then selected the top eight in each
cell type as the final markers. Finally, the standard approach
could identify Cd19, Cd79b, Mme, Lamp3, Il18rap, Cd177, Cd3g
and Rhag. Both MIMIC and the standard approach identified four
cell type-specific genes: Cd79b, Cd19, Rhag and Cd3g, which sup-
port MIMICs’ ability to select cell type-specific genes. Moreover,
MIMIC obtained a model accuracy as 0.99 (Criterion 1) to dis-
tinguish pairwise cell types, which was much better than using
the top eight genes by the standard approach. Furthermore,
unlike the standard approach identified the cell type-specific
SMs from single cell type, MIMIC tended to select combinations
of SMs that distinguish different cell types. For example, Il18rap
was a cell type-specific marker for 416B cells, as identified by
the standard approach, MIMIC however demonstrated that the
combination of high expression of Cxcr4, and the low expression
of Cd79b, Cd24a and Cd3g were specific for 416B cells (Figure 2A).
In addition, MIMIC showed advantages in distinguishing closely
related cell types. Both MIMIC and the standard approach found
that Cd3g is highly expressed in T-Naïve (CD4+) and Thymus cell
types, but only MIMIC could identify that Cd24a that is specif-
ically expressed in the Thymus. Like the standard approach,
MIMIC showed performance gains in maintaining the hierar-
chical topology of different tissues. MIMIC could identify the
endocrine cell Fat pad and Gonadal fat pad, lymphatic cell B cell
(CD19+), Spleen, B cell (CD43+), A20, CH12.LX, T-Naïve (CD4+)
and Thymus, Liver-C57bl6 (E14.5) and Liver-129 (E14.5), Whole
brain (E14.5) and Whole brain (E18.5), etc. (Supplementary Figure
3). In summary, MIMIC identified a cell type-specific SM panel
that balances the cell type specificity and hierarchical topology

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab235#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab235#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab235#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab235#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab235#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab235#supplementary-data
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Figure 3. Cell type-specific markers for different cell types. The gray and green boxes denote gene and cell, respectively. The red and blue arc line denoted high and

low expression. The blue dash line box denoted a cell type group. (A) Cell type-specific SMs, (B) cell type-specific TFs and (C) cell type-specific markers by combining

TFs and SMs.

and can reveal SM combinations that better distinguish cell
types.

We next demonstrated the advantages of MIMIC in cell
type specificity in the TF expression dataset. MIMIC selected
a cell type-specific TF panel consisting of Ptma, Nupr1,
Hopx, Basp1, Hmga1-rs1, Zfp36, Satb1, Peg3 and Junb with
(λ = 100, μ = 100) (Supplementary Table 6). The standard
approach using gene expression quartiles could find Fhl2, Gata2,
Nkx6-2, Nupr1, Pou5f1, Prrx1, Sox11, Tcf7 and Zic1. Then, we
compared the two methods using a cluster analysis result (see
Supplementary Figure 4 available online at https://academic.
oup.com/bib). Overall, MIMIC showed advantages in identifying
TF combinations for distinguishing different cell types. For
example, the standard approach found that Fhl2 was expressed
specifically in heart. While MIMIC found that the combination
of highly expressed Hopx and Hmga1-rs1 was specific for heart
(Figure 3B). Conversely, highly expressed Hmga1-rs1 and lowly
expressed Hopx were specific for G1E-ER4 cell type. Considering
the fact that Ptma was highly expressed in G1E-ER4 and G1E,
then the combination of Ptma1 and Hmga1-rs1 was sufficient to
distinguish the similar cell types G1E-ER4 and G1E. Furthermore,
MIMIC showed advantages in maintaining the hierarchical
topology compared to the standard approach. For example, our
model could maintain the close relationship between Fat pad
and Gonadal fat pad, B cells (CD43-), B cells (CD19+), and Spleen,
while the standard approach failed to preserve cell type topology
(Figure 3B). In summary, MIMIC showed improved performance

in identifying TF combinations that distinguish different cell
types, compared to the standard approach, and MIMIC was more
capable at balancing the hierarchical topology among different
cell types.

MIMIC identifies biologically meaningful cell
type-specific genes

Next, we demonstrated that mixed integer programming could
identify biologically meaningful genes. We validated the specific
gene panel consisting of Cd24a, Lamp2, Cxcr4, Cd79b, Cd19,
Rhag, Cd3g and Csf1r in the SMs’ dataset. The alpha-chemokine
receptor Cxcr4 was expressed throughout B cell ontogeny, and
the B cells generated in the bone marrow migrate into the spleen
[23]. This was consistent with our study that Cxcr4 was highly
expressed in two types of B cells (CD43−) and B cell (CD19+),
two types of B cell lymphoma A20 and CH12.LX, and Spleen.
However, Cxcr4 was upregulated in other cells such as Lung,
Thymus, 416B and T-Naïve (CD4+) cells. Cd79b might help to
distinguish B cells from these cells. Cd79b, a gene encodes a cell
surface immunoglobulin beta, was necessary to distinguish B
cells. A recent study showed that Cd79b was specific for B cells
rather than T cells [24, 25]. In our data, Cd79b was downregulated
in these cells. Therefore, Cd79b might be a specific marker for B
cells, and Cd79b and Cxcr4 might function as markers for Lung,
Thymus, 416B cells and T-naïve (CD4+) cells. Moreover, Cd3g
is closely related to the surface protein CD3 in T cells and a

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab235#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab235#supplementary-data
https://academic.oup.com/bib
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deficiency of Cd3g leads to immunodeficiency [26, 27]. Indeed,
Cd3g is a specific biomarker for Spleen, T-Naive (CD4+) and Thy-
mus. Considering Cd79b was a specific biomarker for B cells and
spleen, then Cd3g and Cd79b were potentially specific biomarker
combinations for T cells. Simultaneously, Cd24 could distinguish
T-Naïve (CD4+) and the Thymus well. In summary, the multi-
biomarker panel has a plausible biological interpretation.

MIMIC obtained similarly biologically meaningful results in
TF dataset. It revealed a multi-marker panel consisting of Ptma,
Nupr1, Hopx, Basp1, Hmga1-rs1, Zfp36, Satb1, Peg3 and Junb
(λ = 100, μ = 100). Satb1 is a matrix attachment regions (MAR)
binding protein, and it orchestrates temporal and spatial expres-
sion of multiple genes during T-cell development [28, 29]. This
was consistent with our finding that Satb1 is highly expressed
in T-Naive (CD4+) and Thymus cell. Similarly, Zfp36 was specif-
ically expressed in T-Naive (CD4+) cells [30] and MIMIC cor-
rectly identified Zfp36 as a discriminant for T-Naive (CD4+) cells
and the Thymus. Moreover, Zfp36 is a component of a neg-
ative feedback loop that interferes with inflammatory factors
like TNF-alpha and IL-10, and mice deficient for Zfp36 develop
chronic inflammatory diseases [31]. Considering that inflam-
mation is closely related to immune cell function, Zfp36 was
also highly expressed in B cell subtypes and the Spleen. This
was supported in our study, as Zfp36 and Satb1 are a specific
biomarker combination for B cells and Spleen. A20 and CH12.LX
are tumor cell lines of presumed B cell origin and the two cell
lines appear to have low expression of Zfp36. A study showed
that A20 inhibited TNF-mediated apoptosis by inhibiting NF-kB,
but it could not decrease the expression of the pro-oncogene
Junb. In our study, Junb was highly expressed in A20 cells and
could be used as a biomarker to distinguish A20 and CH12.LX
cells. Hopx is also a tumor suppressor gene, and studies showed
that the decreased Hopx may lead to the progression of tumor
[32], which was consistent with the fact that Hopx is lowly
expressed in CH12.LX and A20 cells. Furthermore, Hopx may
interact with serum response factor (SRF) and modulate SRF-
dependent cardiac-specific gene expression and cardiac devel-
opment; hence it was a good marker for heart. These results
suggest that the cell type-specific TF panel could be potentially
combined to assist cell sorting.

The performance gain of MIMIC is robust

To demonstrate that MIMIC was robust to possible batch effects
in expression data (see Supplementary Figure 5 available online
at https://academic.oup.com/bib), we compared the clustering
analysis by MIMIC and MDS in pre-processing data (without
batch effect removal) and post-processing data (with batch effect
removed by quantile normalization) for SMs. MIMIC identified
a panel of SMs consisting of Cd24a, Lamp2, Csf1r, Dpp4, Cxcr4
and Cd79b (Figure 4A). We also selected the same number of
signatures by MDS. All the SMs identified by MIMIC were the
same as found in the post-processed data (Figure 2A), except
Cd3g. Therefore, MIMIC showed little difference between pre-
processing and post-processing data. For example, our model
correctly predicted the topological relationship between G1E and
G1E-ER4, Cerebellum and Cerebrum, Liver-C57bl6 (E14.5) and
Liver-129 (E14.5), Whole brain (E18.5) and Whole brain (E14.5),
along with a further group of cell types: Thymus, A20, Ch12.LX,
B cell (CD43-), B cell (CD19+) and Spleen. In contrast to MIMIC,
MDS performance was unstable when considering after process-
ing data. After processing, MDS could preserve the topology of
closely related cell types: B cell (CD43-) and B cell (CD19+), Whole
brain (E18.5) and Whole brain (E14.5), Liver-C57bl6 (E14.5) and

Liver-129 (E14.5), G1E and G1E-ER4, Cerebellum and Cerebrum
(Figure 2B). However, these topological relationships disappear
in pre-processed data (Figure 4A).

Next, we demonstrated the robustness of MIMIC in different
criteria in Equations (9–11) and thoroughly assessed how closely
the selected maker panel can maintain cell type topology. We
used all the criteria to evaluate MIMIC for SMs’ and TFs’ dataset.
In SMs’ dataset, criterion 1 was similar to criterion 2, and with
the number of selected SMs up to 9, the three criteria became
almost identical results (Figure 4B). Similar results were obtained
when using the extended TF expression profile (Figure 4C). Thus,
MIMIC was robust in selecting the number of markers, with
different evaluation criteria.

Combining TFs and SMs further decipher
cell type specificity

Since TFs and SMs have performed well in cell sorting
individually, we combined the TFs and SMs and expected to
obtain better performance. MIMIC identified a cell type-specific
biomarker panel, consisting of two SMs (Cxcr4 and Cd79b) and
16 TFs (Lbh, Hopx, Basp1, Peg3, Est1, Epas1, Myc, Zfp36, Hmga1-
rs1, Lmo2, Nfib, Nr2f2, Ndn, Nupr1, Satb1 and Cited4) with
(λ = 100, μ = 100) (see Supplementary Figure 6 available online
at https://academic.oup.com/bib). Furthermore, we selected a
cutoff of 1.3 for the specificity score for each TF or SM, then we
assigned the markers to each cell type (Supplementary Table 7).
According to this, we found that the SM and TF optimal panel
could distinguish more cell types than simply pooling the
cell type-specific TFs and SMs together (Figure 3C). Firstly, it
performed better in distinguishing lymphatic cell from others
and further obtained good performance in inter-lymphatic cell
types (Figure 3). Similar results were also found in nervous
system cells. In addition, MIMIC not only found cell type-specific
biomarkers for endocrine cells but also found the marker Cited4
that can distinguish between Fat pad from Gonadal fat pad.
In conclusion, we could generate a panel of cell type-specific
biomarkers by combining SMs and TFs and so achieve better
performance for cell sorting.

MIMIC reveals cell type modules associated
with makers in mouse
To further demonstrate the usage of MIMIC to reveal the asso-
ciations among cell types, we applied it to a larger dataset
containing 231 cell types [13]. MIMIC identified an optimal panel
of SMs consisting of Cxcr4, Adam8, Dpp4, Csf1r, Cd22, Cd24a,
Cd180, Cd247 and Cd79b in SMs’ expression profiles with λ =
100, μ = 10 (Supplementary Table 8). Cd79b is a cell type-specific
marker for B cells, which is consistent with our findings in the
ENCODE dataset. We then constructed a cell type association
network using only this selected SM panel and detected the
resulting modules. We identified five modules with the modu-
larity function Q = 0.3136, which indicated the network has a
certain modularity property. We could find a module enriched
with B cell types and their cell type-specific markers: Cd79b
and Dpp4. Furthermore, we found that Cd22 and Cd79b can
distinguish many B cell types from other cell types. There was
also another module enriched with T cell types, and Cd247 was
a specific biomarker for this module.

Furthermore, we used the expression data for 1345 TFs and
found a cell type-specific TF panel consisting of Cebpa, Nfib,
Bcl11a, Zfp57, Enpp2, Peg3, Tcf7 and Notch3 withλ = 100, μ = 100
(Supplementary Table 9). Network construction and module

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab235#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab235#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab235#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab235#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab235#supplementary-data
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Figure 4. (A) Comparison between MIMIC and MDS on the robustness against possible batch effects in the data. Before batch effect removal processing, MIMIC found

similar cell types (bold red/green rectangle) but MDS failed. Comparisons of different accuracy evaluation criteria of MIMIC for SMs (B) and TFs (C). They show that

different accuracies gave close results when selecting more than nine markers.

detection for this panel gave seven modules with modularity
function Q = 0.6813 (Figure 5), which was larger than the SM-
derived network. This indicates that the TFs were more tissue
specific than SMs, and so TFs could better distinguish cell types.
The 231 cell types were organized into seven modules (M1, M2,
. . . , M7 as labeled in Figure 5) and every module was annotated
with the top five cell types with the highest frequency (Figure 5).
For example, module M5 was enriched with T cells with their
specific marker Tcf7, which was consistent with our study in
ENCODE 29 tissues. Moreover, more than half of the cell types
in M6 highly expressed Zfp57, and most of these cell types were
embryonic cell types. In addition, Enpp2 is highly expressed
in nearly all cell types in module M7. In summary, MIMIC
showed good performance in identifying biologically meaningful
modules and their cell type-specific biomarkers in a larger
dataset.

Finally, we combined TFs and SMs together to sort all the
cell types and then study the cell type organizations using our

selected panels of TFs and SMs. We expected to find more
functional modules and their module-specific markers. As a
result, MIMIC integrated TF and SM expression profiles and
found 14 cell type-specific markers consisting of 2 SMs, Adam8
and Csf1r, and 12 TFs, Aebp1, Ank2, Bcl11a, Cebpa, Enpp2, Gli3,
Irf8, Meis2, Nfib, Notch3, Tcf7 and Zfp57 (λ = 100, μ = 100)
(Supplementary Table 10). Module analysis identified nine mod-
ules with modularity function Q = 0.7356 (UM1, through UM9 in
Figures 6 and 7A). This increased modularity score demonstrated
that the combination of TFs and SMs can further improve the cell
type discrimination ability (Figure 7A). The modules obtained by
combining TFs and SMs (Figure 6) were largely consistent with
using TFs alone (Figure 5). In order to check the detailed similar-
ities and differences, we mapped the relationships between the
two modules (Figure 7B). For example, we found that T cells are
enriched in module UM2 and by the cell type-specific marker
Tcf7. This corresponded to module M5. The brain-associated
module UM3 with their markers Ank2 and Enpp2 was partially

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab235#supplementary-data
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Figure 5. The cell type association network constructed by the TF marker panel selected by MIMIC. Nodes were the cell types and edges are the similarity between cell

types. Every module was labeled by the top five most frequent annotations. In total, there were seven modules M1 through M7. Module M5 was abundant with T cell

types, module M6 was most abundant with embryonic cells and M1 was most abundant with B cell types.

merged as parts of module M7 and M3 (Figure 7B). The differ-
ences were also distinct. Expression of Gli3, Meis2 and Zfp57
discriminated cell types enriched in the epithelium cell mod-
ule UM4, and Aebp1 was highly expressed in cell types in the
fibroblast module UM6. Moreover, Zfp57 was specifically highly
expressed in the embryonic module UM7, and Nf1b was differ-
entially expressed in cell types enriched in the neuron module
UM9. Specifically, the two SMs, Adam8 and Csf1r, helped TFs
to further reveal more detailed cell type organization. Adam1
helped to divide M2 into two submodules. One was module UM1
(marked by Adam8), which was correlated with immune cell
types. The other was UM7, which was enriched in embryonic cell
types. Csf1r helped to divide module M4 into two submodules:
UM6 and UM9 (Figure 7B). UM4 is discriminated by Csf1r and
is enriched in fibroblast. While UM9 was labeled by another TF
Irf8 with cortical cell types enriched. In summary, MIMIC could
decipher more specific modules than SMs and TFs individually
and also showed module specific markers.

MIMIC shows scalability to select cell type-specific
enhancer markers

To demonstrate MIMIC’s scalability in higher dimensions,
we extended MIMIC to a linear model and applied it to
an enhancer accessibility dataset (see Dataset section for
details). Potentially, MIMIC could select the minimal set of
discriminatory enhancers required for a cell type, and so help
prioritize critical enhancers for further study. MIMIC selected 10

enhancers: chrX:84482600-84484600, chr4:947138000-94715800,
chr10:119857900-119859900, chr3:127632400-127634400, chr1:7-
1144700-71146700, chr9:40879000-40881000, chr12:53706750-
53708750, chr3:101969500-101971500, chr7:80704850-80706850,
chr3:93354000-93356000 with μ = 1, λ = 887. GREAT enrichment
analysis demonstrated that these enhancers showed signifi-
cance in the MSigDB immunologic signature ‘GSE22886_IL2_VS_
IL15_STIM_NKCELL_UP’ with adjusted P-value 4.56 × 10−2,
and the signature was enriched by immune cell-specific
expression gene pattern [33]. More interestingly, the enhancer
chr4:947138000-94715800, locating at the nearest gene Tek in
immunologic signature, was highly expressed in the lymphatic
cell type and blood cell type, which could be a cell type-
specific marker for the two cell types. Tek encodes a cell-
surface receptor that belongs to the protein tyrosine kinase
Tie2 family and regulates angiogenesis and maintenance
of vascular quiescence. It has anti-inflammatory effects by
preventing the leakage of proinflammatory plasma proteins
and leukocytes from blood vessels. This was consistent with
our study. Furthermore, cluster analysis for these genes also
found an immune cell group containing A20, CH12.LX, Spleen, B-
cell_(CD19+), TReg-Activated B-cell_(CD43−), T-Naive, THelper-
Activated, TReg and blood association cell group Erythrob-
last_2, MEL, MEL−GATA−1−ER, Erythroblast_1. Additionally,
clustering identified an embryonic cell group containing:
ZhBTc4_1, ZhBTc4_2, ES − CJ7, ES − E14, ES−WW6_1, ES−WW6_2;
embryo 11.5 days tissue group: HindlimbBud, Mesoderm,
ForelimbBud, HeadlessEmbryo; along with a smaller embryonic
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Figure 6. The cell type similarity network constructed by the TF and SM combination panel revealed by MIMIC. In total, there were nine modules: UM1 through UM9.

UM5 was abundant with embryonic cell types, UM6 was abundant with fibroblastic cell types and UM8 was abundant with B cells.

Figure 7. Relationship between SM, TF and SM&TF modules. (A) Modularity of the cell type association network using SMs only, TFs only and combining SMs and TFs.

The combination of SMs and TFs showed the best ability to reveal cell type organization. (B) The relationship between seven TF-derived modules (M1 through M7) and

nine SM&TF-derived modules (UM1 through UM9). The two SMs, Csf1r and Adan8, help to divide M2 into UM7 and UM1 and to divide M4 into UM6 and UM9, respectively.
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cell group containing: Liver_(14.5-day)_1, G1E−ER4, G1E, EPC_
(CD117−_CD71+_TER119+), Liver_(14.5-day)_2, EPC_(CD117+_
CD71+_TER119−), EPC_(CD117+_CD71+_TER119+).

We next compared MIMIC with t-SNE. MIMIC could find a
large lymphatic cell group A20, CH12.LX, Spleen, B − cell_(CD19+),
TReg-Activated B − cell_(CD43−), T − Naive, THelper-Activated,
TReg while t-SNE found these cell types in two cell groups.
In addition, both MIMIC and t-SNE found four cell groups,
which demonstrated that MIMIC had good performance
and maintained hierarchical topology among different cell
types. Although t-SNE could find the nervous cell group
Cerebellum, Cerebrum, WholeBrain_(8-week), WholeBrain_(14.5-
day), WholeBrain_(18.5-day), Retina_(1-day), Retina_(7-day),
Retina_(8-week), MIMIC found these cell types located near to
each other in cluster analysis. Nevertheless, t-SNE could find
an endocrine cell group containing: FatPad, GenitalFatPad, while
MIMIC failed to cluster this group. This situation may be due to
the need for MIMIC to tune the balance between maintaining
hierarchical topology among different cell types and selecting
cell type-specific markers. Most importantly, MIMIC directly
selected enhancers, while t-SNE selected enhancer signatures,
so that we could obtain the biological meaning of selected
enhancers by MIMIC.

Overall, comparing MIMICs analysis of both TFs and SMs,
our results show that enhancer accessibility is cell type-specific
and could further assist in identifying cell type-specific critical
enhancers and accurately discriminating cell types for cell sort-
ing. For example, it was hard to distinguish WholeBrain_(14.5-
day) from WholeBrain_(18.5-day) samples by combining TFs and
SMs, but the enhancer chr3:93354000-93356000 was more open
in WholeBrain_(18.5-day) compared to WholeBrain_(14.5-day).
Moreover, it was closed in the WholeBrain_(8-week), aiding cell
type discrimination. We studied the closest genes, Rptn and
Hrnr, to this enhancer, and Gene Ontology suggested that both
genes are related to calcium ion binding. Especially for Rptn,
it was related to a ‘Developmental Biology pathway’. Potentially
this was the reason that the enhancer is open only in the median
stage (WholeBrain (18.5-day)) rather than in the early (14.5-day)
or late (8-week) stages. Besides that, enhancer data could provide
other evidence to enhance the power to select cell type-specific
genes/markers for different cell types. For example, Cd79b was
a specific marker for B-cell type group, and we found that the
enhancers chr1:71144700-71146700 and chr4:94713800-94715800
were more open in the cell group. In addition, the Epas1 was
highly expressed in the lung and was lowly expressed in the
NIH3T3 cells; here we found that the enhancers chr9:40879000-
40881000 and chr3:127632400-127634400 were more open in
the lung.

Discussion
Identifying cell type-specific markers is a challenging task
because of the large amount of cell types and their complicated
hierarchically organized structure. Many approaches have
identified cell type-specific markers by focusing on single
marker analysis in each tissue, and no systematic methods were
developed to identify non-redundant markers for all cell types in
an integrative way. In addition, the relationships among different
tissues were not considered. We thus developed an optimization
method (MIMIC) to identify minimal sets of cell type-specific
markers that simultaneously maintain the hierarchical topology
among different tissues. Specifically, the optimization method
optimizes the pairwise difference between selected markers and
all markers to maintain hierarchical topology and maximize the

sum of the specificity score of selected markers. Moreover, the
model allows us to vary the number of selected markers and
obtain an optimal marker panel with better model accuracy by
balancing the number of selected markers.

We demonstrated the performance gain of MIMIC not only
on expression profiles of SMs but also on an extended dataset
of expression profiles of TFs. The cell type-specific panel com-
posed of both TFs and SMs identified by MIMIC showed plau-
sible biological meaning, by discriminating different cell types.
Furthermore, MIMIC could find close relationships among dif-
ferent tissues, especially for subtypes of a cell type, such as B
cell (CD19+) and B cell (CD43-), Whole brain (E14.5) and Whole
brain (E18.5), G1E and G1E-ER4, Liver-C57bl6 (E14.5) and Liver-
129 (E14.5). Moreover, MIMIC could find a close relationship
between very similar cell types, such as gonadal fat pad and
fat pad cells, whole brain and cerebrum. In addition, MIMIC
showed robust performance under varying parameters, and the
data pre-processing steps. Hence, MIMIC showed advantages
in identifying cell type-specific marker panels for assisted cell
sorting and cell type discrimination.

Our improved model is, however, limited in several ways.
MIMIC is developed to select a number of proteins to assist in
cell sorting, but it uses only the mRNA level, which may not
reflect protein concentrations. Indeed, Jiang et al. reported that
the Spearman correlation between RNA and protein abundance
is only ∼0.46 across 32 normal human tissues [34]. Using the
same dataset, MIMIC select the totally different gene set in RNA
dataset comparing with selected genes in protein dataset. How-
ever, the selected RNAs have better correlation (median corre-
lation = 0.75) with proteins (Supplementary Figure 7). In method
development, firstly, the evaluation of difference between dif-
ferent tissues was calculated by the L1 norm may be further
extended. Maybe high or low expression level is more suitable
for distinguishing different tissues. Secondly, MIMIC is limited in
model construction. We only considered a marker’s specificity
for the maximal score in one tissue, which may thus allow
redundant marker selection. Thirdly, MIMIC only considers the
pairwise distance, which leads to computational inefficiency
when the sample size increases, for example in the thousands
or tens of thousands of cells now seen in typical single cell
RNA-seq (scRNA-seq) datasets). We tested MIMIC on a small
scRNA-seq dataset (124 single cells) [35] and promising perfor-
mance was shown (see Supplementary Figure 8 available online
at https://academic.oup.com/bib). However, the current imple-
mentation of MIMIC makes it impractical to apply to larger
scRNA-seq datasets, such as an expression profile for >1000
single cells. Finally, MIMIC integrates TFs and SMs by simply
combining the two data matrices into a single matrix without
considering the relationship between them. The same situa-
tion would happen if we integrate TFs, SMs and enhancers.
Maybe we could add gene regulatory network information to
integrate the three datasets [36]. Similarly, our minimal sets
of marker that discriminate cell types contain nine markers,
which remains challenging to experimentally perform on a FACS
machine.

In conclusion, we constructed a mixed integer programming
model, MIMIC, to identify minimal optimal cell type-specific
marker panels that simultaneously maintain the hierarchical
topology among different cell types to assist cell sorting. Our
contribution is to broaden the two terms together by optimizing
three objectives: the sum of the pairwise differences, scaled
pairwise differences and the sum of markers’ specificity score.
Simultaneously, we fixed the number of selected markers and
obtained an optimal panel with good accuracy and a relatively

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab235#supplementary-data
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small number of selected features. We validated the MIMIC
panel in two datasets using expression profiles of SMs and TFs.
Our results demonstrated that MIMIC showed advantages in
dimensionality reduction when compared to MDS and in cell
type-specific marker identification than a standard approach.
We also demonstrated the application of MIMIC in an extended
dataset and note that our new method can be widely extended
to other datasets for cell sorting.

Key Points
• We develop MIMIC as a useful tool to select an opti-

mal gene panel to maintain the hierarchical topol-
ogy among different cell types and simultaneously
maximize the specificity.

• MIMIC outperforms MDS and t-SNE in dimensional
reduction and cell type clustering and reveals biologi-
cal meaningful marker combinations.

• MIMIC identifies a panel of TFs and SMs on a large col-
lection of 641 RNA-seq samples covering 231 cell types
and reveals the modularity of the cell type association
network

• MIMIC could be extended to select enhancer markers
on mouse ENCODE data.

Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.

Acknowledgements

We thank the reviewer for the insightful comments to
improve the manuscript.

Funding

The National Natural Science Foundation of China (grant
numbers 12025107, 11871463, 61621003, 12001215); Funda-
mental Research Funds for Central Universities (5003011023
to M.Z.); National Institutes of Health (grant numbers
P50HG007735, R01HG007834 and R01HG010359 to W.H.W.);
National Key R&D Program of China (No. 2017YFC0908400
and 2020YFA0712402 to Y.W.).

References
1. Nose A, Nagafuchi A, Takeichi M. Expressed recombinant

cadherins mediate cell sorting in model systems. Cell
1988;54(7):993–1001.

2. Orfao A, Ruiz-Argüelles A. General concepts about cell sort-
ing techniques. Clin Biochem 1996;29(1):5–9.

3. De Rosa SC, Brenchley JM, Roederer M. Beyond six col-
ors: a new era in flow cytometry. Nat Med 2003;9(1):
112–7.

4. Pan Y, Ouyang Z, Wong WH, et al. A new FACS approach
isolates hESC derived endoderm using transcription factors.
PLoS One 2011;6(3):e17536.

5. Thurman RE, Rynes E, Humbert R, et al. The accessi-
ble chromatin landscape of the human genome. Nature
2012;489(7414):75–82.

6. Liu X, Yu X, Zack DJ, et al. TiGER: a database for tissue-
specific gene expression and regulation. BMC Bioinformatics
2008;9(1):271.

7. Yu X, Lin J, Zack DJ, et al. Computational analysis of tissue-
specific combinatorial gene regulation: predicting interac-
tion between transcription factors in human tissues. Nucleic
Acids Res 2006;34(17):4925–36.

8. Kadota K, Ye J, Nakai Y, et al. ROKU: a novel method for
identification of tissue-specific genes. BMC Bioinformatics
2006;7(1):294.

9. Schug J, Schuller WP, Kappen C, et al. Promoter fea-
tures related to tissue specificity as measured by Shannon
entropy. Genome Biol 2005;6(4):R33.

10. Pierson E, GTEx Consortium, Koller D, et al. Sharing and
specificity of co-expression networks across 35 human tis-
sues. PLoS Comput Biol 2015; 11(5):e1004220.

11. Newman AM, Liu CL, Green MR, et al. Robust enumeration
of cell subsets from tissue expression profiles. Nat Methods
2015;12(5):453–7.

12. Stamatoyannopoulos JA, Snyder M, Hardison R, et al. An
encyclopedia of mouse DNA elements (mouse ENCODE).
Genome Biol 2012;13(8):418.

13. Hutchins AP, Yang Z, Li Y, et al. Models of global gene expres-
sion define major domains of cell type and tissue identity.
Nucleic Acids Res 2017;45(5):2354–67.

14. Duren Z, Wang Y. A systematic method to identify mod-
ulation of transcriptional regulation via chromatin activity
reveals regulatory network during mESC differentiation. Sci
Rep 2016;6(1):22656.

15. Qiu P, Gentles AJ, Plevritis SK. Fast calculation of pair-
wise mutual information for gene regulatory network
reconstruction. Comput Methods Prog Biomed 2009;94(2):
177–80.

16. Newman ME, Girvan M. Finding and evaluating com-
munity structure in networks. Phys Rev E 2004;69(2):
026113.

17. Zhang H-M, Chen H, Liu W, et al. AnimalTFDB: a comprehen-
sive animal transcription factor database. Nucleic Acids Res
2012;40(D1):D144–9.

18. Hutchins AP, Takahashi Y, Miranda-Saavedra D. Genomic
analysis of LPS-stimulated myeloid cells identifies a com-
mon pro-inflammatory response but divergent IL-10 anti-
inflammatory responses. Sci Rep 2015;5(1):9100.

19. Duren Z, Chen X, Jiang R, et al. Modeling gene regulation from
paired expression and chromatin accessibility data. Proc Natl
Acad Sci 2017;114(25):E4914–23.

20. Kruskal JB. Multidimensional scaling by optimizing good-
ness of fit to a nonmetric hypothesis. Psychometrika
1964;29(1):1–27.

21. Maaten L, Hinton G. Visualizing data using t-SNE. J Mach
Learn Res 2008;9(Nov):2579–605.

22. D’Alessio AC, Fan ZP, Wert KJ, et al. A systematic approach
to identify candidate transcription factors that control cell
identity. Stem Cell Reports 2015;5(5):763–75.

23. Nie Y, Waite J, Brewer F, et al. The role of CXCR4 in maintain-
ing peripheral B cell compartments and humoral immunity.
J Exp Med 2004;200(9):1145–56.

24. Hashimoto S, Chiorazzi N, Gregersen PK. Alternative splicing
of CD79a (Ig-αmb-1) and CD79b (Ig-βB29) RNA transcripts in
human B cells. Mol Immunol 1995;32(9):651–9.

25. Wollscheid B, Bausch-Fluck D, Henderson C, et al. Mass-
spectrometric identification and relative quantification
of N-linked cell surface glycoproteins. Nat Biotechnol
2009;27(4):378–86.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab235#supplementary-data


14 Zou et al.

26. Gokturk B, Keles S, Kirac M, et al. CD3G gene defects
in familial autoimmune thyroiditis. Scand J Immunol
2014;80(5):354–61.

27. Thomassen E, Dekking EHA, Thompson A, et al. The impact
of single amino acid substitutions in CD3γ on the CD3εγ

interaction and T-cell receptor–CD3 complex formation.
Hum Immunol 2006;67(8):579–88.

28. Alvarez JD, Yasui DH, Niida H, et al. The MAR-binding pro-
tein SATB1 orchestrates temporal and spatial expression
of multiple genes during T-cell development. Genes Dev
2000;14(5):521–35.

29. Yasui D, Miyano M, Cai S, et al. SATB1 targets chromatin
remodelling to regulate genes over long distances. Nature
2002;419(6907):641–5.

30. Hutchins AP, Diez D, Takahashi Y, et al. Distinct tran-
scriptional regulatory modules underlie STAT3’s cell type-
independent and cell type-specific functions. Nucleic Acids
Res 2013;41(4):2155–70.

31. Carballo E, Lai WS, Blackshear PJ. Feedback inhibition of
macrophage tumor necrosis factor-α production by triste-
traprolin. Science 1998;281(5379):1001–5.

32. Katoh H, Yamashita K, Waraya M, et al. Epigenetic silencing
of HOPX promotes cancer progression in colorectal cancer.
Neoplasia 2012;14(7):559–IN6.

33. McLean CY, Bristor D, Hiller M, et al. GREAT improves func-
tional interpretation of cis-regulatory regions. Nat Biotechnol
2010;28(5):495–501.

34. Jiang L, Wang M, Lin S, et al. A quantitative proteome map of
the human body. Cell 2020;183(1):269–283.e19.

35. Yan L, Yang M, Guo H, et al. Single-cell RNA-Seq profiling of
human preimplantation embryos and embryonic stem cells.
Nat Struct Mol Biol 2013;20(9):1131–9.

36. Duren Z, Chen X, Zamanighomi M, et al. Integrative anal-
ysis of single-cell genomics data by coupled nonnega-
tive matrix factorizations. Proc Natl Acad Sci 2018;115(30):
7723–8.


	MIMIC: an optimization method to identify cell type-specific marker panel for cell sorting
	Introduction 
	Methods
	Results
	Discussion
	Supplementary data
	Funding


