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Abstract 

Background:  RNA methylation refers to a form of methyl modification in RNA that modulates various epigenetic 
alterations. Mounting studies have focused on its potential mechanisms in cancer initiation and progression. However, 
the prognostic value and potential role of RNA methylation in the immune microenvironment of pancreatic cancer 
remain unclear.

Methods:  Comprehensive bioinformatics analysis was performed to illuminate the expression profiles of RNA meth-
ylation modulators. In addition, the ConsensusClusterPlus algorithm was utilized to identify two remarkably different 
subtypes, and a feasible risk stratification method was established to accurately estimate prognosis. In addition, we 
validated our signature at the cytology and histology levels and conducted functional experiments to explore the 
biological functions of our key genes.

Results:  Two subtypes with remarkable survival differences were identified by the consensus clustering algorithm. 
Cluster 2 tended to have higher expression levels of RNA methylation regulators and to be the high RNA methyla-
tion group. In addition, cluster 1 exhibited a significantly higher abundance of almost all immune cells and increased 
immune checkpoint expression compared to cluster 2. Chemotherapeutic sensitivity analysis indicated that there 
were significant differences in the sensitivity of four of the six drugs between different subgroups. Mutation investi-
gation revealed a higher mutation burden and a higher number of mutations in cluster 2. An accurate and feasible 
risk stratification method was established based on the expression of key genes of each subtype. Patients with low 
risk scores exhibited longer survival times in one training (TCGA) and two validation cohorts (ICGC, GSE57495), with 
p values of 0.001, 0.0081, and 0.0042, respectively. In addition, our signature was further validated in a cohort from 
Fudan University Shanghai Cancer Center. The low-risk group exhibited higher immune cell abundance and immune 
checkpoint levels than the high-risk group. The characteristics of the low-risk group were consistent with those of 
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Introduction
Pancreatic cancer is regarded as one of the most aggres-
sive and lethal malignances and has an extremely high 
mortality rate [1]. Given the lack of early symptoms and 
late diagnosis, patients with pancreatic cancer always 
miss the opportunity to undergo radical surgery [2]. Drug 
resistance makes the effects of various common chemo-
therapy regimens for pancreatic cancer unsatisfactory 
[3]. Additionally, newly emerging immunotherapy drugs 
have achieved disappointing outcomes in the treatment 
of pancreatic cancer, which may be attributed to the cold 
immune microenvironment of pancreatic cancer [4]. The 
immune microenvironment of pancreatic cancer tend 
to be less infiltrated by immune cells, leading to the low 
reactivity of pancreatic cancer to immunotherapy [4] 
Therefore, new risk stratification methods and biomark-
ers are urgently needed for clinical practice and therapy 
in pancreatic cancer.

RNA methylation is a form of RNA methyl modifica-
tion that modulates epigenetic alterations [5]. More than 
70 types of RNA methylation modifications have been 
identified in messenger RNA (mRNA) and noncoding 
RNA (ncRNA), and the most essential types in humans 
include N6-methyladenosine (m6A), 5-methylcytosine 
(m5C), and 7-methylguanosine (m7G) modification [5–
7]. m6A methylation refers to adenosine methylation at 
the N6 position; the form of methylation was discovered 
in 1974 and thought to be the most common [8, 9]. m5C 
methylation adds a methyl group to cytosine at the 5th 
carbon in mRNAs [10], enhancer RNAs (eRNAs) [11], 
transfer RNAs (tRNAs) [12], small RNAs (sRNAs) [13], 
and ribosomal RNAs (rRNAs) [13]. m7G methylation 
modifies the N7 guanosine with a methyl group and has 
been found to exist in various mRNAs and ncRNAs [14, 
15]. RNA methylation is a reversible process requiring 
various auxiliary enzymes and binding proteins, includ-
ing methyltransferases, demethylases, and modified RNA 
binding proteins known as “writers”, “erasers”, and “read-
ers”, respectively. Writers dominate the RNA methylation 
process [5]. In the writer complex consisting of METTL3 
and METTL14, METTL3 functions as the catalytic subu-
nit, while METTL14 facilitates RNA binding. In addition, 
the zinc finger protein ZC3H13 has also been reported to 

promote the nuclear localization of the writer complex 
[16]. Erasers play an essential role in RNA demethylation. 
FTO and ALKBH5 are key erasers in demethylation. FTO 
is mainly localized to the nucleus and mediates m6A 
demethylation. In addition, FTO can also promote m6A 
demethylation without affecting transcriptional stability 
[17]. Correspondingly, readers recognize and bind meth-
ylated RNA, affecting its posttranscriptional modifica-
tion [18] The reader YTHDC1 regulates mRNA splicing 
and alters transcript metabolism [19], and YTHDC2 has 
also been found to bind methylation sites and mediate 
mRNA stability [20].

Many studies have demonstrated the potential connec-
tion between RNA methylation and various biological 
processes, especially the occurrence and progression of 
malignant tumors [21, 22]. Wang et al. revealed that ele-
vated expression of METTL3 (m6A writer) contributed 
to the progression and metastasis of gastric cancer and 
indicated poor prognosis [23]. Interestingly, METTL14 
(m6A writer) was reported to exhibit decreased levels in 
colorectal cancer and to attenuate colorectal cancer cell 
invasion and proliferation by suppressing m6A modifica-
tion [24]. In addition, pancreatic cancer was also found to 
have upregulated METTL3 and downregulated ALKBH5 
(m6A eraser) expression, and this dysregulation signifi-
cantly influenced RNA methylation and resulted in poor 
clinical outcomes. METTL3 mainly affects RNA splic-
ing and cellular regulation to promote chemotherapy 
and radiation tolerance, while ALKBH5 mainly regulates 
WIF-1 RNA methylation and Wnt signaling to modulate 
tumor progression [25, 26]. In conclusion, the distur-
bance of RNA methylation is closely related to the occur-
rence and progression of different tumors.

Many scientists have shed light on the correlation 
between RNA methylation and the tumor immune 
microenvironment [27]. Some studies have indicated 
that T-cell differentiation is regulated by METTL3 
because it initiates the methylation of IL7-related path-
ways. Depletion of YTHDF1 (m6A reader) can also sus-
pend the related methylation process and enhance the 
antigen presentation competence of dendritic cells, ulti-
mately affecting the activation of other immune cells 
[28]. Additionally, RNA methylation may also be involved 

cluster 1: higher stromal score, estimate score, and immune score and lower tumor purity. Additionally, cell function 
investigations suggested that knockdown of CDKN3 remarkably inhibited the proliferation and migration of pancre-
atic cancer cells.

Conclusions:  RNA methylation has a close correlation with prognosis, immune infiltration and therapy in pancreatic 
cancer. Our subtypes and risk stratification method can accurately predict prognosis and the efficacy of immune 
therapy and chemotherapy.

Keywords:  Pancreatic cancer, RNA methylation, Bioinformatics analysis, Immune infiltration
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in innate immunity modulation. Gu et  al. revealed that 
deletion of FTO (m6A eraser) contributed to the inhibi-
tion of M1 and M2 macrophages by silencing STAT1 and 
NF-κB pathway activity [29]. Given the potential correla-
tion between RNA methylation and the tumor immune 
microenvironment of pancreatic cancer, it may be prom-
ising to analyze and investigate biological targets and 
therapeutic methods for immunotherapy of pancreatic 
cancer through RNA methylation.

In our research, we comprehensively analyzed the 
potential relationship of RNA methylation with distinct 
pancreatic cancer subtypes and the role of RNA methyla-
tion in risk classification, prognostic assessment, immune 
regulation and treatment.

Materials and methods
Dataset acquisition and RNA methylation modulator 
identification
We extracted the sequencing, mutation (version var-
scan2), and clinical data of pancreatic cancer patients 
from the UCSC Xena database (https://​xena.​ucsc.​edu/). 
A total of 124 complete data points was retained after 
excluding those from benign tumor and neuroendocrine 
cancer samples (GDC TCGA PAAD, log2(tpm + 1) val-
ues). In addition, the transcriptome data of PACA-AU 
(80 samples) and GSE57495 (63 samples) were obtained 
from the ICGC (https://​dcc.​icgc.​org/) and GEO data-
bases, respectively (https://​www.​ncbi.​nlm.​nih.​gov/​
geo/). Overall, 38 critical RNA methylation modulators 
(readers, writers, or erasers of RNA methylation) were 
identified from previously published literature, and the 
information is listed in Table 1. The transcriptome data of 
cancer and normal pancreatic samples (TCGA TARGET 
GTEx cohort, log2(tpm + 0.001) values) were obtained 
from the UCSC Xena database and utilized to analyze the 
expression profiles of RNA methylation modulators.

Identification of significantly different subtypes based 
on expression patterns of RNA methylation modulators
A consensus clustering algorithm was employed to 
identify optimal subtypes based on a matrix composed 
of RNA methylation regulators using the R package 
“ConsensusClusterPlus” (K-means, Euclidean distance, 
reps = 1000, pItem = 0.8, clusterAlg = “hc”) [53]. Addi-
tionally, we performed survival analysis to compare the 
prognoses of different subtypes (R package “survminer 
0.4.9”, R package “survival 3.3.7”, conf.int = T, pval = T, 
risk.table = T) [54, 55].

Elucidating the immune characteristics, chemotherapy 
sensitivity and mutation landscape of different subtypes
We compared the immune infiltration, chemotherapy 
sensitivity and mutation landscapes of the subtypes. The 

R package “GSVA” (version 1.38.2, mx.diff = FALSE, ver-
bose = FALSE, parallel.sz = 1) [56] and the CIBERSORT 
algorithm (version 1.0.3, perm = 100, QN = TRUE) [57] 
were used to estimate the proportions of infiltrating 
immune cells in various subtypes. The R package “PRRo-
phetic” (version 0.5, batchCorrect = ‘eb’, powerTrans-
formPhenotype = T, removeLowVaryingGenes = 0.2, 
minNumSamples = 10) was used to estimate the common 
drug IC50 values of various samples [58]. Based on the 
drug sensitivity data from the Cancer Genome Project, 
users could predict the IC50 value from sample expres-
sion data. The mutation landscapes of different subtypes 
were also evaluated by the R package “maftools” (ver-
sion 2.6.05, rmOutlier = TRUE, addStat = ‘median’, dash-
board = TRUE, titvRaw = FALSE) [59]. The differences in 
immune cell abundance, drug IC50, and mutation burden 
between different risk groups were compared through 
the Wilcoxon test. The results were visualized with box 
plots and violin plots using the R package “ggpubr” (ver-
sion 0.4.0) [60] and “ggplot2” (version 3.3.5), respectively 
[61].

Differential expression and coexpression analyses
The empirical bayesian algorithm was employed by the 
R package “limma” to identify RNA methylation-related 
differentially expressed genes (DEGs) (version 3.46.0, 
abs (logFC) > 1, P.value < 0.05) [62]. A volcano plot of 
the DEGs was drawn by the R package “ggplot2” (ver-
sion 3.3.5) [61]. In addition, we analyzed the correlations 
among the DEGs, and a correlation heatmap was utilized 

Table 1  List of RNA methylation regulators of M5C, M6A, and 
M7G methylation

Writer Reader Eraser

M5C TRDMT1 [30], NSUN1 
[31], NSUN2 [31]
NSUN3 [31], NSUN4 
[31], NSUN5 [31]
NSUN6 [31], NSUN7 
[31], DNMT1 [32]
DNMT2 [33], 
DNMT3A [32], 
DNMT3B [32]

ALYREF [34],
YBX1 [34]

TET2 [35]

M6A METTL3 [36], 
METTL14 [36], 
METTL16 [37],
WTAP [38], KIAA1429 
[39], RBM15 [40],
RBM15B [41], ZC3H13 
[42]

EIF3A [43], IGF2BP1 
[44],
IGF2BP2 [44], 
IGF2BP3 [44],
YTHDC1 [45], 
YTHDC2 [45],
YTHDF1 [45], 
YTHDF2 [46],
YTHDF3 [47], 
HNRNPC [48],
HNRPA2B1 [44]

FTO [49],
ALKBH5 [50]

M7G METTL1 [51],
WDR4 [52]

https://xena.ucsc.edu/
https://dcc.icgc.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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to visualize the coexpression profiles. The coexpression 
analysis was performed and the heatmap was gener-
ated by the R package “corrplot” (version 0.92, method 
= “circle”,insig = “pch”, number.cex = 0.5, order = “AOE”) 
[63]. Functional analysis, including Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analyses and gene set enrichment analysis 
(GSEA), was performed by the R packages “clusterPro-
filer 3.18.1” (pvalueCutoff =0.05, qvalueCutoff =0.05, 
readable = TRUE) [64] and “org. Hs.eg.db 3.12.0” (from-
Type = “SYMBOL”, toType = “ENTREZID”) [65].

Identification of RNA methylation‑related hub genes 
and construction of a risk model
We screened the DEGs to identify the most important 
biomarkers. The filtering methods included univari-
ate Cox regression analysis, LASSO regression analysis, 
random forest algorithm analysis, and multivariate Cox 
regression analysis. Univariate Cox regression analysis 
was used to identify survival-related genes (R package 
“survminer 0.4.9”, R package “survival 3.3.7”) [54, 55]. Sig-
nificant genes (P value < 0.005) identified in the univari-
ate Cox regression analysis were included in the LASSO 
regression and random forest analyses. We then com-
bined the hub genes identified in the LASSO regression 
and random forest analyses. The random forest algorithm 
analysis was performed with the R package “random-
ForestSRC” (version 2.12.0, set.seed = 60, ntree = 100, 
nsplit = 1) [66]. LASSO regression analysis was per-
formed with the R package “glmnet” (version 4.1.2, 
nfold = 1000, family = ‘cox’) [67]. Multivariate Cox regres-
sion analysis was used to eliminate collinearity and con-
struct a risk signature (R package “survival 3.3.7”) [55]. 
The risk score formula was as follows: n

1coef ∗ exp (xn) . 
The R packages “survival” (version 3.3.7) and “sur-
viminer” (version 0.4.8) were used to draw survival 
curves and compare the prognosis of different risk groups 
[54, 55]. Additionally, we established a clinical nomogram 
integrating the risk signature and some clinical char-
acteristics to increase clinical applicability (R package 
“rms 6.2.0”) [68]. Area under the curve (AUC) analysis 
was used to evaluate the risk signature, and the receiver 
operating characteristic (ROC) curves were drawn by 
the R package “timeROC” (version 0.4.0, marker = lpFit, 
cause = 1, weighting = “marginal”,ROC = T, iid = T) [69].

Comprehensively analyzed our risk model in immune 
regulation activities, immune checkpoint therapy 
and chemotherapy
The CIBERSORT [57] and ssGSEA [70] algorithms 
(method = ‘ssgsea’, kcdf = ‘Gaussian’, abs.ranking = TRUE) 
were used to estimate the immune cell infiltration 
between various risk groups. The R package “ESTIMATE 

1.0.13” was used to calculate the stromal score, esti-
mate score, immune score, and tumor purity of all sam-
ples [71]. These algorithms allowed us to assess various 
immune cell scores and proportions based on the sam-
ple expression matrix. In addition, we also compared 
the expression levels of immune checkpoints and the 
IC50 values of chemotherapeutic drugs in different risk 
groups. Information on immune checkpoints is pre-
sented in Table S1. The R package ‘PRRophetic’ (version 
0.5, batchCorrect = ‘eb’, powerTransformPhenotype = T, 
removeLowVaryingGenes = 0.2, minNumSamples = 10) 
was used to estimate the common drug IC50 values of 
various samples [58]. The Wilcoxon test was used to com-
pare the differences in immune checkpoints and chemo-
therapeutic drug IC50 values between different risk 
groups, and a p value < 0.05 was considered significant.

Comparison of our risk model with other published risk 
signatures
To prove the superiority of our risk model in prognos-
tic ability, several published models were compared 
with our model in the following aspects: survival curve, 
ROC curve and c-index (“rms” 6.2.0) [68]. We mainly 
compared our model with three published models, the 
3-gene model of Tang et  al [72], the 4-gene model of 
Meng et  al [73], and the 5-gene model of Xu et  al [74]. 
A well-differentiated survival curve, a better ROC curve 
area and a larger c-index indicate more ideal prediction 
performance.

Cell culture and qRT–PCR verification
We obtained one human normal pancreatic epithelial 
cell line (HPDE) and four human pancreatic cancer cell 
lines (SW 1990, BxPC-3, CFPAC-1, PANC-1) to verify 
the expression levels of ANLN, ARNTL2, CDKN3, and 
FAM53B. In addition, the expression levels of all RNA 
methylation regulators in different cell lines were also 
measured and compared. All cell lines were cultured 
in Dulbecco’s modified Eagle’s medium (DMEM) with 
10% fetal bovine serum (FBS) and 1% antifungal. Addi-
tionally, 70 clinical samples with complete follow-up 
information that underwent pancreatic cancer resection 
were extracted from Fudan University Shanghai Cancer 
Center. We extracted the RNA of these paraffin-embed-
ded specimens to verify the clinical application value of 
our risk model. The primer sequences of all genes are 
provided in Table S2. The expression data were normal-
ized to GAPDH, and the relative mRNA expression level 
was calculated by the 2-ΔΔCt method.

Flow cytometry
PANC-1 cells were chosen to perform the flow cytometry 
experiment. A PE Annexin V Apoptosis Detection Kit 
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(BD, cat: 559763) was used to stain PANC-1 cells, and a 
FACSCalibur flow cytometer was used to count them.

Transwell migration assay
To detect the migration ability, PANC-1 cells (5 × 104 
cells) were cultured in the upper chamber with 200 μL 
of serum-free medium. Then, 500 μl medium with 20% 
FBS was added to the lower chamber. After fixing, stain-
ing and washing the upper chamber cells, we counted the 
migrating cells with 5 random areas per chamber.

EdU assay
PANC-1 cells (3 × 104 cells) were cultured in 96-well 
plates with 4 replicate wells and incubated with EdU 
working solution for two hours (BeyoClick™ EdU Cell 
Proliferation Kit with Alexa Fluor 594, China). After fixa-
tion, membrane rupture and nuclear staining, we used a 
fluorescence microscope (OLYMPUS, Tokyo, Japan) to 
capture fluorescence images.

Results
Expression profiles of RNA methylation modulators 
in pancreatic cancer
To investigate the potential role of RNA methylation 
modulators (including m5C, m6A, and m7G modula-
tors) in the occurrence and progression of pancreatic 
cancer, we compared the expression profiles of 38 RNA 
methylation modulators between pancreatic cancer 
samples and normal samples. The heatmap shows the 
expression levels of these 38 RNA methylation modu-
lators (Fig.  1A). The box plot further shows a compari-
son of tumor and normal samples (Fig. S1A). Almost all 
RNA methylation modulators showed elevated expres-
sion levels in tumors compared to normal tissue (except 
METTL1, EIF3A, YTHDC1, and YTHDC2) (Fig. S1A). 
In addition, NSUN6, NSUN7, and DNMT3B exhibited 
downregulated trends in pancreatic cancer (Fig. S1A). 
Coexpression analysis indicated high correlation among 
the majority of RNA methylation modulators (Fig.  1B). 
We further explored direct associations between these 
regulators at the proteomic level. The protein interaction 
network further demonstrates the strong correlations 
among these RNA methylation modulators (Fig. 1C).

Identification of two clusters of pancreatic cancer 
with different survival characteristics
We identified 2 unique expression patterns through 
unsupervised clustering: cluster 1 and cluster 2 (Fig. 2A, 
B, C). A heatmap was generated to show the expression 
levels of the RNA methylation modulators. The expres-
sion level of the RNA methylation modulators in cluster 
2 was higher than that in cluster 1, indicating that cluster 
2 featured high RNA methylation (Fig. 2D). Furthermore, 

we compared prognoses between cluster 1 and cluster 
2, and cluster 1 exhibited better overall survival (P value 
=0.01) (Fig.  2E). A total of 2130 DEGs were identified 
between the two clusters by the R package “limma” (p 
value< 0.05). The volcano plot depicts the upregulated 
and downregulated DEGs, which are marked in red and 
blue, respectively (Fig. 2F).

Patients in the two clusters differed in immune landscape, 
drug sensitivity, and mutation burden
To further investigate the practical application utility of 
the clusters, we assessed immune and mutation charac-
teristics and drug sensitivity in the two clusters. Cluster 
1 exhibited a significantly higher abundance of almost all 
immune cells than cluster 2 (Fig. 3A, ssGSEA), except for 
activated NK cells and M0 macrophages (Fig. S1B, CIB-
ERSORT). Pancreatic cancer samples showed elevated 
immune checkpoint expression levels compared to nor-
mal samples, indicating changes in the immune micro-
environment (Fig.  3B). Interestingly, cluster 1 exhibited 
relatively higher expression of almost all immune check-
points than cluster 2, except for LGALS9, indicating that 
it may have high responsiveness to immune checkpoint 
inhibitors (Fig.  3C). However, in terms of drug resist-
ance, the different clusters showed different responses 
to commonly used chemotherapeutic drugs. Cluster 1 
exhibited lower IC50 values of nilotinib, paclitaxel and 
cisplatin and higher IC50 values of etoposide compared 
to cluster 2 (Fig. S1C). Mutation analysis indicated that 
cluster 2 had a higher tumor mutation burden than clus-
ter 1 (Fig. 4A). Additionally, cluster 2 exhibited a higher 
number of various mutation types, including frame-shift 
deletion, frame-shift insertion, in-frame deletion, mis-
sense, nonsense, and silent mutations (Fig. 4B). Similarly, 
a relatively higher proportion of the samples in cluster 
2 exhibited gene mutation, and the two genes with the 
highest mutation frequency were KRAS and TP53 in 
both clusters (Fig.  4C, D). Based on these results, clus-
ter 1 exhibited higher immune cell abundance, higher 
immune checkpoint expression levels, and a lower muta-
tion frequency than cluster 2.

Functional annotation and molecular pathway analyses 
of the DEGs between the two clusters
Subsequently, we performed functional enrichment analy-
sis, including GO and KEGG analyses and GSEA, and visu-
alized the results with a dot plot (Fig. S2A, Fig. S2B) and 
GSEA plot (Fig. S2C, Fig. S2D). The main enriched biologi-
cal functions and processes included the terms “immune 
response”, “immune cell differentiation and migration”, 
“cell activation”, “angiogenesis”, and “response to cytokine”, 
indicating a correlation with immune regulation and can-
cer development. In addition, the main enriched KEGG 
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Fig. 1  Expression profiles of RNA methylation modulators in pancreatic cancer. A The heatmap shows the expression profiles of RNA methylation 
modulators in normal tissues and cancer tissues. B Coexpression analysis indicated strong correlations among the majority of genes. Red indicates 
a positive correlation, blue indicates a negative correlation, and “×” means that the p value of the correlation was > 0.05. C Protein network 
demonstrating the correlation among RNA methylation modulators
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pathway terms of the DEGs were “chemokine signaling 
pathway”, “cell adhesion molecules”, and “JAK-STAT signal-
ing pathway”; some immune differentiation-related path-
ways were also enriched. These results were consistent with 
the GO analysis results and indicated a potential role of the 
DEGs in pancreatic cancer.

Establishment of a subtype‑related risk model 
and prognostic nomogram
Given the remarkable differences in the characteristics 
of the RNA methylation-related subtypes, we further 
investigated the prognostic role of genes with differen-
tial expression between the subtypes. A total of 26 and 17 
genes were identified after univariate Cox regression and 
LASSO regression combined with random forest analy-
sis, respectively (Fig. S3A, Fig. S3B). In total, 4 differential 
genes were ultimately identified and utilized to construct a 
risk signature (Fig. S3B). The model formula is as follows: 
risk score = 1.0746*exp. (CDKN3)-0.9659*exp. (FAM53B)-
0.5651*exp.(ANLN) + 0.7498*exp.(ARNTL2). The cor-
relation heatmap shows a high correlation between the 
screened genes (Fig. S3C). The prognostic utility of the risk 
signature was determined in a TCGA training cohort and 
validated in external datasets: GSE57495 and ICGC. The 
results indicated that patients with low risk scores exhib-
ited longer survival times in all cohorts, with p values of 
0.001, 0.0081, and 0.0042 in the TCGA, GSE57495, and 
ICGC cohorts, respectively (Fig. 5A, B, C). The risk plots 
depict the risk score and survival time of each patient 
(Fig.  5D, E, F). ROC curve analysis was used to test the 
reliability and stability of the risk signature (Fig. 5G, H, I). 
The high AUC values in the training set and validation set 
indicated the good predictive performance of our model 
(generally greater than 0.7). Furthermore, we compared the 
prognostic value of our risk signature with those of some 
important clinical parameters. Univariate and multivariate 
Cox regression analyses indicated that our risk score was 
an independent prognostic indicator in pancreatic cancer 
(p value< 0.001) (Fig. 6A, B). A clinical nomogram was con-
structed based on our risk signature and included the clini-
cal parameters age, sex, AJCC T stage, AJCC N stage, and 
tumor stage (Fig. 6C). Calibration curve analysis and deci-
sion curve analysis (DCA) verified the predictive utility of 
our nomogram (Fig. S4A, Fig. S4B).

Ability of the RNA methylation‑based model to reflect 
the immune landscape and drug sensitivity
To further explore the practical application of our sub-
type-related risk model in pancreatic cancer, we inves-
tigated its ability to reflect immune infiltration and 
chemotherapeutic sensitivity. ssGSEA analysis indicated 
that the low-score group had higher immune cell abun-
dance than the high-score group (Fig.  7A). The level of 
M0 macrophages was higher in the high-score group 
than in the low-score group (CIBERSORT); macrophages 
can be polarized into M1 or M2 macrophages, which play 
opposite roles (Fig. S5A) [75]. In addition, the high-score 
group exhibited a lower stromal score, estimate score, 
and immune score and a higher tumor purity, which 
was consistent with the features of cluster 2 (Fig. 7B, C). 
Interestingly, cluster 2 exhibited a higher risk score than 
cluster 1, suggesting that cluster 2 may have a higher 
risk and worse prognosis (Fig.  7D). Additionally, the 
low-score group exhibited high expression levels of all 
immune checkpoints, indicating increased potential for 
immunotherapy in this group (Fig. 7E). We estimated the 
chemotherapy sensitivity of the different risk groups. The 
low-score group had a higher IC50 value of etoposide but 
a lower IC50 value of cisplatin (Fig. S5B).

The risk model had better predictive ability and accuracy 
than other published models
To further prove the superiority of our risk model, we 
compared our model with some published methylation-
related models, including a 3-gene signature, a 4-gene 
signature, and a 5-gene signature. Survival curve, ROC 
curve, and c-index analyses were used to evaluate the 
models. The analyses were based on TCGA data, and the 
result indicated that our model exhibited a better ability 
to predict survival and to distinguish the high- and low-
risk groups than other models (Fig. 8A, B, C). The ROC 
curve analysis suggested that our model had higher sta-
bility and accuracy (Fig.  8D, E, F). We also performed 
these analyses in the ICGC and GSE57495 cohorts, and 
the results validated our conclusion (Fig. S6, Fig. S7). In 
addition, we comprehensively compared the c-indexes 
of various models in the TCGA, ICGC, and GSE57495 
cohorts. Our model exhibited a higher c-index than other 
published models for all cohorts (Fig. 8G).

Fig. 2  Two clusters of pancreatic cancer samples with different survival characteristics. A-C k = 2 exhibited the best clustering performance with 
the smallest CDF value and the largest CDF area change. D The heatmap shows the expression level of RNA methylation modulators in cluster 
1 and cluster 2. E Cluster 1 had better overall survival than cluster 2. F The volcano plot depicts the differentially expressed genes between the 
two clusters. Red represents upregulated differentially expressed genes, blue represents downregulated differentially expressed genes, and gray 
represents nonsignificant differentially expressed genes. A P value < 0.05 was considered significant

(See figure on next page.)
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Fig. 3  Patients in the two clusters differed in immune landscape. A Cluster 1 exhibited a higher abundance of almost all immune cells than cluster 
2 (ssGSEA). (Comparisons were made by the Wilcoxon test, the lines in the boxes represent medians, and the asterisks represent p values. *P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001, ns P > 0.05.) B Pancreatic cancer samples showed elevated immune checkpoint levels compared to normal 
samples. (Comparisons were made by the Wilcoxon test, the lines in the boxes represent medians, and the asterisks represent p values. *P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001, ns P > 0.05.) C Cluster 1 exhibited relatively higher expression levels of almost all immune checkpoints than 
cluster 2. (Comparisons were made by the Wilcoxon test, the lines in the boxes represent medians, and the asterisks represent p values. *P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001, ns P > 0.05)
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Validation of the accuracy of our risk stratification model 
with cytology and histology experiments
We cultured a normal pancreatic ductal epithelial cell 
line (HPDE) and four pancreatic cancer cell lines (SW 
1990, BxPC-3, CFPAC-1, and PANC-1), extracted RNA 

from the cells, and performed qRT-PCR to determine 
the expression profiles of key prognostic genes (ANLN, 
ARNTL2, CDKN3, and FAM53B) and RNA methyla-
tion regulators. The results (Fig. S8) indicated that the 
mRNA levels of ANLN, ARNTL2, CDKN3, and FAM53B 

Fig. 4  Patients in the two clusters differed in mutation landscape. A Comparison of the TMB score between cluster 1 and cluster 2 (Wilcoxon test; 
the asterisks represent p values; **P < 0.01) B Comparison of mutation types between cluster 1 and cluster 2 (Wilcoxon test; the lines in the boxes 
represent medians, and the asterisks represent p values; *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns P > 0.05.) C, D Waterfall plot depicting 
the mutated genes of patients in different clusters
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in the cancer cell lines (SW 1990, BxPC-3, CFPAC-1, and 
PANC-1) were significantly higher than those in the nor-
mal cell line (HPDE), indicating their prognostic value. 
In addition, the expression levels of ANLN, ARNTL2, 
CDKN3, and FAM53B were upregulated in cancer tissues 
from our cancer center (Fig. S9A). The expression levels 
of most RNA methylation regulators were also elevated 
in the tumor cell lines, suggesting that pancreatic cancer 

tumor cells may have higher levels of RNA methylation 
(Fig. S10). Our model also performed well in a FUSCC 
cohort. The survival time of high-risk patients was sig-
nificantly lower than that of low-risk patients (P value 
< 0.05), with AUCs of 0.66 and 0.75 for one and two years, 
respectively (Fig. S9B, Fig. S9C).

Fig. 5  Establishment of a risk stratification model based on genes differentially expressed between the subtypes. A-C Patients with low risk 
scores exhibited longer survival times than those with high scores in the three cohorts (TCGA, ICGC, and GSE57495). D-F Risk plots depicting 
the risk scores and survival times of each patients. A heatmap depicting the expression of core genes in pancreatic cancer patients is also shown 
(TCGA, ICGC, and GSE57495). G-I The high AUC in the training set (TCGA) and validation set (ICGC and GSE57495) indicates the good predictive 
performance of our risk model
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Fig. 6  Clinical nomogram constructed based on the risk signature and clinical parameters. A-B Univariate and multivariate Cox regression analyses 
of our risk signature and clinical parameters (the asterisks represent p values; ***P < 0.001). C The clinical nomogram was constructed based on our 
risk signature and clinical parameters. The scales in the figure represent the single item scores corresponding to each variable under different values, 
and the total points indicate the total score after all variables have been assigned values

(See figure on next page.)
Fig. 7  Analysis of the ability of the RNA methylation-related signature to reflect the immune landscape. A The low-score group had higher immune 
cell abundance than the high-score group for all immune cells (all P < 0.05). Comparisons were made with the Wilcoxon test, the lines in the boxes 
represent medians, and the asterisks represent p values. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns P > 0.05. B-D The high-score group 
exhibited a lower stromal score, estimate score, and immune score and higher tumor purity than the low-score group, consistent with the features 
of cluster 2. Comparisons were made with the Wilcoxon test, the lines in the boxes represent medians, and the asterisks represent p values. *P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001, ns P > 0.05. E The low-score group exhibited higher expression levels of immune checkpoints than the 
high-score group. Comparisons were made with the Wilcoxon test, the lines in the boxes represent medians, and the asterisks represent p values. 
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns P > 0.05
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Fig. 7  (See legend on previous page.)
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Fig. 8  The risk model exhibited better predictive performance and accuracy than other published models (TCGA). A-C The model exhibited 
a better ability to predict survival than published signatures. D-F. The model exhibited a higher AUC than published signatures. G The model 
exhibited a higher c-index than published models in for all cohorts
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CDKN3 significantly promotes the proliferation 
and migration of pancreatic cancer cells
CDKN3 expression was silenced in PANC-1 cells with 
small-interfering RNA. The apoptosis rate of pancreatic 

cancer cells was not remarkably influenced by gene 
silencing (Fig. S11). The proliferation of CDKN3-silenced 
cells was decreased compared to that of control cells 
(Fig.  9A). Additionally, CDKN3-silenced cells exhibited 

Fig. 9  CDKN3 significantly promotes the proliferation and migration of pancreatic cancer cells. A CDKN3 silencing reduced the proliferation of 
PANC-1 cells. B Knockdown of CDKN3 inhibited the migration of PANC-1 cells. Comparisons were made with the unpaired t test, and the asterisks 
represent p values. *P < 0.05, **P < 0.01, ***P < 0.001
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lower migration ability in Transwell migration experi-
ments (Fig. 9B).

Discussion
Recently, epigenetic alterations triggered by RNA 
methylation have become a research focus, and such 
alterations may be associated with the initiation and pro-
gression of malignances. In the field of pancreatic cancer 
RNA methylation research, some scientists have illumi-
nated the potential role of the methylation modifying 
enzyme METTL3 in modulating proliferation, invasion 
and therapeutic sensitivity [76], and efforts to investigate 
the internal mechanism have been made. Some studies 
have also explored the prognostic role of RNA methyla-
tion in pancreatic cancer from the perspective of m6A 
and constructed risk classification models [74]. However, 
no risk stratification or prognostic models have been 
generated based on holistic bioinformatics exploration of 
RNA methylation. In this research, we identified methyl-
ation-related subtypes of pancreatic cancer based on the 
expression patterns of 38 RNA methylation regulators 
and explored the immune, mutation, and chemosensitiv-
ity characteristics of the different subtypes. Additionally, 
a risk stratification signature based on DEGs was estab-
lished to further explore differences in prognosis and 
immunotherapy and chemotherapy efficacy between the 
two risk groups.

Aberrant RNA methylation plays an essential role in 
the occurrence and progression of pancreatic cancer [74, 
77]. Our results suggest that stratifying pancreatic cancer 
patients based on RNA methylation profiles may be use-
ful for improving patient outcomes. Two subtypes with 
remarkable survival differences were identified by con-
sensus clustering, indicating the prognostic role of RNA 
methylation in pancreatic cancer. In addition, we shed 
light on the distinct immune, chemotherapy sensitivity, 
and mutation characteristics of the two clusters. Cluster 
1 exhibited a significantly higher abundance of almost 
all immune cells than cluster 2, suggesting that cluster 
1 features robust immune infiltration. Similarly, clus-
ter 1 had higher expression of the majority of immune 
checkpoints than cluster 2, revealing that cluster 1 is 
more likely to benefit from immunotherapy. Addition-
ally, chemotherapeutic sensitivity analysis indicated that 
there were significant differences in the sensitivity of 
four drugs between the different subgroups, suggesting 
that our RNA methylation-based stratification method 
has potential for guiding chemotherapy drug selection. 
Further mutation investigation revealed a higher muta-
tion burden and higher number of mutations in cluster 
2, which was consistent with the survival analysis. Over-
all, we identified 2 subtypes with considerable differences 

and verified the poor biological behaviors and prognosis 
of cluster 2, providing guidance for predicting clinical 
outcomes and drug selection. Further experiments are 
needed to explore the clinical value of the clustering and 
validate its performance.

We established an accurate and feasible risk strati-
fication method based on DEGs. The use of multiple 
screening methods, including univariate Cox regression, 
LASSO regression, random forest, and multivariate Cox 
regression analyses, ensures the robustness of our results. 
A four-gene risk signature was ultimately identified and 
exhibited an optimal ability to predict survival. Univari-
ate and multivariate Cox analyses indicated that our risk 
score was an independent prognostic indicator. Addition-
ally, comparison of our risk model with other published 
risk signatures confirmed the superiority of our model. 
These findings suggest that our risk stratification method 
based on RNA methylation is useful.

Studies of the immune microenvironment have 
increased with the rise of immunotherapy and targeted 
therapy. Pancreatic cancer exhibits an immunosuppres-
sive microenvironment that includes various immu-
nosuppressive cells (tumor-associated macrophages, 
myeloid-derived suppressor cells (MDSCs), and regu-
latory T cells), which may contribute to the failure of 
immune therapy [78]. Surprisingly, RNA methylation 
may be involved in the modulation of immune cells and 
immune microenvironments [79]. Some scientists have 
demonstrated that elevated expression of METTL3 pro-
motes the proliferation of CD33+ MDSCs, leading to the 
progression of cervical cancer [80]. In our study, compre-
hensive analysis of different risk groups and clusters was 
performed, and immune infiltration levels were analyzed. 
The low-risk group exhibited higher immune cell abun-
dance and immune checkpoint levels than the high-risk 
group, indicating that the low-risk group is more likely to 
benefit from therapy and have a good prognosis. Addi-
tionally, the characteristics of the low-risk group were 
consistent with those of cluster 1: higher stromal score, 
estimate score, and immune score and lower tumor 
purity. In conclusion, the risk stratification model is more 
accurate and practical for subgroup classification and has 
a robust ability to predict immunotherapy efficacy and 
prognosis. Subsequent experiments are needed to vali-
date its utility in clinical practice.

Our study has some strengths and limitations. First, 
our model was tested in multiple datasets and is thus reli-
able. Second, we verified the expression differences and 
prognostic utility of the hub genes in our own cohort. A 
limitation of our research is potential differences in sam-
ple standardization methods between various datasets. 
Further verification with data from more centers and 
larger sample sizes is needed.
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Conclusion
In conclusion, we systematically analyzed the expres-
sion patterns of RNA methylation regulators in pancre-
atic cancer and identified two molecular subtypes with 
completely different characteristics. We constructed 
a risk stratification model based on these subtypes that 
performed better than published risk models. Our study 
is the first to include comprehensive bioinformatics and 
prognostic analysis of RNA methylation in pancreatic 
cancer, and we hope the results will provide references 
for clinical practice.
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