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Missense mutations are known to perturb protein-protein interaction networks (known as
interactome networks) in different ways. However, it remains unknown how different
interactome perturbation patterns (“edgotypes”) impact organismal fitness. Here, we
estimate the fitness effect of missense mutations with different interactome
perturbation patterns in human, by calculating the fractions of neutral and deleterious
mutations that do not disrupt PPIs (“quasi-wild-type”), or disrupt PPIs either by disrupting
the binding interface (“edgetic”) or by disrupting overall protein stability (“quasi-null”). We
first map pathogenic mutations and common non-pathogenic mutations onto homology-
based three-dimensional structural models of proteins and protein-protein interactions in
human. Next, we perform structure-based calculations to classify each mutation as either
quasi-wild-type, edgetic, or quasi-null. Using our predicted as well as experimentally
determined interactome perturbation patterns, we estimate that >∼40% of quasi-wild-type
mutations are effectively neutral and the remaining are mostly mildly deleterious, that
>∼75% of edgetic mutations are only mildly deleterious, and that up to ∼75% of quasi-null
mutations may be strongly detrimental. These estimates are the first such estimates of
fitness effect for different network perturbation patterns in any interactome. Our results
suggest that while mutations that do not disrupt the interactome tend to be effectively
neutral, the majority of human PPIs are under strong purifying selection and the stability of
most human proteins is essential to human life.

Keywords: missense mutations, mutation edgotype, protein-protein interactions, fitness effect, interactome
perturbations

INTRODUCTION

Protein-protein interactions (PPIs) form a central component of the cellular circuitry, which determines
and controls complex cellular functions, along with other biomolecular interactions (Cafarelli et al., 2017).
The collective network of PPIs (known as the interactome network) has been highly utilized to advance
our knowledge of protein function (Sharan et al., 2007; Yang et al., 2016), disease (Goh et al., 2007;Menche
et al., 2015; Sahni et al., 2015; Vidal et al., 2011; Zhou et al., 2014), and evolution (Das et al., 2013; Ghadie
et al., 2018; Qian et al., 2011; Vo et al., 2016; Zhong et al., 2016), often with the integration of protein
structural information (Chen and Xia, 2019; Franzosa and Xia, 2011; Garamszegi et al., 2013; Ghadie et al.,
2017; Guo et al., 2013; Kim et al., 2006; Meyer et al., 2013; Mosca et al., 2013; Mosca et al., 2015; Wang
et al., 2012). Interactome networks are subject to perturbations driven by variations in protein sequence
(Ghadie et al., 2018), particularly by missense mutations (Ghadie and Xia, 2019; Sahni et al., 2015). While
estimates of how new missense mutations may affect fitness in human are available (27% effectively
neutral, 53%mildly deleterious, and 20% strongly detrimental) (Kryukov et al., 2007), it remains unknown
how the fitness effect of missense mutations varies for different patterns of interactome perturbation.
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Theories in molecular evolution and population genetics (Levy
et al., 2009; Lynch, 2007) as well as empirical analyses of genome-
wide data (Landry et al., 2009; Levy et al., 2012; Studer et al., 2016)
suggest that a significant part of the human interactome may be
non-deleterious upon disruption. On the other hand, the
disruption of PPIs by missense mutations is known to cause
many diseases, either through the disruption of PPI binding
interfaces or through the disruption of overall protein stability
(Jubb et al., 2017; Stefl et al., 2013; Yates and Sternberg, 2013).
Sahni et al. studied the precise interactome perturbation pattern
(“edgotype”) (Sahni et al., 2013) for 197 Mendelian pathogenic
mutations as well as 47 common non-pathogenic variants from
healthy individuals (Sahni et al., 2015). While the vast majority
(∼92%) of non-pathogenic mutations do not disrupt the
interactome (“quasi-wild-type” mutations), the majority
(∼57%) of pathogenic mutations disrupt the interactome,
either by disrupting the binding interface (“edgetic”
mutations) or by disrupting overall protein stability (“quasi-
null” mutations) (Sahni et al., 2015). Using these
experimentally determined mutation edgotypes as well as
mutation edgotypes determined by structure-based predictions,
we recently estimated that <∼20% of PPIs in the human
interactome are effectively neutral upon disruption by edgetic
mutations, and the remaining are at least mildly deleterious upon
disruption (Ghadie and Xia, 2019). Nonetheless, the effect of
quasi-null mutations and quasi-wild-type mutations on fitness in
human is likely to be different. By disrupting overall protein
stability, quasi-null mutations cause complex cellular and
phenotypic changes that are not explainable by simple PPI
disruptions. At the same time, it is possible for quasi-wild-type
mutations to be deleterious if they disrupt other molecular
interactions. So far, no quantitative model exists that provides
estimates of the average fitness effect for quasi-wild-type and
quasi-null mutations in any interactome, and how their fitness
effects differ from that of edgetic mutations.

The question of how network perturbations created by genetic
mutations provide the molecular link between mutations and
their associated phenotypes has gained significant attention over
the past decade (Yi et al., 2017), either in the context of protein-
protein interactions (Sahni et al., 2015; Yi et al., 2017; Zhong,
et al., 2009) or in the context of genetic interactions (Braberg
et al., 2014a; Braberg et al., 2014b; Martins et al., 2015). While
these studies are essential for our understanding of protein
function and disease, they do not provide interactome-wide
estimates of different fitness effects associated with different
mutation edgotypes. Sequencing experiments have associated
hundreds of genetic mutations with different disease
phenotypes and behavioural disorders, including cancer
(Kumar et al., 2014; Kumar et al., 2011) and autism (Iossifov
et al., 2014; O’Roak et al., 2014). However, these studies focus on
mutations associated with specific diseases and therefore do not
represent the full range of mutation fitness effects. More
importantly, these studies do not provide us with mutation
edgotypes. Other studies have explored the connection
between edgetic perturbation of PPIs and phenotype, but
mostly in cancer (Yi et al., 2017). Computational tools such as
SIFT (Sim et al., 2012) and PolyPhen-2 (Adzhubei et al., 2010)

can predict the impact of individual mutations on protein
function (Thusberg and Vihinen, 2009), but they also do not
explicitly predict mutation edgotype and therefore are not
appropriate for addressing the goal of the present study, which
is to provide interactome-wide estimates of fitness effect for
different mutation edgotypes. Furthermore, these tools predict
phenotypes for new mutations based on sequence and structural
information (Thusberg and Vihinen, 2009), whereas our study
makes use of known phenotypes for existing mutations based on
experimental or clinical observations, which are more accurate.

At the same time, computational studies have constructed
three-dimensional (3D) structural models for PPIs (Meyer et al.,
2013; Mosca et al., 2013), and other studies have mapped
pathogenic mutations in human onto PPI structural models
and examined their distribution relative to PPI binding
interfaces (Guo et al., 2013; Mosca et al., 2015; Wang et al.,
2012). Pathogenic mutations were found to be enriched at PPI
interfaces, andmutations occurring at different binding interfaces
were found to be associated with different disease phenotypes
more likely than mutations occurring at the same interface (Guo
et al., 2013; Wang et al., 2012). While these studies suggest that
pathogenic mutations may be more likely to disrupt PPIs than
expected by chance, with different PPI disruptions leading to
different diseases, they do not predict via physics-based
calculations the effect of mutations on PPI binding affinity nor
on protein folding stability. Most importantly, these studies do
not calculate the fitness effect distribution associated with
different mutation edgotypes. A recent study has combined
mutation functional information with PPI edgetic
perturbations to predict network modules underlying complex
disease in human (Cui et al., 2019). This study also does not
provide interactome-wide estimates of fitness effect for different
mutation edgotypes. Other computational methods are able to
predict the effect of individual mutations on protein folding and
binding free energy (ΔΔG) (Li et al., 2017), including FoldX
(Schymkowitz et al., 2005), mCSM-PPI2 (Rodrigues et al., 2019),
DynaMut2 (Rodrigues et al., 2020) and MuPIPR (Zhou et al.,
2020). While ΔΔG values predicted by these methods can be used
to ultimately predict mutation edgotype, they also cannot provide
interactome-wide estimates of fitness effect for different mutation
edgotypes since they do not integrate mutation phenotype
information into their calculations.

Nevertheless, experimental studies mapping the edgotypes of
missense mutations with known phenotypic consequences are
very challenging in nature and cover less than 1% of missense
mutations in human, spanning a very small subset of the human
interactome. Thus, there is a great need to complement these
experiments with structure-based predictions of mutation
edgotypes, which will allow us to assess the applicability of
insights generated by experiments to the entire human
interactome. A larger coverage of mutation edgotype data
enabled by structure-based calculations combined with known
clinical and experimental information on mutation phenotype
will also allow us to estimate with high confidence the effects of
different interactome perturbation patterns on organismal fitness.

Here, we estimate the fitness effect for missense mutations
with different interactome perturbation patterns in human, by
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estimating the probabilities for quasi-wild-type mutations,
edgetic mutations and quasi-null mutations to be effectively
neutral, mildly deleterious or strongly detrimental. Starting
with a human reference interactome mapped by experiments,
we construct a human structural interactome by building three-
dimensional (3D) structural models for human proteins and
PPIs, using template-based homology modelling. Next, we
map known pathogenic missense mutations as well as
common non-pathogenic missense mutations from healthy
individuals onto our human structural interactome, and
perform structure-based calculations to predict whether each
mutation does not disrupt the interactome (quasi-wild-type),
or disrupts the interactome either by disrupting the binding
interface (edgetic) or by disrupting overall protein stability
(quasi-null). We integrate these results to calculate the
probabilities for common mutations (assumed to be neutral)
and pathogenic mutations (assumed to be mildly deleterious) to
be quasi-wild-type, edgetic, or quasi-null, and then apply Bayes’
theorem to calculate the probabilities for quasi-wild-type, edgetic
and quasi-null mutations to be effectively neutral, mildly
deleterious or strongly detrimental. Our calculations reveal
that at least ∼40% of quasi-wild-type mutations are effectively
neutral, and the remaining are mostly mildly deleterious. Our
calculations also reveal that at least ∼75% of edgetic mutations are
mildly deleterious, and less than ∼10% may be strongly
detrimental. Furthermore, we estimate that at least ∼95% of
quasi-null mutations are deleterious, with as low as ∼25%
being mildly deleterious and up to ∼75% being strongly
detrimental. Finally, instead of using computationally
predicted mutation edgotypes, we repeat our calculations using
experimentally determined mutation edgotypes from Sahni et al.
(Sahni et al., 2015). Our estimates of mutation fitness effect
remain broadly consistent despite minimal overlap in protein
space covered by computational and experimental
edgotyping data.

Our estimates are the first such estimates of fitness effect for
different network perturbation patterns in any interactome. Our
study also provides a solid justification for the utility of
interactome networks in elucidating the phenotypic
consequences of genetic mutations. Finally, our study provides
a quantitative foundation for further investigation of interactome
network evolution.

RESULTS

The Human Structural Interactome
We started with two high-quality human reference interactomes
that were mapped by experiments: the HuRI interactome that was
recently mapped using systematic yeast two-hybrid (Y2H)
screens (Luck et al., 2020), and the literature-curated
interactome consisting of PPIs reported by at least two
independent experiments in the IntAct database (Orchard
et al., 2014). From each reference interactome, we constructed
a structural interactome by building 3D structural models for
proteins and PPIs via homology modelling, using experimentally
determined structural templates in the Protein Data Bank (PDB)

(Berman et al., 2003) (Figure 1). Thus, we obtained two human
structural interactomes with PPI binding interfaces annotated at
the residue level: the Y2H structural interactome (Y2H-SI)
consisting of 1,916 PPIs among 1,468 proteins
(Supplementary Data Sheet S1A,S1B), and the literature-
derived structural interactome (Lit-SI) consisting of 4,676 PPIs
among 3,445 proteins (Supplementary Data Sheet S1C,S1D).

Locating Mutations on Protein Structure
We mapped Mendelian pathogenic missense mutations from
ClinVar (Landrum et al., 2016) as well as common non-
pathogenic missense mutations from dbSNP (Sherry et al.,
2001) onto our two human structural interactomes, Y2H-SI
and Lit-SI. We obtained 1,072 common non-pathogenic
mutations and 318 pathogenic mutations in Y2H-SI, and 2,786
common non-pathogenic mutations and 1,203 pathogenic
mutations in Lit-SI. Next, we mapped each mutation onto the
protein structural model and calculated its relative solvent
accessibility (RSA). We started with mutations in Y2H-SI. We
found that non-pathogenic mutations tend to have higher RSA
compared to all protein residues (p � 5.6 × 10−22, two-sided t-test;
Figures 2A,B; Supplementary Data Sheet S2A), whereas
pathogenic mutations tend to have lower RSA compared to all
protein residues (p � 3 × 10−14, two-sided t-test; Figures 2A,B;
Supplementary Data Sheet S2B).

Next, we performed structure-based calculations to identify
the location of each mutation on protein structure. The location
of a mutation can be either at PPI binding interface, buried inside
protein structure, or exposed on protein surface but not at PPI
interface. If a mutation is not located at PPI interface, we predict it
to be exposed on protein surface if its RSA in the protein
structural model is greater than 0.25, otherwise we predict the
mutation to be buried. In Y2H-SI, we found that ∼30% of
pathogenic mutations are buried, ∼23% are located at PPI
interfaces, and the remaining ∼47% are exposed on protein
surfaces and not located at PPI interfaces (Figure 2C;
Supplementary Data Sheet S2B). On the other hand, only
∼11% of non-pathogenic mutations are buried and ∼7% are
located at PPI interfaces, whereas the remaining ∼82% are
exposed on protein surfaces and not located at PPI interfaces
(Figure 2C; Supplementary Data Sheet S2A).

We repeated the same calculations on Lit-SI. Similar to Y2H-
SI, we found that non-pathogenic mutations tend to have higher
RSA compared to all protein residues (p � 2.4 × 10−18, two-sided
t-test; Figures 2A,B; Supplementary Data Sheet S2C), whereas
pathogenic mutations tend to have lower RSA compared to all
protein residues (p � 5.5 × 10−53, two-sided t-test; Figures 2A,B;
Supplementary Data Sheet S2D). Also similar to Y2H-SI, we
found that ∼37% of pathogenic mutations are buried, ∼20% are
located at PPI interfaces, and the remaining ∼43% are exposed
and not located at PPI interfaces (Figure 2C; Supplementary
Data Sheet S2D). On the other hand, only ∼15% of non-
pathogenic mutations are buried and ∼9% are located at PPI
interfaces, whereas the remaining ∼76% are exposed and not
located at PPI interfaces (Figure 2C; Supplementary Data Sheet
S2C). All together, our results show that pathogenic mutations
are more likely to be either buried or located at PPI interfaces than
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non-pathogenic mutations, suggesting that they are more likely to
disrupt PPIs either by disrupting overall protein stability or by
disrupting specific binding interfaces.

Structure-Based Prediction of Mutation
Edgotypes
We used our results of mutation location on protein structure to
perform structure-based predictions of the edgotype for eachmutation,
i.e., the precise pattern of interactome perturbation as a result of each
mutation (Figure 1). Mutations can be either edgetic (i.e., disrupt
specific PPIs by disrupting binding interfaces), quasi-null (i.e., disrupt all
PPIs by disrupting overall protein stability), or quasi-wild-type (i.e., do
not disrupt any PPIs) (Sahni et al., 2015). We first predicted edgetic
mutations by calculating the change in PPI binding free energy (ΔΔG)
caused by eachmutation that is located at PPI interface using thewidely
known method FoldX (Schymkowitz et al., 2005) (Supplementary
Figure S1A; Supplementary Data Sheet S3). We predict an interfacial

mutation to be edgetic if it causes a binding ΔΔG > 0.5 kcal/mol,
otherwise we predict the mutation to be non-edgetic. Next, we used
FoldX to calculate the change in protein folding free energy (ΔΔG) for
all mutations mapped onto protein structural models (Supplementary
Figure S1B; Supplementary Data Sheet S4). We found that for
pathogenic mutations, while folding ΔΔG strongly correlates with
both mutation RSA and mutation distance to protein center relative
to protein size, it decreases significantly (<2 kcal/mol) for exposed
mutationswith RSA>0.25 (Figure 3). Hence, we predicted non-edgetic
mutations to be quasi-null or quasi-wild-type based on the following
rule: If a mutation is exposed on the surface of the protein structural
model, we predict the mutation to be quasi-wild-type. On the other
hand, if a mutation is buried inside the protein structural model, we
predict it to be quasi-null if it causes a folding ΔΔG ≥ 2 kcal/mol,
otherwise we predict it to be quasi-wild-type (Figure 1).

In Y2H-SI, out of 1,072 non-pathogenic mutations, we predicted
that ∼1.5% are quasi-null, ∼1.5% are edgetic, and ∼97% are quasi-
wild-type (Figure 4; Supplementary Data Sheet S2A). On the other

FIGURE 1 | Pipeline for the computational prediction of mutation edgotypes. Computational pipeline used for the construction of the human structural interactome,
prediction of mutation edgotypes and calculation of edgotype fitness effect.
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hand, out of 318 pathogenic mutations, we predicted that ∼13% are
quasi-null, ∼13% are edgetic, and ∼74% are quasi-wild-type
(Figure 4; Supplementary Data Sheet S2B). In Lit-SI, out of
2,786 non-pathogenic mutations, we predicted that ∼3% are
quasi-null, ∼2% are edgetic, and ∼95% are quasi-wild-type
(Figure 4; Supplementary Data Sheet S2C). On the other hand,
out of 1,202 pathogenic mutations, we predicted that ∼22% are
quasi-null,∼9% are edgetic, and∼69% are quasi-wild-type (Figure 4;
Supplementary Data Sheet S2D).

In comparison, in the experimental study of Sahni et al., it was
found that out of 47 non-pathogenic mutations, ∼4% are quasi-null,
∼4% are edgetic, and ∼92% are quasi-wild-type (Sahni et al., 2015)
(Figure 4). On the other hand, it was found that out of 197 pathogenic
mutations, ∼26% are quasi-null, ∼31% are edgetic, and ∼43% are
quasi-wild-type (Sahni et al., 2015) (Figure 4). Thus, our
computational results are consistent with experimental results in
that pathogenic mutations are significantly more likely to be edgetic
or quasi-null compared to non-pathogenic mutations (p < 10−9 for
both computations and experiments, two-sided Fisher’s exact test).

Fitness Effect for Quasi-wild-type, Edgetic
and Quasi-Null Mutations
We used themutation edgotypes predicted in the previous section
to estimate the fitness effect for quasi-wild-type, edgetic and

quasi-null mutations by applying the Bayesian formulation we
had previously developed (Ghadie et al., 2018) and describe here
in the Methods section and in Figure 5. We assume that
mutations are either effectively neutral (similar to synonymous
mutations), mildly deleterious, or strongly detrimental (similar to
nonsense mutations that introduce premature stop codons). In
addition, we assume that common mutations from healthy
individuals are effectively neutral, that Mendelian pathogenic
mutations are mildly deleterious on average, and that strongly
detrimental mutations are predominantly quasi-null (i.e., disrupt
overall protein stability) rather than edgetic (Assumption I;
Figure 5).

Using our predicted mutation edgotypes in Y2H-SI, we
obtained the probabilities for effectively neutral (N), mildly
deleterious (M), and strongly detrimental (S) mutations to be
quasi-wild-type (QW): P (QW|N) � 97%, P (QW|M) � 74%, and
P (QW|S) ∼ � 0 assuming strongly detrimental mutations are
predominantly quasi-null rather than edgetic (Figure 4).
Furthermore, we obtained from (Kryukov et al., 2007) the
probabilities for new missense mutations to be effectively
neutral (N), mildly deleterious (M), or strongly detrimental
(S): P (N) � 27%, P (M) � 53%, P (S) � 20%. We then
integrated these numbers to calculate the probability for new
missense mutations to be quasi-wild-type: P (QW) � P (QW|N)P
(N) + P (QW|M)P (M) + P (QW|S)P (S) � 65.5%. Finally, using

FIGURE 2 | Mutation locations on protein structural models. (A) Average RSA for pathogenic mutations, non-pathogenic mutations and all residues in the two
human structural interactomes Y2H-SI (left) and Lit-SI (right). Error bars represent standard errors of the mean. Statistical significance was calculated using a two-sided
t-test. (B) Difference in RSA distribution for pathogenic mutations and non-pathogenic mutations compared to all residues in the two human structural interactomes
Y2H-SI (left) and Lit-SI (right). (C) Fraction of buried mutations, interfacial mutations, and exposed non-interfacial mutations among common non-pathogenic
mutations (left) and among pathogenic mutations (right) in the two human structural interactomes Y2H-SI (top) and Lit-SI (bottom). Red slices represent buried
mutations, purple slices represent interfacial mutations, and blue slices represent exposed non-interfacial mutations.
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Bayes’ theorem P (A|B) � P (B|A)P (A)/P (B), we calculated the
probabilities for quasi-wild-type mutations (QW) to be effectively
neutral (N), mildly deleterious (M), or strongly detrimental (S): P
(N|QW) � P (QW|N)P (N)/P (QW) � 40%, P (M|QW) � P (QW|
M)P (M)/P (QW) � 60%, P (S|QW) � P (QW|S)P (S)/P (QW) � 0.
Thus, we estimated that ∼40% of quasi-wild-type missense
mutations in human are effectively neutral with a 95%
confidence interval of ∼38–42%, and that the remaining ∼60%
are mildly deleterious with a 95% confidence interval of ∼58–62%
(Figure 6A; Supplementary Table S1).

Next, we repeated the same calculation using our predicted
mutation edgotypes in Lit-SI (Figure 4), and estimated that ∼41%
of quasi-wild-type missense mutations in human are effectively
neutral with a 95% confidence interval of ∼40–42%, and that the
remaining ∼59% are mildly deleterious with a 95% confidence
interval of ∼58–60% (Figure 6A; Supplementary Table S1).
Finally, we repeated the same calculation using the
experimental mutation edgotype data from Sahni et al.
(Figure 4), and estimated that ∼52% of quasi-wild-type
missense mutations in human are effectively neutral with a
95% confidence interval of ∼48–57%, and that the remaining
∼48% are mildly deleterious with a 95% confidence interval of
∼43–52% (Figure 6A; Supplementary Table S1). These estimates
of fitness effect for quasi-wild-type mutations obtained from

predicted and experimental mutation edgotypes are broadly
consistent with one another.

Following the same procedure as above, described in the
Methods section and in Figure 5, we estimated the fitness
effect for edgetic (E) mutations and quasi-null (QN) mutations
using our predicted mutation edgotypes in Y2H-SI and Lit-SI as
well as mutation edgotypes obtained from experiments
(Figure 6A; Supplementary Table S1). We also assumed here
that strongly detrimental (S) mutations are predominantly quasi-
null, i.e., P (QW|S) � 0, P (E|S) � 0, and P (QN|S) � 1
(Assumption I; Figure 5). Altogether, our results reveal that
>∼40% of quasi-wild-type mutations are effectively neutral
and the remaining are mildly deleterious, that >∼80% of
edgetic mutations are only mildly deleterious, and that as low
as ∼25% of quasi-null mutations are mildly deleterious and up to
∼75% may be strongly detrimental (Figure 6A).

Edgotype Fitness Effect Assuming Strongly
Detrimental Mutations Are Similar in
Edgotype to Mildly Deleterious Mutations
Our estimates of fitness effect for quasi-wild-type, edgetic and
quasi-null mutations calculated above follow the assumption that
strongly detrimental mutations are predominantly quasi-null

FIGURE 3 |Change in protein stability upon mutation. Change in protein folding free energy (ΔΔG) created by pathogenic mutations and non-pathogenic mutations
in the two human structural interactomes, Y2H-SI (left) and Lit-SI (right), in relation to (A) mutation distance to protein center relative to protein radius and (B) relative
solvent accessibility (RSA) of the mutation residue.
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FIGURE4 |Mutation edgotypes determined by predictions and experiments. (A)Graphical description of quasi-wild-typemutations, edgetic mutations, and quasi-
null mutations. (B) Fraction of quasi-wild-type mutations, edgetic mutations, and quasi-null mutations among common non-pathogenic mutations (left) and among
pathogenic mutations (right). Mutation edgotypes were obtained from structure-based predictions in the two human structural interactomes, Y2H-SI (top) and Lit-SI
(middle), and from experiments (bottom). Red slices represent quasi-null mutations, purple slices represent edgetic mutations, and blue slices represent quasi-
wild-type mutations.

FIGURE 5 | Procedure for the calculation of edgotype fitness effect. Bayesian framework used for the calculation of fitness effects for quasi-wild-type mutations,
edgetic mutations and quasi-null mutations. Under Assumption I, strongly detrimental mutations are all quasi-null. Under Assumption II, strongly detrimental mutations
are as likely as mildly deleterious mutations to be quasi-wild-type, edgetic or quasi-null.
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rather than edgetic or quasi-wild-type (Assumption I; Figure 5).
Although this is a reasonable assumption given the more radical
nature of quasi-null mutations compared to other types of
mutations, it is possible that some strongly detrimental
mutations are edgetic or quasi-wild-type. To investigate the
extent to which such cases may impact our estimate of
mutation fitness effect, we repeated our calculations, this time
assuming the opposite extreme but unlikely scenario that strongly
detrimental (S) mutations are as likely as mildly deleterious (M)
mutations to be quasi-wild-type (QW), edgetic (E) or quasi-null
(QN) (Assumption II; Figure 5). In other words, instead of
assuming P (QW|S) � 0, P (E|S) � 0 and P (QN|S) � 1 as in
our previous Assumption I, we assume here in Assumption II that
P (QW|S) � P (QW|M), P (E|S) � P (E|M), and P (QN|S) � P
(QN|M). We repeated our calculations as in the previous section
using our new Assumption II for the edgotype distribution of
strongly detrimental mutations, and estimated the fitness effect
for quasi-wild-type, edgetic and quasi-null mutations again
(Figure 5). Our estimates of mutation fitness effect calculated
from predicted mutation edgotypes as well as experimental
mutation edgotypes under Assumption II are shown in
Figure 6B and Supplementary Table S2.

Under Assumption II, the probabilities for quasi-wild-type
and edgetic mutations to be strongly detrimental may reach ∼20
and ∼25%, respectively, compared to our previous estimates of ∼0
for both edgotypes obtained under Assumption I. On the other
hand, the probability for quasi-null mutations to be strongly
detrimental decreased from its upper limit of ∼75% under
Assumption I to ∼25% under Assumption II, whereas the
probability for quasi-null mutations to be mildly deleterious
increased from its lower limit of ∼25% under Assumption I to
∼70% under Assumption II. All other fitness effect estimates
obtained under Assumption II remain close to our estimates
obtained under Assumption I. Notably, Assumptions I and II
represent the two extreme scenarios for the unknown edgotype
distribution associated with strongly detrimental mutations, with
the real distribution being somewhere in between. Nonetheless,
we believe that Assumption I is a better approximation to reality
than Assumption II given the radical nature of strongly
detrimental mutations. Hence, we estimate that the fitness
effect for quasi-wild-type, edgetic and quasi-null mutations is
somewhere between our estimate derived from Assumption I
(shown in Figure 6A) and its average with our other estimate
derived from Assumption II (shown in Figure 6B). We

FIGURE 6 | Fitness effect for different mutation edgotypes in human. Probabilities for quasi-wild-type mutations (left), edgetic mutations (middle), and quasi-null
mutations (right) to be effectively neutral, mildly deleterious, or strongly detrimental in human. Probabilities were estimated from mutation edgotypes obtained by
structure-based predictions in the two human structural interactomes, Y2H-SI and Lit-SI, and from mutation edgotypes obtained by experiments. (A) Fitness effect
calculated assuming that strongly detrimental mutations are all quasi-null (Assumption I). (B) Fitness effect calculated assuming that strongly detrimental mutations
are as likely as mildly deleterious mutations to be quasi-wild-type, edgetic or quasi-null (Assumption II). Error bars represent 95% confidence intervals.
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summarize these merged estimates from both assumptions in
Figure 7.

DISCUSSION

Our estimates of mutation fitness effect (either neutral, mildly
deleterious or strongly detrimental) were derived from
structure-based predictions of mutation edgotypes as well as
mutation edgotypes determined by experiments. Our
computational predictions of mutation edgotypes were
performed in two human structural interactomes, Y2H-SI
and Lit-SI, that were constructed from diverse PPI datasets,
HuRI and IntAct, respectively. These predictions complement
experimental data as they probe different subsets of the human
proteome, with <5% of computational data covered by
experiments. Despite the minimal overlap in protein
coverage, our estimates of fitness effect for quasi-wild-type,
edgetic and quasi-null mutations derived from structure-based
calculations and experiments are consistent with one another.
Moreover, the HuRI dataset used in this study is much larger
than the HI-II-14 dataset (Rolland et al., 2014) that was used in
(Ghadie and Xia, 2019) to estimate dispensable content in the
human interactome, with ∼90% of the human protein-coding
genome covered by the HuRI dataset (Luck et al., 2020). Our
results obtained from the HuRI dataset are consistent with our
results in (Ghadie and Xia, 2019).

Genome-wide data for strongly detrimental mutations is not
available. We overcome this limitation by estimating mutation
fitness effect using two sets of calculations. The first set of
calculations (Figure 6A) makes the assumption that strongly
detrimental mutations are predominantly quasi-null rather than
edgetic or quasi-wild-type (Assumption I). This assumption is
very reasonable given the much more destructive nature of

strongly detrimental mutations compared to mildly deleterious
mutations. The second set of calculations (Figure 6B) makes the
assumption that strongly detrimental mutations are as likely as
mildly deleterious mutations to be quasi-null, edgetic or quasi-
wild-type (Assumption II). This second relaxed assumption
represents the least destructive scenario possible for strongly
detrimental mutations. Although very unlikely to be true, the
second assumption allows us to explore the extreme limits of
mutation fitness effect in the absence of genome-wide data for
strongly detrimental mutations. Thus, we estimate that the fitness
effect for quasi-wild-type, edgetic and quasi-null mutations is
somewhere between our estimate derived from Assumption I
(shown in Figure 6A) and its average with our other estimate
derived from Assumption II (shown in Figure 6B). Taking our
results all together, we estimate that at least ∼40% of quasi-wild-
type mutations are effectively neutral, less than ∼60% are mildly
deleterious, and less than ∼10% may be strongly detrimental
(Figure 7). We also estimate that at least ∼75% of edgetic
mutations are mildly deleterious, and less than ∼10% may be
strongly detrimental (Figure 7). Finally, we estimate that at least
∼95% of quasi-null mutations are deleterious, with as low as
∼25% being mildly deleterious and up to ∼75% being strongly
detrimental (Figure 7).

PPI datasets are known to contain experimental false positives
(erroneous PPIs) (Landry et al., 2013; von Mering et al., 2002;
Wodak et al., 2013), which include, among others, experimental
artifacts that are non-reproducible under similar experimental
conditions, physical interactions that are observed in vitro but do
not happen in vivo, and indirect interactions between pairs of
proteins that belong to the same complex. Our goal is to estimate
the fitness effects of missense mutations with different
interactome perturbation patterns as defined among physical
interactions that are free from these experimental errors. We
have applied several measures to minimize false positive errors.

FIGURE 7 | Summary of fitness effect for different mutation edgotypes in human. Probabilities for quasi-wild-type mutations, edgetic mutations, and quasi-null
mutations to be effectively neutral, mildly deleterious, or strongly detrimental in human. Probabilities were obtained by merging the results from mutation fitness effect
calculations under both assumptions (I) that strongly detrimental mutations are quasi-null rather than edgetic or quasi-wild-type, and (II) that strongly detrimental
mutations are as likely as mildly deleterious mutations to be quasi-null, edgetic or quasi-wild-type.
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First, the two human structural interactomes, Y2H-SI and Lit-SI,
were constructed from experimentally determined PPIs rather
than predicted PPIs. Second, Y2H-SI was derived from the high-
quality HuRI dataset, which was subjected to multiple Y2H
screens and other quality control measures, and is similar in
quality to a gold standard dataset of literature-derived PPIs (Luck
et al., 2020). Third, Lit-SI was derived from PPIs that were
reported by at least two independent experiments in the
literature. Fourth, our homology modelling approach that was
used to construct Y2H-SI and Lit-SI enriches for true physical
interactions and minimizes the occurrence of false positives, by
including only PPIs for which we were able to construct
homology models using experimentally determined 3D
structural templates of interacting proteins in PDB.

Despite these efforts, it may be that the false positive rates of
the Y2H-SI and Lit-SI datasets are non-negligible. These
erroneous PPIs typically cannot discriminate between
deleterious mutations and neutral mutations, since they do not
physically occur in the cell. Consequently, the fitness effect
probabilities for any mutation calculated in the noise portion
of the interactome are independent of its edgotype. More
specifically, in the false positive portion of the interactome, the
posterior probabilities for quasi-wild-type mutations, edgetic
mutations and quasi-null mutations to be effectively neutral
(N), mildly deleterious (M) or strongly detrimental (S) are
similar to the prior probabilities P (N), P (M), and P (S) for
missense mutations to be effectively neutral, mildly deleterious or
strongly detrimental, respectively. Since the error-free portion of
the PPI dataset must distinguish deleterious mutations from
neutral mutations better than the average performance of the
entire PPI dataset, the fitness effect probabilities calculated over
the error-free portion of the dataset must be even further from the
prior probabilities P (N), P (M), and P (S) than calculated over the
entire dataset. Our estimated probability for quasi-wild-type
mutations to be effectively neutral (>∼40%) is higher than the
prior probability for missense mutations to be effectively neutral
(27%), thus our estimate represents a lower bound in the presence
of experimental false positives in PPI datasets. Similarly, our
estimated probability for edgetic mutations to be mildly
deleterious (>∼75%) also represents a lower bound. At the
same time, our estimated probabilities for quasi-wild-type
mutations and edgetic mutations to be strongly detrimental
(<∼10% each) are lower than the prior probability for
missense mutations to be strongly detrimental (20%), thus
they represent upper bounds in the presence of experimental
false positives.

Notably, our estimates of fitness effect for quasi-null
mutations obtained from structure-based predictions are
robust to the presence of experimental false positives in the
PPI dataset. This is because we predict that a non-edgetic
mutation disrupts all protein interactions and thus is quasi-
null if and only if it is buried inside the protein structure and
significantly disrupts overall protein stability. This approach to
predicting quasi-null mutations is independent of the number of
protein interactions, and does not require us to predict disruption
or non-disruption of each PPI individually. Thus our structure-
based estimates of fitness effect for quasi-null mutations are also

independent of the number of protein interactions, and are robust
to the presence of false positives in the PPI dataset.

PPI datasets are also known to contain false negatives (Wodak
et al., 2013). One type of false negatives are PPIs that are missing
in the dataset due to incompleteness of interactome networks
(Vidal, 2016).We address this limitation by considering three PPI
datasets with different sizes: the high-quality dataset of HuRI
where all possible pairs of proteins were tested for interaction, the
larger dataset of literature-curated PPIs in IntAct, as well as the
experimental dataset of Sahni et al. Another type of false negatives
are true physical interactions that occur in vivo but are not
detected in vitro due to experimental biases (Wodak et al.,
2013). We address these biases by considering PPIs that were
mapped using diverse experimental methods, including among
others, Y2H experiments used to map both the HuRI dataset and
part of the IntAct dataset, and affinity capture experiments used
to map other parts of the IntAct dataset.

Besides these measures, false negatives may only impact our
estimates by misclassifying an edgetic mutation located on
protein surface as quasi-wild-type, whereas our predictions of
quasi-null mutations are independent of the number of protein
interactions and are robust to the presence of false negatives.
Nonetheless, pathogenic mutations are known to be enriched at
PPI interfaces compared to non-pathogenic mutations (Sahni
et al., 2015; Wang et al., 2012). Thus, an edgetic pathogenic
mutation is more likely to be misclassified as quasi-wild-type
compared to an edgetic non-pathogenic mutation in the presence
of false negatives, which results in a higher probability for quasi-
wild-type mutations to be mildly deleterious and a lower
probability for edgetic mutations to be mildly deleterious.
Therefore, our estimated probability for quasi-wild-type
mutations to be effectively neutral (>∼40%) and our estimated
probability for edgetic mutations to be mildly deleterious
(>∼75%) both represent lower bounds in the presence of false
negatives in PPI datasets.

While our estimates of mutation fitness effect are robust to
experimental noise, our datasets that were used for structure-
based calculations still contain other biases. First, literature-
curated PPIs in Lit-SI are enriched for interactions of
functional and disease importance, a bias that may affect our
estimates of fitness effect for edgetic mutations. We address this
bias by additionally examining systematically mapped PPIs in
Y2H-SI. Second, experimentally determined 3D structures in
PDB are also biased towards interactions with functional and
disease importance. We partially address this bias by using
homology models in addition to experimental 3D structures of
proteins and PPIs. Furthermore, we complement our mutation
edgotype predictions with mutation edgotypes determined by
experiments. These experimentally determined mutation
edgotypes are free from the aforementioned biases and
approximations that are present in our predictions. The broad
agreement between computation and experiment indicates that
our estimates are robust against these biases and approximations.

Our structure-based calculations also include several
numerical approximations. First, we define a mutation to be
exposed on protein surface if its RSA is larger than 0.25. Although
this cut-off may vary slightly between different structural biology
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studies, we chose the cut-off that was found to best segregate the
interior residues of a protein from the exterior residues (Levy,
2010). Second, we define a residue to be at the binding interface of
a protein if it falls within a distance of 5Å from any residue in the
interaction partner. This distance cut-off for defining interface
residues has been found to be the optimal cut-off for detecting
residue contacts within protein structures (Salamanca Viloria
et al., 2017), and is widely used in structural biology studies (Dai
et al., 2016; Espadaler et al., 2005; Ghadie and Xia, 2019; Nadalin
and Carbone, 2018; Winter et al., 2006; Yang et al., 2019). Other
studies have used slightly different cut-offs such as 6 Å
(Cukuroglu et al., 2014; Davis and Sali, 2005; Ofran and Rost,
2003). To see whether our results are robust to different choices of
cut-offs, we repeated our mutation edgotype predictions in both
interactomes Y2H-SI and Lit-SI using two other distance cut-offs
for defining residues at the binding interface, 4 and 6 Å. We then
re-calculated the fitness effects for mutation edgotypes based on
these new cut-offs. Our estimates of fitness effect remain
unchanged (Supplementary Figures S2,S3), thus proving that
our edgotype predictions and fitness effect calculations are robust
to different choices of distance cut-off for defining PPI interface
residues.

Furthermore, we predict an interfacial mutation to be edgetic
if it causes a change in PPI binding free energy ΔΔG > 0.5 kcal/
mol. This ΔΔG cut-off for edgetic mutations has been previously
established and used by other structural biology studies (Cui et al.,
2019). While using a different ΔΔG cut-off may change the
proportion of edgetic mutations among both neutral and
deleterious mutations, our estimates of fitness effect are robust
to small variations in our choice of binding ΔΔG cut-off. For
quasi-null mutations in particular, by setting the edgotype
variable T in Eqs 2–4 in the Methods section to quasi-null
(QN), it is clear that the fitness effect probabilities for quasi-
null mutations P (N|QN), P (M|QN) and P (S|QN) depend only
on the proportion of quasi-null mutations among neutral (N),
mildly deleterious (M) and strongly detrimental (S) mutations: P
(QN|N), P (QN|M) and P (QN|S), and do not depend on the
proportions of edgetic or quasi-wild-type mutations. Since
interfacial mutations are typically not buried and therefore
cannot be predicted by our method to be quasi-null, a change
in our binding ΔΔG cut-off can only change the edgotype of an
interfacial mutation from edgetic to quasi-wild-type or vice versa,
thus leaving the proportion of quasi-null mutations among both
neutral and deleterious mutations and their fitness effect
estimates unchanged.

At the same time, by setting the edgotype variable T in Eqs 5–7
in the Methods section to either edgetic or quasi-wild-type, it is
easy to see that the fitness effect probabilities for edgetic (E)
mutations and quasi-wild-type (QW) mutations to be neutral
(N), mildly deleterious (M) or strongly detrimental (S): P (N|T), P
(M|T) and P (S|T) where T � E or QW, depend only on the ratio
of proportions P (E|N)/P (E|M) for edgetic mutations and P
(QW|N)/P (QW|M) for quasi-wild-type mutations (after
substituting P (T|S) � 0 under Assumption I and P (T|S) � P
(T|M) under Assumption II). To see whether these two ratios of
proportions change for different binding ΔΔG cut-offs, we
repeated our edgotype predictions using three different

cut-offs: 0.3, 0.5 and 0.7 kcal/mol, and re-calculated the ratios
P (E|N)/P (E|M) and P (QW|N)/P (QW|M) for each cut-off. Our
results show that these two ratios remain almost unchanged for
the three ΔΔG cut-offs (Supplementary Table S3), indicating
that our estimates of fitness effect for edgetic mutations and
quasi-wild-type mutations are also robust to different choices of
binding ΔΔG cut-off used for predicting edgetic mutations.

Our edgotype predictions make use of the change in free
energy (ΔΔG) upon mutation as predicted by the widely known
method FoldX (Schymkowitz et al., 2005). Other computational
methods are also available for predicting ΔΔG upon mutation,
including mCSM-PPI2 (Rodrigues et al., 2019) for PPI binding
free energy and DynaMut2 (Rodrigues et al., 2020) for protein
folding free energy. Unlike FoldX which predicts ΔΔG values
using only physics-based calculations, the other aforementioned
methods make use of protein sequence and evolutionary
information which may introduce biases into our edgotype
predictions for neutral and deleterious mutations.
Furthermore, these methods do not offer the option of
predicting ΔΔG values for thousands of mutations
simultaneously, which is necessary for our large-scale study.
Nonetheless, to check whether our fitness effect estimates are
robust to different choices of ΔΔG prediction methods, we
repeated our mutation edgotype predictions on a sample of
mutations in both interactomes Y2H-SI and Lit-SI (137
mutations in Y2H-SI, and 202 mutations in Lit-SI), this time
using mCSM-PPI2 for predicting change in PPI binding free
energy and DynaMut2 for predicting change in protein folding
free energy. We repeated our fitness effect calculations using these
new edgotype predictions and our estimates of fitness effect
remain broadly consistent with our FoldX-based estimates
(Figure S4), thus proving that our fitness effect calculations are
robust to different choices of methods for predicting ΔΔG upon
mutation.

In addition, we further validated our edgotype prediction
method using FoldX-based ΔΔG calculations on the
experimental dataset of Sahni et al. (2015). For predicting
edgetic mutations, we obtained a true positive rate (TPR) of
0.3 and a false positive rate (FPR) of 0.04 (p � 0.002, two-sided
Fisher’s exact test). For predicting quasi-null mutations, we
obtained a TPR of 0.56 and a FPR of 0.07 (p � 0.001, two-
sided Fisher’s exact test). A TPR that is equal to FPR indicates that
predictions are not better than random expectation. Our TPR for
predicting edgetic mutations is 7.5 times larger than the FPR, and
our TPR for predicting quasi-null mutations is 8 times larger than
the FPR, proving that our structure-based method for predicting
mutation edgotype is of very high quality.

Our structure-based calculations make a clear distinction
between quasi-null mutations and edgetic mutations. We
consider a mutation to be edgetic if and only if it disrupts at
least one PPI by disrupting the binding interface, and we consider
a mutation to be quasi-null if it disrupts all interactions by
disrupting overall protein stability. In the experimental dataset
of Sahni et al., the definition of quasi-null mutations is less
straightforward. There, due to the lack of structural
information, a mutation is considered to be edgetic if it
disrupts some but not all interactions, and a mutation is
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considered to be quasi-null if it disrupts all interactions. It is
possible for an edgetic mutation to disrupt all interactions
without disrupting overall protein stability if all interactions
are mediated by the same interface. In that case, an edgetic
mutation in the dataset of Sahni et al. will be misclassified as
quasi-null. We address this experimental caveat by performing
structure-based computations of mutation edgotypes, which are
free from this caveat as explained above. The broad agreement
between computation and experiment shows that our estimates
obtained from experiments are robust to such potential errors.

Deleterious mutations that have different edgotypes may also
have different physiochemical properties. Based on amino acid
biochemical properties provided by National Center for
Biotechnology Information (NCBI) (1988), we found that 61%
of deleterious quasi-null mutations identified by both predictions
and experiments involve a decrease in residue hydrophobicity
upon mutation, compared to only 49% for edgetic mutations and
44% for quasi-wild-type mutations (Supplementary Figure
S5A), consistent with the expectation that buried quasi-null
mutations disrupt overall protein stability. We also found that
67% of deleterious quasi-null mutations involve an increase in
residue molecular weight upon mutation, compared to only 43%
for edgetic mutations and 48% for quasi-wild-type mutations
(Supplementary Figure S5B), also consistent with the
expectation that buried quasi-null mutations disrupt overall
protein stability. Since strongly detrimental mutations are
expected to be predominantly quasi-null rather than edgetic or
quasi-wild-type, the distinct physiochemical patterns of (mildly)
deleterious mutations that are quasi-null suggest that strongly
detrimental mutations are also more likely to involve a decrease
in residue hydrophobicity and an increase in residue molecular
weight upon mutation compared to the average deleterious
mutation.

In theory, quasi-null mutations are likely to cause complete
loss of protein function, similar to gene knockout. Using the
Achilles dataset of CRISPR gene knockout effects in 808 cancer
cell lines provided by the DepMap project (Dempster et al., 2019;
DepMap, 2020; Meyers et al., 2017), we quantified the knockout
effect for all genes that encode proteins disrupted by quasi-null
mutations in both predictions and experiments. We found that
genes corresponding to proteins disrupted by deleterious quasi-
null mutations have a more detrimental knockout effect on
average across all cell lines compared to genes corresponding
to proteins that are disrupted by non-deleterious quasi-null
mutations (p < 10−29 in all interactomes, two-sided t-test;
Supplementary Figure S5C). These positive correlations in
fitness effect between protein disruption by quasi-null
mutations and corresponding gene knockout suggest that
deleterious mutations tend to disrupt proteins of higher
functional importance compared to neutral mutations.

Proteins encoded by essential genes often show distinct
network properties. To examine whether mutation edgotypes
among essential genes show patterns of fitness effect that are
distinct from other genes in the interactome, we repeated our
calculations of edgotype fitness effect this time by predicting
mutation edgotypes based on whether or not they disrupt PPIs of
essential genes only. Here, we maintain our original assumption

that strongly detrimental mutations are predominantly quasi-
null, with the probability of disrupting proteins of essential genes
equal to the overall fraction of essential genes in the interactome.
Overall, we observed a slight increase in the probability for quasi-
wild-type mutations among essential genes to be mildly
deleterious compared to the average gene in the interactome
(Supplementary Figure S6), which is expected since mutations
that do not disrupt PPIs of essential genes may still disrupt PPIs of
other genes. At the same time, we observed a slight increase in the
probability for edgetic mutations among essential genes to be
mildly deleterious compared to the average gene in the
interactome (Supplementary Figure S6), suggesting that PPIs
of essential genes may be more important to cellular function
than PPIs of other genes. On the other hand, we observed a
significant increase in the probability for quasi-null mutations
among essential genes to be strongly detrimental, with its upper
limit reaching ∼100% compared to ∼75% for the average gene in
the interactome (Supplementary Figure S6). This significant
increase reflects the essentiality of proteins encoded by
essential genes compared to proteins of other genes.

Our results reveal that while common mutations rarely
disrupt the interactome, pathogenic mutations are
significantly more likely to disrupt the interactome, either
disrupting specific PPIs by disrupting the binding interface
(edgetic) or disrupting all PPIs by disrupting overall protein
stability (quasi-null), thus leading to loss of function in both
cases. On the other hand, while quasi-wild-type mutations do
not disrupt pre-existing PPIs, it is possible for some
pathogenic quasi-wild-type mutations to create new PPIs by
creating new binding interfaces, thus leading to gain of
function (Yates and Sternberg, 2013). Gain-of-function
mutations are known to be associated with different disease
phenotypes (Li and Babu, 2018; Meyer et al., 2018), including
cancers (Kakiuchi et al., 2014; van Oijen and Slootweg, 2000)
and neurodegenerative diseases (Lashuel et al., 1999). While
such mutations are hard to detect by systematic experiments or
computational predictions, recent genome-wide screens
suggest that gain-of-interaction mutations are ∼30 times
less likely to occur in human disease than edgetic loss-of-
interaction mutations (Sahni et al., 2015). Nonetheless, our
estimates of fitness effect for different mutation edgotypes are
independent of the extent of gain-of-function mutations in the
interactome. Our definitions for mutation edgotypes refer only
to mutations that either disrupt pre-existing PPIs in the
reference interactome (edgetic or quasi-null) or do not
disrupt any pre-existing PPIs (quasi-wild-type), and are
independent of the extent of gain-of-function mutations.
Moreover, the three prior probabilities in our Bayesian
framework P(N), P(M) and P(S), for new missense
mutations to be neutral (N), mildly deleterious (M) and
strongly detrimental (S) are obtained from population
genetics studies using procedures that are robust to gain-of-
function mutations (Kryukov et al., 2007). While gain-of-
function mutations are beyond the scope of our current
study and do not affect our estimates of fitness effect for
different mutation edgotypes among pre-existing PPIs, our
Bayesian framework can be extended in the future to the

Frontiers in Bioinformatics | www.frontiersin.org August 2021 | Volume 1 | Article 69076912

Ghadie and Xia Mutation Edgotype Drives Fitness Effect

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


calculation of fitness effect for quasi-wild-type mutations that
specifically cause gain of function. In that case, a more granular
definition of fitness effect such as “likely neutral” and “likely
deleterious” may be helpful when such phenotype data
becomes available. Finally, our Bayesian framework can also
be extended to the calculation of fitness effect for co-occurring
mutations (Skoulidis and Heymach, 2019) when enough data
becomes available.

In summary, we estimate that at least ∼40% of mutations that
do not disrupt the interactome (quasi-wild-type mutations) are
effectively neutral, and that the remaining are mostly mildly
deleterious rather than strongly detrimental. These results
suggest that some mutations that do not disrupt PPIs may
cause disease by disrupting alternative molecular interactions
such as protein-DNA interactions (Fuxman Bass et al., 2015;
Reece-Hoyes et al., 2011; Sahni et al., 2015) and protein-
chemical interactions (Reva et al., 2011; Sahni, et al., 2015),
or by the event of creating new interactions (Li and Babu, 2018;
Meyer et al., 2018). We also estimate that the vast majority
(>∼75%) of edgetic mutations are mildly deleterious rather than
strongly detrimental, consistent with expectations from
previous studies (Mosca et al., 2015; Sahni et al., 2015; Wang
et al., 2012) and also suggesting that the majority of human PPIs
are under strong purifying selection. Finally, we estimate that
the vast majority (>∼95%) of quasi-null mutations are either
mildly deleterious or strongly detrimental, with as low as ∼25%
being mildly deleterious and up to ∼75% being strongly
detrimental, indicating that disrupting overall protein
stability is much more likely to be strongly detrimental to
the cell than disrupting a single PPI, and also suggesting that
the stability of most human proteins is essential to human life.
These estimates represent a genome-wide average over the
entire human interactome, likely with significant variations
within the interactome. Indeed, certain subsets of the
interactome appear to be more dispensable than others
(Landry et al., 2009; Studer et al., 2016). Our study further
demonstrates the important role of systematic mapping of
interactome perturbation patterns in elucidating the
phenotypic consequences of genetic mutations, and the
power of complementing experimental studies of interactome
perturbations with high-resolution structural biology
computations.

METHODS

Constructing Protein-Protein Interaction
Structural Models
Protein complex structures at atomic resolution were obtained
from the Protein Data Bank (PDB) (Berman et al., 2003). For
structures containing more than one model, the first model was
selected. Gene Ensembl IDs in the HuRI reference interactome
were mapped to protein UniProt IDs and corresponding amino
acid sequences using the ID mapping table provided by UniProt
(The UniProt Consortium, 2014). For proteins in the IntAct
reference interactome, UniProt IDs provided by the IntAct
database were used to obtain corresponding amino acid

sequences. Next, we used BLAST (Altschul et al., 1990) to
perform sequence alignment of all protein sequences against
all PDB chain sequences found in PDB’s SEQRES records,
with an E-value cut-off of 10−5. For each pair of protein
sequence and PDB chain, the alignment with the smallest
E-value was retained, and the remaining alignments were
discarded. A PPI was annotated with a pair of chains found in
the same PDB structure if: 1) the two chains had a binding
interface, 2) one of the proteins in the PPI has a sequence
alignment with one of the chains in the chain pair, with ≥50%
of interface residues mapped onto the protein; and 3) the other
protein in the PPI has a sequence alignment with the other chain
in the chain pair, with ≥50% of interface residues mapped onto
the protein. PPIs having no PDB chain-pair annotations were
discarded. The 3D structure corresponding to the annotated
chain-pair of each PPI was selected as a template for
generating the PPI structural model. We then used BLAST
again to generate the sequence alignment for each PPI against
the residues that have 3D coordinates in the template structure
file. Finally, we used the MODELLER library (version 9.23)
(Webb and Sali, 2016) to construct a structural model for each
PPI starting from its template structure.

Defining Binding Interfaces in
Protein-Protein Interaction Structural
Models
We calculated the pairwise Euclidean distance between all
residues of the first protein and all residues of the second
protein. The distance between two residues was calculated as
the minimum distance between all atoms of the first residue and
all atoms of the second residue. If the residue of one protein is
within a distance of 5 Å from any residue in the other protein,
that residue was labelled as an interface residue.

Mapping Pathogenic Mutations Onto the
Human Structural Interactome
Germline mutations in human with associated phenotypic
consequences were retrieved in February 2020 from the
ClinVar database (genome assembly GRCh38) (Landrum
et al., 2016). We selected missense mutations that are strictly
labelled as pathogenic only, with supporting evidence (i.e., with at
least one star), and with no conflicting phenotypic
interpretations. To map mutations onto proteins in the human
structural interactome, we searched the protein’s RefSeq
transcript provided by ClinVar for the mutation flanking
sequence, defined as either the first 10 amino acid residues or
all amino acid residues, whichever one is shorter, on both sides of
the mutation. Then we searched the protein’s sequence
designated by UniProt for the mutation flanking sequence
obtained from the RefSeq transcript. If the flanking sequence
was found on the protein sequence at the same position reported
by ClinVar, the mutation was retained for further analysis,
otherwise the mutation was discarded. For multiple mutations
mapping onto the same position, only one mutation was retained
for further analysis.
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Mapping Common Mutations Onto the
Human Structural Interactome
Single Nucleotide Polymorphism (SNP) mutations in human
were retrieved in February 2020 from the Single Nucleotide
Polymorphism Database (dbSNP) (build 150 GRCh38p7)
(Sherry et al., 2001). First, we selected only missense SNPs
that are labelled as validated and not withdrawn, and are
assigned a location on the RefSeq transcript of a protein. Next,
we discarded all mutations labelled with pathogenic or uncertain
assertions (e.g., pathogenic, likely pathogenic, drug-response,
uncertain significance or other). Then we selected mutations
that have minor allele frequencies ≥1%, as common mutations
with high frequencies are unlikely to be associated with any
disease. To map mutations onto proteins in the human structural
interactome, we searched the protein’s RefSeq transcript provided
by dbSNP for the mutation flanking sequence, defined as either
the first 10 amino acid residues or all amino acid residues,
whichever one is shorter, on both sides of the mutation. Then
we searched the protein’s sequence designated by UniProt for the
mutation flanking sequence obtained from the RefSeq transcript.
If the flanking sequence was found on the protein sequence at the
same position reported by dbSNP, the mutation was retained for
further analysis, otherwise the mutation was discarded. Finally,
mutations overlapping in position with pathogenic mutations
were also discarded.

Calculating Residue Relative Solvent
Accessibility
The absolute solvent accessibility (ASA) of the residue was
calculated using Biopython’s DSSP module. The residue’s
relative solvent accessibility (RSA) was calculated by dividing
the residue’s ASA by the 99.99th percentile of its corresponding
amino acid ASA distribution among all PDB structures, as
provided in DSSP’s pre-calculated ASA file.

Calculating Edgotype Fitness Effect
The edgotype of a mutation can be either edgetic, quasi-null, or
quasi-wild-type. In addition, the fitness effect of a mutation can
be either neutral, mildly deleterious, or strongly detrimental.
Given a set of neutral and mildly deleterious mutations with
known edgotypes, we calculate the fitness effect for mutations of
specific edgotype T using the following procedure: From the
mutation edgotype data, we obtain the probabilities for effectively
neutral (N), mildly deleterious (M), and strongly detrimental (S)
mutations to be of edgotype T: P (T|N), P (T|M), and P (T|S),
where P (T|S) � {1 if T is quasi-null, and 0 if T is quasi-wild-type
or edgetic} assuming that strongly detrimental mutations are
quasi-null rather than edgetic or quasi-wild-type. Next, we obtain
from (Kryukov et al., 2007) the probabilities for new missense
mutations to be effectively neutral (N), mildly deleterious (M), or
strongly detrimental (S): P (N) � 27%, P (M) � 53%, P (S) � 20%.
We then integrate these numbers to calculate the probability for a
new missense mutation to be of edgotype T:

P(T) � P(T|N)P(N) + P(T|M)P(M) + P(T|S)P(S) (1)

Finally, we apply Bayes’ theorem P (A|B) � P (B|A)P (A)/P (B)
to calculate the probability for a mutation of edgotype T to be
effectively neutral (N), mildly deleterious (M) or strongly
detrimental (S):

P(N|T) � P(T|N)P(N)
P(T) (2)

P(M|T) � P(T|M)P(M)
P(T) (3)

P(S|T) � P(T|S)P(S)
P(T) (4)

Now, we describe procedures for calculating the 95%
confidence intervals for these three edgotype fitness effect
probabilities. By substituting the value of P (T) from Eq. 1
into Eq. 2, P (N|T) can be written as follows:

1
P(N|T) � 1 + P(T|M) P(M)

P(N) + P(T|S)P(S)
P(N)

P(T|N) � 1 + a × P(T|M) + b
P(T|N)

(5)

where a � P(M)
P(N) and. b � P(T|S)P(S)

P(N)
The 95% confidence interval for the ratio {a × P (T|M) + b}/P

(T|N) was calculated according to Bland (Bland, 2015), which was
then used to calculate the 95% confidence interval for P (N|T)
using the above equation.

Similarly, by substituting the value of P (T) from Eq. 1 into Eq.
3, P (M|T) can be written as follows:

1
P(M|T) � 1 + P(T|N) P(N)

P(M) + P(T|S)P(S)
P(M)

P(T|M) � 1 + a × P(T|N) + b
P(T|M) (6)

where a � P(N)
P(M) and. b � P(T|S)P(S)

P(M)
The 95% confidence interval for the ratio {a × P(T|N) +

b}/P(T|M) was calculated according to Bland (Bland, 2015),
which was then used to calculate the 95% confidence interval
for P (M|T) using the above equation.

Finally, by substituting the value of P (T) from Eq. 1 into Eq. 4,
P (S|T) can be written as follows:

1
P(S|T) � 1 + P(T|N)P(N) + P(T|M)P(M)

P(T|S)P(S)
� 1 + {a × P(T|N)} + {b × P(T|M)} (7)

where a � P(N)
P(T|S)P(S) and. b � P(M)

P(T|S)P(S)
The 95% confidence interval for the sum {a × P(T|N)} + {b ×

P(T|M)} was calculated according to Bland (Bland, 2015), which
was then used to calculate the 95% confidence interval for P (S|T)
using the above equation.
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