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The presence of non-progressive cognitive impairment is recog-
nized as a common feature in a substantial proportion of patients 
with Duchenne muscular dystrophy (DMD). Concurrently, the 
amyloid beta peptide (Aβ42) protein has been associated with 
changes in memory and cognitive functions. Also, it has been 
shown that different subtypes of neural stem/progenitor cells 
(CD 34, CD 45, nestin) are involved in the innate repair of plas-
ticity mechanisms by the injured brain, in which Nerve Growth 
Factor (NGF) acts as chemotactic agents to recruit such cells. Ac-
cordingly, the present study investigated levels of CD 34, CD 45, 
nestin and NGF in an attempt to investigate makers of neural 
regeneration in DMD. Neural damage was assayed in terms of 
Aβ42. Results showed that Aβ42 (21.9 ± 6.7 vs. 12.13 ± 4.5) was sig-
nificantly increased among DMD patients compared to controls. 
NGF (165.8 ± 72 vs. 89.8 ± 35.9) and mononuclear cells express-
ing nestin (18.9 ± 6 vs. 9 ± 4), CD 45 (64 ± 5.4 vs. 53.3 ± 5.2) and 
CD34 (75 ± 6.2 vs. 60 ± 4.8) were significantly increased among 
DMD patients compared to controls. In conclusion cognitive 
function decline in DMD patients is associated with increased 
levels of Aβ42, which is suggested to be the cause of brain damage 
in such patients. The significant increase plasma NFG and in the 
number of mononuclear cells bearing CD34, CD45 and nestin indi-
cates that regeneration is an ongoing process in these patients. 
However, this regeneration cannot counterbalance the damage 
induced by dystrophine mutation and increased Aβ42. 
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Introduction
Duchenne muscular dystrophy (DMD) represents 

an X-linked recessive disorder related to mutations in 
the dystrophin gene which is located on chromosome 
Xp21.1 (1). It is one of the most common and severe form 
of dystrophinopathies, characterized by progressive and 
disabling muscle weakness affecting approximately 1 in 
3000 to 4000 male births  (2). The disease is character-

ized by ongoing degeneration and regeneration of skeletal 
muscle that leads to replacement of muscle by connective 
tissue and fat (3).

In addition to the profound skeletal muscle lesions, 
DMD is associated with mild to severe cognitive deficits 
and poor academic achievement, which are independent 
from the muscular handicap or clinical environment (4). 
Full-scale intelligence quotient (IQ) scores of DMD pa-
tients are distributed in accordance with the assumption 
that the cognitive defect results from the same muta-
tions that cause myopathy (5). In fact, about one third of 
DMD boys have IQ scores below 70 and display mental 
retardation. Deficits affect both receptive and expressive 
language skills, with alterations in auditory comprehen-
sion, phonological knowledge and language, and delayed 
acquisition of reading, which has been partly attributed 
to a form of developmental dyslexia, that is, dysphonetic 
dyslexia (5). Impaired short- and long-term memory per-
formances are consistently reported and include defective 
recall, working memory, memory span, and visuo-spatial 
skills (5, 6-8). 

Amyloid beta peptide (Aβ) is a proteolytically 
processed fragment of the amyloid precursor protein 
(APP) (9). It occurs in different length variants with pep-
tides of 40 amino acid residues (Aβ

40
) and 42 amino acid 

residues (Aβ
42

), the latter is the most prevalent. The ac-
cumulation Aβ plaques is a key feature in the brains of 
Alzheimer Disease (AD) patients and is implicated in the 
disruption of normal cellular processes leading to neu-
rodegeneration (10). Aβ is secreted into the extracellular 
space allowing its detection in the CSF and plasma (11). 
Functional studies have demonstrated that oligomeric Aβ 
species can impair long-term potentiation (LTP) and syn-
aptic function in mature neurons (12). The magnitude of 
amyloid plaque deposition in the brain correlates poorly 
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with cognitive decline, and emerging evidence suggests 
that Aβ oligomers may be the major culprits in this re-
gard (13). 

NGF is a neurotrophin, shown to support the sur-
vival and differentiation of neurons during brain develop-
ment (14), and reduces neural degeneration (15) and pro-
motes peripheral nerve regeneration in rats (16). Lately, 
it has been shown that different subtypes of neural stem/
progenitor cells respond differently to traumatic brain in-
jury, which induces their activation reflecting the induc-
tion of innate repair and plasticity mechanisms by the in-
jured brain (17, 18), where during such process nestin and 
CD34 expression increases and is serum level depend-
ent (19, 20). It was reported that CD34 cells are present 
in DMD patients for tissue regeneration (21). It has been 
demonstrated that CD45 subset comprise juvenile protec-
tive factors for the maintenance of brain microvascular 
health (22).

During the last two decades, the role of dystrophin in 
the CNS has been investigated in DMD boys and the dys-
trophin deficient mdx mouse (model of DMD), and have 
demonstrated a range of abnormalities in CNS function, 
from behavioral and cognitive dysfunction to alterations 
in the clustering of ion channels in single identified neu-
rons (23). Accordingly, this study was conducted in order 
investigate markers related to neural damage and repair 
in DMD patients. The study investigated levels of CD 34, 
CD 45 and nestin in an attempt to investigate markers of 
regeneration in blood of DMD patients and degeneration 
in terms of Aβ

42
 in relation to IQ.

Subjects and methods
Subjects were 60 boys diagnosed clinically and at the 

molecular level as having DMD (mean of age (8.1 ± 1.9), 
versus 20 age and socioeconomic matching healthy boys 
(mean of age 8.2 ± 2.2). Patients and controls were cho-
sen to be free from any infection and receiving no thera-

peutic treatment known to increase the oxidative stress. 
Blood samples were drawn after their parents’ consent.

Biochemical Investigations 

Aβ
42

This was carried out using Amyloid Beta (Aβ) ELI-
SA Kit (Millipore catalog number EZHS42 (24).

CD45, CD34 and Nestin Quantification

To quantify EPCs in circulation, peripheral mono-
nuclear cells were first isolated from the blood samples 
(0.5 mM EDTA). The isolated cells were labeled with 
the phycoenythrin (PE)-conjugated monoclonal nestin 
antibody and Fluorescein isothiocyanate (FITC) conju-
gated CD34 (Macs). The stained cells were washed with 
phosphate buffered saline and /BSA and then analyzed 
by flow cytometry at the Faculty of Medicine, Cairo 
University (25). 

Nerve Growth Factor

This is an enzyme-Linked immunosorbent assay, 
which employs an antibody specific for human for ß-NGF 
coated on 96 well plate (26).

IQ
This was carried out using the Wechsler Intelligence 

Scale for Children third edition (WISC III): It provides 
scores for Verbal IQ, Performance IQ and Full Scale 
IQ (27). 

Results
Results showed that Aβ

42
 (21.9 ± 6.7 vs. 12.13 ± 4.5) 

was significantly increased among DMD patients com-
pared to controls (Table  1) and that it has a significant 
negative relation with IQ of the patients (Fig.  1). NGF 

Table 1. Markers of neural damage among DMD compared to controls.

DMD Controls t P

Amyloid Beta Peptide 42 21.9 ± 6.7 12.13 ± 4.5 4.3 P < 0.001

Mean of IQ 74.8 ± 9.3 95.4 ± 10 10.9 P < 0.00001

Table 2. Markers of neural regeneration among DMD compared to controls.
DMD Controls t p

Nestin 18.9 ± 6 9 ± 4 12.3 P < 0.0001

CD34 75 ± 6.2 60 ± 4.8 9.1 P < 0.0001

CD45 64 ± 5.4 53.3 ± 5.2 P < 0.001

-NGF (pg/ml) 165.8 ± 72 89.8 ± 35.9 4.6 P < 0.001



Evaluation of neural damage in Duchenne muscular dystrophy patients

15

ma together with increased risk for Alzheimer’s disease 
(AD), neuropathology and clinical dementia (34-38). 

In recent years there has been a substantial increase 
in the understanding of the role of dystrophin in the CNS. 
These studies have been largely carried out on DMD 
boys and the dystrophin deficient mdx mouse and have 
demonstrated a range of abnormalities in CNS function, 
from behavioral and cognitive dysfunction to alterations 
in the clustering of ion channels in single identified neu-
rons  (39). Dystrophin is considered the central compo-
nent of a scaffold of proteins expressed in a variety of 
tissues including the brain, where it is involved in the 
clustering of several membrane receptors and ion chan-
nels and in the modulation of cellular signal integration 
and synaptic plasticity  (30). Normally, in the cerebel-
lum, dystrophin appears to play a role in normal neuronal 
function or development. Two carboxy-terminal dystro-
phin proteins (Dp), Dp71 and Dp140, are both expressed 
in the brain, in addition to full-length central nervous 
system dystrophins, and are initiated between exons 62 
and 63, and upstream from exon 44, respectively  (40-
42). Rearrangements in the second part of the dystrophin 
gene tend to be more commonly associated with cogni-
tive impairment, and several reports described mutations 
in the Dp71 coding region as a factor that contributes to 
the severity of mental retardation (42-44). It is suggest-
ed that a lack of the Dp140 isoform is thought to play a 
significant role in cognitive performances in Duchenne 
muscular dystrophy (45, 46) and mutations involving the 
Dp71 region are often associated with severe cognitive 
impairment (47, 48).

Putative alterations of the brain vascular permeabil-
ity have been suggested by some studies, which may also 
participate to behavioral deficits in mdx mice (31). Initial 
observations of mdx brains revealed severe alterations of 
endothelial cells with open tight junctions surrounded by 
swollen glial processes and enhanced vascular permeabil-
ity suggesting brain blood barrier (BBB) breakdown (48). 
Follow-up studies suggested that this results partially 
from hypoxic condition leading to the activation of hy-
poxia inducible factor-1α contributing to both BBB open-
ing and compensatory angiogenesis, along with changes 
in expression of matrix metalloproteinases, nerve and 
vascular growth factors (32). Hence, the hypothesis that a 
progressive decline in respiratory function due to muscle 
degeneration, could worsen the brain and cognitive im-
pairments in advanced DMD patients through a reduction 
in cerebral oxygenation and BBB disruption (49). 

NFG was significantly higher in blood of DMD com-
pared to controls in the present study. Although, NFG in 
blood of DMD studies are scarce, a previous study has 
shown by means of immunohistochemistry, that regen-
erating muscle fibers from DMD patients consistently 

(165.8 ± 72 vs. 89.8 ± 35.9) and mononuclear cells ex-
pressing nestin (18.9 ± 6 vs. 9 ± 4), CD 45 (64 ± 5.4 vs. 
53.3 ± 5.2) and CD34 (75 ± 6.2 vs. 60 ± 4.8) were signifi-
cantly increased among DMD patients (Table 2).

Discussion
Results of the present study showed that Aβ

42
 was 

significantly higher among DMD patients compared to 
controls and that a significant negative correlation exist 
between Aβ

42
 and IQ of such patients. Data regarding lev-

els of Aβ
42 

in DMD are null. However, it has been shown 
that in patients carrying mutations predicted to affect 
dystrophin isoforms expressed in the brain, are associ-
ated with higher risk of cognitive impairment  (28) and 
since Aβ

42 
has been shown to be associated with cognitive 

function impairment, the present study assumed that Aβ
42 

levels might be increased in DMD patients compared to 
controls. Supporting this assumption is that: a direct rela-
tion between the deposition of insoluble Aβ

42
 after trau-

matic brain injury and the changes in brain interstitial 
fluid Aβ levels has been reported, where the disruption of 
the blood brain barrier has been shown to play an impor-
tant role in the pathogenesis of epilepsy (29). Partial or 
generalized epilepsy has been reported in DMD (30). Al-
so the mdx mice were shown to be susceptible to seizure 
among administration of convulsing drugs (31) and brain 
edema and severe alterations of the glial and endothelial 
cells have recently been demonstrated in such mice (32).

Our recent finding that Aβ 42 was significantly high-
er among Down syndrome (DS) patients compared to 
controls (20 ± 5.1 vs. 11.9 ± 3.4)  (33) provides further 
proof that mental retardation is associated with increased 
levels of Aβ 42 in blood and gives clue that DMD men-
tal retardation is associated with increased levels of Aβ 
42. Previous studies have shown that individuals with DS 
have increased levels of Aβ40 and Aβ42 peptides in plas-

Figure 1. Correlation between Aβ42 and IQ among DMD 
patients.
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whose quantitative and qualitative normalization can at-
tenuate the progression of ischemic-hemorrhagic stroke 
pathogenesis in rat model likely through the maintenance 
of brain microvascular health  (22). It has been demon-
strated that genetic loss of CD45 (1) accelerates cerebral 
amyloidosis  (2), causes brain accumulation of soluble 
oligomeric Aβ species and reduction in plasma-soluble 
Aβ  (3), promotes proinflammatory and anti-Aβ phago-
cytic microglial activation (4), and leads to mitochondrial 
dysfunction and neuronal loss in mice model of Alzheimer 
Disease (63). 

In conclusion cognitive function decline in DMD pa-
tients is associated with increased levels in Aβ

42
, which 

is suggested to be the cause of brain damage in such pa-
tients. The significant increase plasma NFG and in the 
number of mononuclear cells bearing CD

34, CD45
 and nestin 

indicates that regeneration is an ongoing process in these 
patients. However, this regeneration cannot counterbal-
ance the damage induced by dystrophine mutation
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