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a b s t r a c t

Epidemics of seasonal influenza inflict a huge burden in temperate climes such as Mel-
bourne (Australia) where there is also significant variability in their timing and magnitude.
Particle filters combined with mechanistic transmission models for the spread of influenza
have emerged as a popular method for forecasting the progression of these epidemics.
Despite extensive research it is still unclear what the optimal models are for forecasting
influenza, and how one even measures forecast performance.
In this paper, we present a likelihood-based method, akin to Bayes factors, for model se-
lection when the aim is to select for predictive skill. Here, “predictive skill” is measured by
the probability of the data after the forecasting date, conditional on the data from before
the forecasting date. Using this method we choose an optimal model of influenza trans-
mission to forecast the number of laboratory-confirmed cases of influenza in Melbourne in
each of the 2010e15 epidemics. The basic transmission model considered has the
susceptible-exposed-infectious-recovered structure with extensions allowing for the ef-
fects of absolute humidity and inhomogeneous mixing in the population. While neither of
the extensions provides a significant improvement in fit to the data they do differ in terms
of their predictive skill. Both measurements of absolute humidity and a sinusoidal
approximation of those measurements are observed to increase the predictive skill of the
forecasts, while allowing for inhomogeneous mixing reduces the skill.
We discuss how our work could be integrated into a forecasting system and how the model
selection method could be used to evaluate forecasts when comparing to multiple sur-
veillance systems providing disparate views of influenza activity.
© 2017 KeAi Communications Co., Ltd. Production and hosting by Elsevier B.V. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
1. Introduction

Influenza causes regular but unpredictable seasonal epidemics in temperate climes. Due to the difficulties of large scale
data collection there is increasing interest in “now-casting” the state of influenza to improve situational awareness (Ginsberg
et al., 2009; Lazer, Kennedy, King, & Vespignani, 2014). Experimental evidence suggests a decrease in absolute humidity
increases the influenza virus’ ability to transmit between hosts (Shaman & Kohn, 2009), potentially driving the distinctive
seasonality of influenza epidemics in temperate climes. There is also much interest in understanding the impact of contact
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networks on disease transmission, and how these effect the dynamics at a population level. Many infectious disease models
assume the population mixes homogeneously (Allen, Brauer, van den Driessche & Wu, 2008; Stroud et al., 2006). An alter-
native approach is to restrain the rate of transmission in the model to account for inhomogeneity in the mixing of real
populations (Chowell, Sattenspiel, Bansal, & Viboud, 2016; Ristic, Skvortsov, & Morelande, 2009; Roy & Pascual, 2006).

This paper investigates how allowing for the effects of absolute humidity and inhomogeneous mixing in the transmission
process can improve our ability to: explain the observed influenza activity (now-casting) and predict future incidence
(forecasting). Building on previous work with mechanistic models (Moss et al., 2015, 2016a, 2016b), a particle filter is used to
predict the number of lab-confirmed cases of influenza observed by the Victorian Department of Health and Human Services
(Australia), and to determine which model is most suitable for now-casting and forecasting. A Bayesian approach is used
which can be applied more generally to the problem of selecting a model with the most predictive skill, where by “predictive
skill”, we refer to the likelihood of “future” data (to be forecast), conditional on the data already observed.

Section 2 contains a description of thematerials used in this analysis: the data for influenza activity and absolute humidity,
the basic “transmission” model describing how influenza spreads in the community and its alternatives, and the “observa-
tion”model which connects the time series of notifications to the transmission model. Section 3 contains a description of the
statistical techniques used to fit and interrogate the model along with the statistical basis for the model selection.

Section 4 contains the results of these analyses and in Section 5 we discuss the implications of this work for forecasting
seasonal epidemics and how this methodology can be used for model selection when working with multiple surveillance
systems providing disparate views of influenza activity.

2. Materials

2.1. Data

Influenza is a nationally notifiable disease in Australia, subsequently the Victorian Department of Health and Human
Services (VDHHS) receives a notification for each specimen which tests positive for influenza in Victoria, Australia (Lambert
et al., 2010). These notifications form the time series investigated in this paper. While the VDHHS is notified of positive tests,
there are no data for negative tests. As a result it is difficult to distinguish between high levels of influenza activity and high
ascertainment. The VDHHS captures only a small fraction of the total incidence of influenza in Victoria, the peak of the
“burden of illness pyramid” (O'Brien et al., 2010; Wheeler et al., 1999). Despite these limitations, previous work ((Thomas,
McCaw, Kelly, Grant, & McVernon, 2015) and (Moss et al., 2016b)) suggests that d of the data pertaining to influenza-like
illness (ILI) and influenza activity generated by systems surveying this population d the VDHHS data are the least variable
and most amenable to prediction. Subsequently, these data are thought to provide the best possible source of information
surrounding the underlying dynamics.

While available at a daily resolution, the influenza notifications were aggregated byweek to smooth the signal. Time series
of relative humidity and temperature in Melbourne were obtained from the (Australian) Bureau of Meteorology (measure-
ments taken every 3 hours). The absolute humidity (AH) was calculated from these and the results averaged over each day.
These averages were then smoothed using a cubic spline (default smooth.spline in R) and scaled so the minimum and
maximum values (over the whole 6 years) were �1 and 1 respectively. Fig. 1 displays the AH and notification time series for
each of the years considered in this study.

2.2. Model

The VDHHS notification time series has previously been modelled (Moss et al., 2015, 2016b) as the observations from a
hidden Markov model (HMM) as represented in Fig. 2. The hidden Markov chain, and the model for the observations are
described below. The hidden “transmissionmodel” describes how influenza spreads in the community. This is represented by
the middle layer of Fig. 2 and is described in Section 2.2.1. Section 2.2.2 describes the priors for the transmission models. The
“observation model” links transmission to the data collected by the VDHHS; it is represented by the bottom layer of Fig. 2 and
is described in Section 2.2.3. Absolute humidity is included in the top layer of the figure with each of the AHt indicating the
time series of AH between the observations Yt�1 and Yt .

2.2.1. Transmission model
The transmission model describes the spread of influenza in the population. The model is a susceptible-exposed-

infectious-recovered (SEIR) type compartmental model (Anderson & May, 1992; Keeling & Rohani, 2008), where the state
at time t (measured in days) is the number of people in each of the compartments, XðtÞ ¼ ½SðtÞ; EðtÞ; IðtÞ�u. The evolution of
the state vector is governed by a system of stochastic differential equations described below. A closed population of
N ¼ 4;108;541 is used; this figure was derived from population statistics for metropolitan Melbourne (Department of Health
& Human Services, 2013). Since the population is closed, the number of people in the “recovered” compartment can be
obtained from the conservation law, R ¼ N � ðSþ E þ IÞ.

Initially everyone in the population is assumed to be susceptible to the virus, hence the initial condition for the state vector
is Xð0Þ ¼ ½N;0;0�u. In real populations there will be people who are immune to the circulating strains (John et al., 2009;
McCaw et al., 2009), this is not problematic; the particle filter will converge in regions of parameter space where the basic



Fig. 1. (Top) Time series of the number of laboratory confirmed cases of influenza in Melbourne for 2010e15 aggregated by week. (Bottom) Scaled time series of
the measurements of absolute humidity in Melbourne for 2010e15 in grey, with cubic spline smoothing in green and a sinusoidal approximation in blue. The
minimum and maximum values over the whole six years were set to �1 and 1 respectively.

Fig. 2. Graphical representation of the hidden Markov model in which the hidden state, Xt , represents the state of the SEIR transmission model at time t and the
observations, Yt , the number of notifications over the week prior. The absolute humidity signal, AHt , is assumed to be a deterministic function of time. The arrows
indicate that: the evolution of the hidden state is dependent on its current state and the AH signal, and the observations are dependent on the current state of the
hidden state and its state at the previous measurement.
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reproductive number is lower to account for the increased transmission. This model supports a single outbreak assumed to
start after a geometrically distributed number of days. During each day there is a fixed probability pexp (set to 1=36 (Moss
et al., 2016a)) that a single individual will be exposed to the virus. This results in the state jumping to ½N � 1;1;0�u. After
the initial exposure the states evolve by a system of stochastic differential equations (Allen et al., 2008a) of the form
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dXðtÞ ¼ D1ðXðtÞÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Drift

dt þ εD2ðXðtÞÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Diffusion

dWðtÞ: (1)
The drift vector is given by

D1ðXÞ ¼
2
4 �b N�1SI
b N�1SI � sE

sE � gI

3
5: (2)
The average behaviour of the system over a small interval of time is the same as for the deterministic (ODE) SEIR model:
bI=N is the rate at which susceptible people are exposed to the virus, s is the rate at which people become infectious after
exposure, and g is the rate at which people recover from being infectious. The diffusion matrix is given by

D2ðXÞ ¼
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Stochasticity is introduced into the transmission model by dWðtÞ, a three-dimensional Weiner process. The diffusion
matrix transforms this stochasticity so the variance is proportional to the mean behaviour (as specified by the drift vector). As
in previous work (Moss et al., 2016a, 2016b; Skvortsov & Ristic, 2012) the parameter ε specifies this proportionality and is set
to 0.025. This value was selected heuristically. A degree of stochasticity is required to avoid numerical issues (such as
impoverishment) when using the particle filter, however too much reduces forecast skill. Experimentationwith a larger value
of ε did not qualitatively change the results but created a substantial bias towards underestimation as stochastic extinction is
more likely with larger values of ε (data not shown).

The model described above constitutes the null hypothesis, H0, for the transmission process, i.e., that transmissibility is
constant and the rate of exposure varies linearly with the number of people who are infectious. Two ways of extending this
model are considered: the first allows for the effect of absolute humidity (AH) on the transmissibility parameter, b, and is
denoted byHAH when using the spline smoothed AHmeasurements andHsine when using a sinusoidal approximation of the
AH. The second allows for the effect of inhomogeneous mixing in the population, and is denoted by Hmix.

The effects of AH are introduced by allowing b to vary with a humidity signal (Shaman, Pitzer, Viboud, Grenfell,& Lipsitch,
2010; Yaari, Katriel, Huppert, Axelsen,& Stone, 2013).We consider two such signals; the smoothedmeasurements of AH and a
sinusoidal approximation to these measurements. This produces a time dependent rate of infectious contact, bt , that varies
linearly with the AH signal so that

bt ¼ b1ð1þ b2AHðtÞÞ (4)

h
To allow for inhomogeneous mixing, the factor N�1S in Equations (2) and (3) becomes ðN�1SÞ for 1 � h � 2 (Roy &
Pascual, 2006; Stroud et al., 2006). Since 0<N�1S<1 this has the effect of reducing the transmission rate. This modifica-
tion encapsulates the idea that the number of contacts an individual has with distinct people in the population saturates as
the size of the population grows, and so the probability of encountering a new susceptible individual is diminished.

2.2.2. Prior distributions for transmission model parameters
The average incubation and infectious periods, s�1 and g�1 respectively, have uniform priors, Uð1=2;3Þ (Beauchemin &

Handel, 2011; Nicholson, Wood, & Zambon, 2003). The ratio bt=g is the time-dependent basic reproduction number, R0,
which governs much of the behaviour of this model. Initial samples of b1 (equivalent to b in the null model) are obtained by
sampling the ratio b1=g (given g) from Uð1;3=2Þ and solving for b1. As a result b1 initially takes values from 1=3 to 3=2, while
this may seem restrictive, it only holds for the initial samples. Due to the use of regularisation in the particle filter (described
in Section 3.2.1) the full range of values R0 can take is 1=3 to 9=2 (Keeling & Rohani, 2008).

When allowing for the effects of absolute humidity in HAH and Hsine, a time dependent bt is used which can vary by as
much as 20% of b1. This is achieved by putting a uniform distribution, Uð�1=5;0Þ, on b2, (Equation (4)). InHmix the parameter
h is given a uniform prior distribution, Uð1;2Þ, (Stroud et al., 2006). In the null model, H0, the mixing is homogeneous and
absolute humidity plays no role so the parameter b2 is set to 0 and h is set to 1.

2.2.3. Observation model
Incidence, as captured by epidemiological surveillance systems, is the rate at which people enter a diseased (symptomatic)

state. For the data considered here, this is the number of notifications received by the VDHHS per week, which for week nwe
denote Yn. LetWn denote the day during the nth week when Yn is observed, i.e., Yn is the number of laboratory-confirmations
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received by the VDHHS in the period ðWn�1;Wn�. The observation model specifies the distribution of Yn given the cumulative
model incidence over ðWn�1;Wn�.

Model incidence is the rate at which people move from the exposed to the infectious state, i.e., at time t this is sEðtÞ.
Integrating the model incidence over ðWn�1;Wn�, gives the probability, pinf ðnÞ, a random individual becoming infectious
during that period of time, hence

pinf ðnÞ ¼
1
N

Z
ðWn�1;WnÞ

sEðtÞdt:
Since people can only move through the compartments sequentially, this integral simplifies to the difference in the
proportion of people who could become infectious at the start of the week and the proportion of people who could still
become infectious at the end of the week. Therefore,

pinf ðnÞ ¼
SðWn�1Þ þ EðWn�1Þ � ðSðWnÞ þ EðWnÞÞ

N
:

Model incidence only accounts for thosewho became infectious during theweek, ignoring exposures that did not progress
to the infectious stage. Thosewhowere only exposed are counted in theweek inwhich their incubation is completed and they
become infectious. This reflects our assumption that people begin to experience symptoms, and subsequently appear in
surveillance systems, at the same time they become infectious. The observation model assumes that of the people who
become infectious, on average, a constant proportion, pobs, will be observed. Therefore, the expected number of notifications
over ðWn�1;Wn� is

mepiðnÞ ¼ Npobspinf ðnÞ:
While this explains notifications during the flu season, influenza notifications are received throughout the year. The
additional notifications are attributed to a background signal, i.e., over the period ðWn�1;Wn� there are, on average, mbgðnÞ
background notifications. It is assumed that everyone who is not part of the model incidence has some fixed probability, pbg,
of generating such a notification. Therefore, the expected number of background notifications in week n is given by

mbgðnÞ ¼ Npbg
�
1� pinf ðnÞ

�
:

The number of notifications, Yn, given the expected number of notifications, mn ¼ mepiðnÞ þ mbgðnÞ, is modelled as a
negative binomial random variable (Lind�en & M€antyniemi, 2011; Thomas et al., 2015), i.e.,

Yn

����mn; k � NB
�
mn;mn þ

m2n
k

�
; (5)

where the variance depends upon the dispersion parameter, k. Therefore the observation model requires three parameters to
be completely specified, pbg, pobs and k.

3. Methods

In Section 2.2.1 a null model, H0, for the transmission of influenza was defined. Alternatives were also given: humidity
modulated transmission, HAH and Hsine, and transmission restrained by inhomogeneous mixing, Hmix. By integrating the
system over the interval between observations, the transmission model is treated as a discrete time Markov chain, enabling
application of standard particle filtering techniques for hidden Markov models (Doucet, Freitas, & Gordon, 2001; Sanjeev
Arulampalam, Maskell, Gordon, & Clapp, 2002). The observation process is defined by the observation model of Section
2.2.3. Together these constitute the hidden Markov model shown in Fig. 2. Parameter estimation is carried out in a sequential
Bayesian framework in which a sequence of approximate posterior densities are computed. Each posterior gives the distri-
bution of the transmission model state and its parameters, conditional on the observations Y1:j for j ¼ 1;…;n. A mathematical
description of the problem is given in Section 3.1. The computational scheme used to generate these approximations is the
particle filter (PF) (Doucet& Johansen, 2009; Doucet et al., 2001; Sanjeev Arulampalam et al., 2002). Section 3.2 describes the
PF used, how forecasts are generated with it and the specifics of its implementation. Section 3.3 provides implementation
details and Section 3.4 describes the estimation of the data likelihood and how this is used in model selection. Code used to
generate all of the results presented in this manuscript are available online (http://dx.doi.org/10.4225/49/5851d9ea54c65).

http://dx.doi.org/10.4225/49/5851d9ea54c65
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3.1. Problem statement

Except where specified otherwise, we assume the parameters of the observationmodel, pbg, pobs and k, are known. Let Y1:T
denote the first T observations Y1;…;YT . The filtering problem involves computing the distribution of the hidden state,
XðWT Þ ¼ ½SðWT Þ; EðWT Þ; IðWT Þ�u, and its parameters, Q ¼ ½b; s;g�u, conditional upon the available data at day WT :
pðXðWT Þ;QjY1:T ;HXÞ, which is referred to as the “filtering density”. The inclusion of HX in the notation makes explicit the
assumption of a particular hypothesis for the transmission model. The forecasting problem requires computing the predictive
distribution of the hidden state for the next H weeks, which is

pðXðWTþiÞ : i ¼ 1;…;HjY1:T ;HXÞ: (6)
The predictive distribution of the hidden state can then be used to compute the predictive distribution of future obser-
vations, which is

p
�
YðTþ1Þ:ðTþHÞ

���Y1:T ;HX

�
: (7)
Twomodel selection problems are considered: selecting themodel which provides the best explanation of all the data, and
the model which provides the best predictions of unobserved data given limited information from the start of the epidemic.
The measure of “best” being the a priori probability of the data given the model, ℙðY1:T jHXÞ in the former and
ℙðYðTþ1Þ:ðTþHÞ

���Y1:T ;HXÞ in the latter.

3.2. Particle filter

3.2.1. Filtering
A bootstrap particle filter (PF) (Doucet & Johansen, 2009; Doucet et al., 2001; Sanjeev Arulampalam et al., 2002) was used

to generate approximate samples (“particles”) from the filtering density. During the filtering process re-sampling was used to
avoid degeneracy, a numerical issue which occurs when the majority of the probability mass accumulates in a small subset of
the particles. The particles were re-sampled if their effective number dropped below 25% of their total number using
deterministic re-sampling (Douc & Capp�e, 2005; Kitagawa, 1996).

Re-sampling causes particles with large weights to be duplicated, and those with low weights to be removed from the
sample. Therefore, each re-sampling event reduces the number of distinct particles. Since the PF simultaneously estimates the
hidden state, XðtÞ, and the parameters, Q, it is important that there is sufficient diversity among the particles to properly
explore parameter space. Post-regularisation is used to maintain particle diversity, as described in (Musso, Oudjane,& Gland,
2001, pp. 247e271) using a Gaussian kernel. This involves randomly perturbing the particles in a systematic way during re-
sampling to ensure they are distinct, while reducing the loss of information this causes.

After conditioning on the first T observations the PF consists of a weighted set of particles, CðWT Þ ¼
fðPðiÞ;wiÞ : i ¼ 1;…;Mg. Together the particles and their weights define a discrete distribution which approximates the
filtering density at dayWT . The particles, PðiÞ ¼ ðXðiÞðtÞ;QðiÞÞ, consists of approximate samples from the filtering density over
state and parameter space. These approximate samples make up the support points of the distribution, and the associated
weights, wi, their probabilities. The number of particles used for both filtering and forecasting was 7500.

3.2.2. Forecasting
Forecasting involves computing the distribution of future observations, i.e., approximating the distribution in

Expression (7). This is done in two steps. First the filtering density is used to estimate the future hidden states using the

set of particles and weights in CðWT Þ to approximate the density in Expression (6). For each particle, PðiÞ, a trajectory

bXðiÞðbtÞ for bt � t is sampled (conditioning on bXðiÞðtÞ ¼ XðiÞðtÞ and the parameters QðiÞ). The ensemble of trajectories

generated, the bXðiÞ
and their corresponding weights wi, are then treated as a weighted sample from the density in

Expression (6).
The second step involves integrating over the hidden state to obtain the predictive distribution for the observations

(Expression (7)). Using the discrete approximation from the first step the integral becomes a sum, and the distribution of the
future observations can be expressed as a mixture of negative binomials (Equation (5)). The joint distribution of future ob-
servations is summarised by central credible intervals (CIs), i.e., a set the observationswill fall with some specified probability.
For example, the 100a% CI for a random variable Y (which takes values in ℕ) is the set of integers ½ymin; ymax�3ℕ such that
ℙðymin � Y � ymaxÞ � a. Therefore the values of ymin and ymax are given by

ymin ¼ max
y2ℕ

	
y : ℙðY � yÞ � aþ 1� a

2



(8)
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and

ymax ¼ min
y2ℕ

	
y : ℙðY � yÞ � aþ 1� a

2



: (9)
Since ymin and ymax are computed independently, this is not necessarily the smallest interval into which Y will fall with
probability a, however it is simpler to calculate and the difference between the two methods is negligible. The computational
cost of computing ymin and ymax can be significantly reduced by approximating each component in the mixture with a
Gaussian distribution with the same mean and variance. An iterative method (Newton-Raphson) was used to compute the
relevant percentiles in Equations (8) and (9).

3.3. Simulation parameters

The parameterisation of the observation model is treated separately to the estimation of the parameters in the trans-
missionmodel. To assess the optimal performance of the transmissionmodels a range of parameterisations of the observation
model were tried and best parameters selected. This process of optimising the observation model, the method used to select
the simulations dates, and the integration method for the transmission model are described in the following sections.

3.3.1. Simulation dates
Given the presence of the background signal in the notifications, there is no definitive method for identifying the start and

end dates of a flu season. This raises the question of when one should start to generate forecasts. For each of the epidemic time
series, 2010e15, we started the filtering process on the 1st of May. The end date of the filtering is defined to be the date of the
first observation when the cumulative case count is at least 95% of the total cases for that year. Forecasts are generated for
each of the 8 weeks prior to and including the week in which notifications peaked. The different forecasting dates are used
investigate how the performance changes over the course of an epidemic. An example of the key dates in the filter/forecast
process is given in Fig. 3. A full listing of the simulation dates is provided in Table 1.

3.3.2. Integration procedure
The system of SDEs describing the transmission model is integrated using the Euler-Maruyama method (Higham, 2001)

with a time step of Dt ¼ 0:2, i.e., the stochastic version of forward Euler. To ensure that during each day an epidemic is seeded
with probability pexp there is a Bernoulli trial at each time step with probability 1� ð1� pexpÞDt of seeding an epidemic. Once
an epidemic has been seeded its evolution is governed by Equation (1). If a step results in any of the state variables leaving the
Fig. 3. Simulation periods for 2015. The first portion of the data (circles) is used to estimate the background notification rate via the exponentially weighted
moving average (solid line). The second portion of the data is the target of the filtering and forecasting. The solid circles indicate the dates at which a forecast was
generated.



Table 1
The dates of the first observation of the year, the date the filtering process was started, the date of the week with the most notifications and the date at which
the filtering process ended. The filtering process was terminated once 95% of the year's cases had been observed. See Fig. 3 for an example of the division of
the time series into a period for background estimation, and the filtering/forecasting period.

First observation Start date Peak date End date Background estimate

2010-01-03 2010-05-01 2010-08-29 2010-12-05 6
2011-01-02 2011-05-01 2011-09-18 2011-11-06 17
2012-01-01 2012-05-01 2012-07-15 2012-11-04 17
2013-01-06 2013-05-01 2013-08-25 2013-12-01 14
2014-01-05 2014-05-01 2014-08-24 2014-10-26 28
2015-01-04 2015-05-01 2015-08-30 2015-10-04 64
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range ½0;N� then they are clipped; any subsequent change in population size is corrected by adjusting the size of the recovered
compartment.

3.3.3. Observation parameters
The observation model described in Section 2.2.3 has three parameters: pbg, pobs and k. The performance of the PF appears

to be relatively insensitive to the dispersion parameter, k, and previous work suggests a value of 100 is appropriate (Moss
et al., 2015, 2016b). Subsequently k is fixed at 100.

An estimate of the background notification rate can be obtained from the elements of the time series prior to the start date.
This rate specifies the background notification probability, pbg. Let B1:M be the number of notifications in theMweeks prior to
the start of the simulation period. An exponentially weighted moving average of the signal, at the ith week, Ai, is given by

A1 ¼ B1 and An ¼ lBn þ ð1� lÞAn�1

with l ¼ 0:25 (Hunter, 1986). It is assumed that in the pre-simulation period the epidemic has not begun and so every
notification is part of the background signal. This leads to the following running estimate of the background probability:
pbg ¼ ½AM �=N, where AM has been rounded to the nearest integer. To assess the sensitivity of the models to this estimate,
several perturbations of the probability where used: pbg þ jD=N for j ¼ 0;1;2 with D ¼ 5. The weighting constant, l, was
selected following the recommendations of Hunter (Hunter, 1986). However, its influence on pbg is small relative to the
perturbations, hence its selection is not expected to affect the fit.

Previous work suggests the performance of the PF is most sensitive to the observation probability, pobs, (Moss et al., 2015).
A range of plausible values can be obtained from an order of magnitude estimation. The population of Melbourne is in the
millions, and each year there are thousands of notifications. Estimates of the annual attack rate of seasonal influenza range
from 5� 10% in adults and 20� 30% in children (World Health Organization, 2014). This leads to an estimated observation
probability of z10�2. Subsequently, values in ½10�3;5� 10�2�where considered. The PF appears to be most sensitive to pobs
at the lower end of the range so the set of values considered was uniformly spaced in the logarithm.

3.4. Model selection

In Section 2.2.1 alternative transmission models were defined: the null model, H0, the model accounting for absolute
humidity, HAH and the model accounting for inhomogeneous mixing, Hmix. This paper aims to solve two model selection
problems: the first is to determine the best fitting model, the second to determine the model which performs best at pre-
diction. The former is about understanding the importance of climate and contact structure on transmission, the latter purely
pragmatic. Bayes factors (BF) are used for the model selection in both cases; the estimation procedure for the BF and its
application to each problem are described below.

3.5. Likelihood estimation

The key quantity for the model selection is the likelihood of the data, Y1:T . The PF can estimate this quantity recursively.
First observe that the likelihood can be factorised as

ℙðY1:T Þ ¼ ℙðY1Þ
YT
i¼2

ℙ
�
Yi
���Y1:ði�1Þ

�
: (10)
While not explicit, in the equation above and for the rest of the derivation it is assumed that we are conditioning on a given
hypothesis, H. Each factor in the product can be expressed as an integral by conditioning on the relevant hidden state,
therefore

ℙ
�
Yi
���Y1:ði�1Þ

�
¼

Z
ℙ
�
Yi
���xði�1Þ:i

�
p
�
xði�1Þ:i

���Y1:ði�1Þ
�
dxði�1Þ:i:
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The PF provides an estimate of the integral with

bℙ�Yi���Y1:ði�1Þ
�
¼ M�1

XM
[¼1

ℙ
�
Yi
���bX ð[Þ

ði�1Þ:i
�
;

where bX ð[Þ
ði�1Þ:i is the [ th sample from the density pðxði�1Þ:i

���Y1:ði�1ÞÞ. Since the distribution of the observation given the hidden
state is known, each term of the sum can be computed. The PF does this by using stratified re-sampling to obtain a set of
bX ð[Þ

ði�1Þ:i. This ensures that we have a uniformly weighted set of samples and reduces the variance in the estimator (Kitagawa,
1996; Ross, 1990). An estimator, bℙðYðTþ1Þ:ðTþHÞ

���Y1:T Þ, is constructed in the same way, however the trajectory of each sample is
extended for H weeks.

3.5.1. Fitting
Bayes factors were estimated to determine which of H0, HAH, or Hmix provides the best fit. The Bayes factor is given by

Bm0 ¼ ℙðY0:T jHmÞ
ℙðY0:T jH0Þ

; (11)

for Hm2fHAH;Hmixg. The probabilities in the numerator and denominator of Equation (11) are estimated using the PF as
described above.

3.5.2. Forecasting
As with the model selection for fit, the forecasting ability of the PF using the various transmission models was assessed via

Bayes factors, which in this situation is given by

~Bm0ðTÞ ¼
ℙ
�
YðTþ1Þ:ðTþHÞ

���Y0:T ;Hm

�
ℙ
�
YðTþ1Þ:ðTþHÞ

���Y0:T ;H0

� : (12)

�

To estimate ℙðYðTþ1Þ:ðTþHÞ

��Y0:T ;HmÞ the particle approximation for the joint density of XðWT Þ;QjY0:T ;Hm was integrated
until WTþH . Then the probability of the observations YðTþ1Þ:ðTþHÞ was estimated by summing the conditional probabilities of
the observations for each of the trajectories in the ensemble.

The aggregate Bayes factors for the alternative models considering all the epidemics is calculated by assuming that each
epidemic is independent and has its own parameters. As in the case of individual epidemics we assume that the optimal
parameters of the observation model are known. Let YðyÞ

A:B denote the notifications time series fromyear y, then the probability
in the numerator of Equation (11) becomes

Y2015
y¼2010

ℙ
�
Y yð Þ
1:Hy

���Hm

�

and the probability in the numerator or Equation (12) becomes

Y2015
y¼2010

ℙ
�
Y yð Þ
ðTyþ1Þ:ðTyþHyÞ

���Y0:Ty ;Hm

�

where the Ty and Hy are now year dependent. The former due to the selection of the forecasting dates which relies on
aligning the epidemics by peak week, and the latter because of the method used to determine the end of the forecasting
period.

4. Results

This paper considers two model selection problems, the first is to determine which of the transmission model hypotheses
provides the best fit to the notification data (Section 4.1) and the second is to determine which produces the best forecast
based on limited data from the start of an epidemic. The results for 2015 are given in Section 4.2 and the aggregate results over
2010e15 in Section 4.3.

4.1. Filtering results

Fig. 4 shows an example of the evolution of the filtering density for the null and sinusoidally forced models over the 2015
epidemic (See Supplementary Material Text 1 Fig. S1-1eS1-6 for the results from 2010 to 15). The whole notification time
series for 2015 is shown in the figure, although the filtering density was only estimated for the observations falling in the



Fig. 4. The 50% and 95% credible interval for the observations under the filtering distribution for the null and sinusoidally forced models for the 2015 notification
data. These running summaries of the observation distribution demonstrate both the null and sinusoidally forced models have near identical ability to assimilate
new data, i.e., they have equal now-casting capabilities.
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simulation period as described in Section 3.3.1. The number of notifications received for each of the weeks are represented by
solid points. The box plots summarise the approximate distribution for each of the observations under the filtering distri-
bution by showing the 50% and 95% credible intervals. As such, they act as a running fit of the model to the data and represent
the most up-to-date posterior at any point in the simulation period. Supplementary Material Text 2 Fig. S2-1eS2-24 present
the posterior samples for the transmission model parameters.

Using the method described in Section 3.5 the probability of the time series from the years 2010e15 arising from
each of the transmission models can be estimated. The ratio of these probabilities are the Bayes factors, and the log-
arithm of these ratios are shown for each of the alternative models in Fig. 5. This figure shows that the transmission
model that uses smoothed measurements of AH gives the best explanation of the data, however the improvement over
the null model is not statistically significant. Allowing the transmissibility to vary sinusoidally, or allowing for inho-
mogeneous mixing, reduces the explanatory ability of the model. Again for the sinusoidal transmission hypothesis the
difference is not statistically significant, however there is strong evidence that inhomogeneous mixing provides a
weaker fit.
Fig. 5. The logarithm of the aggregate Bayes factor (across all the epidemics 2010e15) for each of the alternative transmission models. The solid horizontal line
indicates parity with the null model, anything above this line is an improvement in model fit over the null, and below the fit is weaker. The dashed horizontal
lines indicate the significance threshold.
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4.2. Retrospective forecast for 2015

Much of the motivation for this work is in generating forecasts based on limited data from the start of an epidemic. Fig. 6
demonstrates some of these forecasts for the 2015 epidemic. It shows a sequence of forecasts produced by the null and
sinusoidal models using increasing amounts of data from the start of the epidemic. The sinusoidal model is presented as it
demonstrates a realistic forecasting tool, i.e., without the requirement of a long term, detailed forecast of AH. The full set of
forecasts for all the models and years are available in Supplementary Material Text 1 Fig. S1-7eS1-30. As in Fig. 4 the
number of notifications are shown as points. The solid points at the start of the epidemic were used to fit the model, which
was then used to predict the values of the subsequent hollow points. This time the box plots represent a summary of the
posterior distribution of the “future” observations. The rectangles collectively form the 50% and 95% credible interval (CI) of
the forecast, i.e., the regions in which all future notifications are expected to fall with probabilities 0.5 and 0.95
respectively.

The first column of Fig. 6, (“Sinusoidal”) contains the forecasts generated when the transmissability varies sinusoidally
over the year, the second column, (“Null”) those from the null model. For each row, the models were fit using all the data in
the simulation period up until the date shown on the right. For example the first row contains the forecast generated using all
the observations available on the 19th of July. For each row themodel is fit to an additional element of the time series. As more
data is used to train the PF the CIs should converge as the particles concentrate in regions of high posterior likelihood,
resulting in narrower rectangles.

The estimated Bayes factors for the sinusoidally forced model's forecasts are also shown. The Bayes factor is largest in the
second row, showing the improvement of the sinusoidal model over the null was the greatest for the forecasts generated on
the 26th of July (for the weeks shown). The next section describes how the models performed when judged in this way
considering all of the epidemics 2010e15.
Fig. 6. Comparison of the forecasts from the null and sinusoidally forced transmission models using increasing amounts of data from the 2015 epidemic. The solid
points represent “observed” data used to fit the model and the hollow points represent the “future” data, the target of the forecast. The logarithms of the Bayes
factors reported describe the improvement in forecast performance by the sinusoidally forced model over the null for each of the forecasts generated.
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4.3. Forecasting performance 2010e15

Fig. 7 shows the Bayes factors of the forecasts (across all the years) when aligning the epidemics by their peak week. For
example, the values on the blue line were obtained by fixing the forecasting date (for all the years) relative to the peak week
and computing the Bayes factor for the sinusoidally forced transmission model. Doing so gives one of the values on the curve,
the full set of values coming from varying the forecasting date from 8 to 0 weeks prior to the peak week. The coloured curves
represent the Bayes factors for the different alternative transmission models. This figure demonstrates that, given the correct
observationmodel, there is strong evidence that the spline-smoothed absolute humiditymodel provides better forecasts than
the null model over the 8 weeks leading up to the peak week. The improvement over the null model by the spline-smoothed
model is largest when forecasting approximately onemonth prior to the peak. The sinusoidal model also outperforms the null
model when generating forecasts over an interval of approximately a month, a month prior to the peak week. However, when
generating forecasts more than 6 weeks prior to the peak or within a week of it, the performance of the sinusoidal model is
weaker than that of the null model. As with themodel fit, the forecasting performance of the inhomogeneousmixingmodel is
poor for the majority of the season, although it does improve around the time of the peak.

An alternative method for investigating the differences between the forecasts is to consider the errors. Fig. 8 shows the
average error in the forecast median as a function of the number of observed positive tests for all of the observations across
the years 2010e2015. A point at ðx; yÞ indicates that when forecasting an observation of x cases the average error in the
prediction was y, so negative and positive values of y indicate underestimation and overestimation respectively. Since
forecasts are generated at multiple weeks we average this error over the different forecasting dates. The solid lines show a
LOESS smoothing of the scatter plot for each of the models to highlight the general trend. These show that for small numbers
of positive tests the forecasts are reasonably unbiased, however all the models tend to underestimate larger observations.

5. Discussion

5.1. Principal findings

Accounting for the effects of absolute humidity (AH) does not significantly alter model fit and allowing for inhomogeneous
mixing leads to worse fits. However, with a well parameterised observation model, allowing for the effects of AH improves
forecasts of seasonal influenza. Moreover, evenwith a simple approximation of the AH (i.e., a sinewave) forecast performance
is still improved. While the model accounting for inhomogeneous mixing leads to poor forecasts in the ascent phase of the
epidemic once the peak has been reached this model appears to produce better forecasts of the descent phase. These results
for model fit, and predictive skill relate to the aggregate performance of the models over all the epidemics from 2010 to 2015.

5.2. Study strengths and weaknesses

5.2.1. Strengths
While it is interesting to see that accounting for AH can improve forecast performance, a substitute signal (sine wave) has

also been shown to improve forecast performance. This is an important observation as even the best predictor may be useless
if we cannot obtain/predict it reliably.
Fig. 7. The logarithm of the aggregate forecast Bayes factor (across all the epidemics 2010e15) for each of the alternative transmission models. The solid hor-
izontal line indicates parity with the null model, anything above this line is an improvement in predictive skill. The dashed horizontal lines indicate the sig-
nificance threshold.



Fig. 8. Forecast error plotted against the size of the observation being forecast. Each point represents the error in attempts to forecast a single observation
(averaged over the forecasts made at different points in the season). A point at ðx; yÞ indicates that when forecasting an observation of x cases the average error in
the prediction was y, so negative and positive values of y indicate underestimation and overestimation respectively. The colour of each point indicates which
model was used to generate the forecast. The solid lines represents a LOESS smoothing of the data.
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Attempts to forecast epidemics are often judged by their ability to predict one-dimensional summary statistics such as the
timing of the peak of the epidemic (Chretien et al., 2014; Nsoesie, Brownstein, Ramakrishnan, &Marathe, 2014), in this paper
a likelihood based measure is used. This measure is built upon the probabilistic model of the data and therefore avoids the
need for further decision making in what to optimise for i.e., ability to predict peak time, magnitude or final size. Such an
approach has several desirable properties, such as providing a natural way to assess forecast performance when there are
multiple data streams. For instance, when using data from two surveillance systems showing the epidemic peaking at
different times, it is unclear how to judge the accuracy of the forecast's peak time prediction. If forecast performance is
assessed by the same metric as model fit, this method could be used to estimating forecast performance based on current fit
to the data (i.e., does the model which best fits the most recent observation also best predict the next one?). Furthermore, the
use of Bayes factors implicitly accounts for model complexity through the integration over the whole parameter space.

The PF lends itself naturally to estimation of credible intervals (CIs) of the parameters. In previous analyses of these data,
forecasts consisted of the median estimate of the expected number of observations and only the CIs of this estimate. This
analysis improves upon this by providing a summary of the predictive distribution of the observations. An iterative method
has been presented to efficiently estimate the relevant quartiles. While the difference is negligible when case counts are high,
when they are low, such as at the beginning and end of an epidemic, there is a substantial difference. Showing the uncertainty
in the observation model gives a more realistic representation of the forecasts and should improve communication of these
results.

5.2.2. Weaknesses
The greatest weakness of this work is the assumption of a known observation model. While estimation of these pa-

rameters was not a goal of this paper it should be kept in mind that the results presented here do require some knowledge of
these parameters. Previous attempts at live forecasting in Melbourne, Australia (Moss et al., 2015) have highlighted that the
observation probability, pobs, in particular plays an important role in forecast performance. This presents a challenge since it
appears that for Melbourne's influenza surveillance systems, this parameter changes from year to year (Moss et al., 2016b).
Moreover, an important assumption of this work is that the observation probability is constantwithin a season. Without such
an assumption, or a plausible alternative, it would be difficult to distinguish changes in transmission from changes in
observation.

Another weakness of this study is the quantity of data. Each of the six years presents only a single time series, making if
difficult to draw strong conclusions about either the transmission or observation processes. Due to this dearth of data the
Bayesian framework is particularly attractive as it provides a more satisfactory quantification of the uncertainty.

When fitting nested models an effect size analysis can be informative. While the model selection revealed allowing for AH
effects (i.e., allowing b2 >0) improved forecast performance, no analysis of the size of b2 was performed. In part this is because
of the sensitivity of the model to this parameter, which makes such an investigation difficult.

The transmission model assumes there is only a single circulating influenza strain and that initially everyone in the
population is susceptible. While this is clearly false it is a useful assumption andwith the existing data it would be challenging
to parameterise a multi-strain model.
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5.3. Comparison with other studies

5.3.1. Transmission model
Modelling the rate of transmission as dependent on AH has been done in several studies. The precise way in which the

dependence is expressed varies though, with some models (such as the one presented here) using linear dependence (Bock
Axelsen et al., 2014), while others using exponential dependence (Shaman & Kohn, 2009). To analyse this data set it has been
assumed that the rate of infection should increase as AH decreases. This is because Melbourne has a temperate climate. In
tropical climates the interaction between humidity and influenza transmission appears to be more complex and such an
assumption may not be valid.

The method used to account for inhomogeneous mixing is also not the only one which appears in the literature (Chowell
et al., 2016). However the majority of these approaches are similar at the core: the transmission rate should be retarded by
saturation of local contacts, and this idea is realised in the functional form used here.

In the models considered in this paper it is only possible for individuals to progress through the compartments once. As a
result an individual cannot be infected twice and since the population is closed the null model only supports a single
epidemic. Extensions to this model allow for a loss of immunity resulting in transition from the recovered compartment back
into the susceptible compartment and the incorporation of births and deathswhich achieves similar changes in the dynamics.
However, over the time scales considered here accounting for births and deaths will have a negligible effect.

5.3.2. Computational method
In this paper a particle filter (PF) has been used to fit and forecast the notification time series. The PF is an attractive

method for this sort of analysis, and for practical forecasting work for several reasons. It is flexible in allowing for an arbitrary
observation model, and maintains the non-linearity of the transmission model, whereas the Kalman filter and variants
thereof usually require some form of linearisation and normality assumptions. However, this flexibility comes at the cost of
potential numerical issues that arise from the use of a finite sample of particles, such as particle impoverishment and de-
generacy. We have used re-sampling and regularisation to address these issues, however alternatives exist (Yang & Shaman,
2014). Alternative methods which do not require modification of the model include: particle MCMC (Doucet et al., 2001) and
iterated filtering (Ionides et al., 2015). The former is significantly more computationally expensive and for the later it is less
clear how one would incorporate the uncertainty in the parameter estimates into forecast generation.

5.4. Further work

The metric for forecast performance presented here provides a natural way to assess the performance of forecasts when
comparing them to the data from multiple surveillance systems. This will assist in our future efforts to assimilate data from
multiple sources, each with their own biasses. Another approach to improve predictive skill is to incorporate more prior
knowledge into the forecasts, a task to which the Bayesian framework is well suited. Specifically, by constructing an infor-
mative prior based on previous epidemics it is reasonable to expect that initial uncertainty in the forecast can be reduced.

In addition to the main challenges listed above there are a number of attractive changes which could be made to the
model. For instance, the background signal is a phenomenological modification and ignores the infectious potential of these
individuals, this could be corrected for by forcing a proportion of the non-incident population into the infectious class. The
analysis in (Mercer, Glass, & Becker, 2011) suggests this may improve the initial estimation of the reproduction number,
potentially improving forecasts early in the season. Moreover, by allowing the dispersion parameter k to vary in Equation (5) it
is possible to have quite a flexible mean-variance relationship in the observation model.

5.5. Meaning and implications

Wehave demonstrated that our existing forecast technology (Moss et al., 2015, 2016a, 2016b) can be improved by allowing
for the effects of absolute humidity (AH) in the transmission model. While the true values of AH provide the largest
improvement, even a simple approximation to the AH data (e.g. sinusoidal) is sufficient to improve predictive skill. The
greatest improvement using a sine wave is seenwhen forecasting 5 to 2 weeks prior to the peak week. After the peak it is still
possible to improve upon the null model by accounting for inhomogeneous mixing. However, there is little to gain in terms of
now-casting by modifying the transmission model.

Methodologically this paper presents an objective function for forecast optimisation and an iterative scheme for
approximating the credible intervals of the forecast. The former allows for a model selection based on a more comprehensive
comparison of forecast and data, and provides a sensible way to optimise the forecasting tool to multiple data streams. The
latter, by more naturally describing forecast uncertainty, improves the communication of the results.
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