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Abstract: The prevalence of obesity and associated cardiometabolic diseases continues to rise, despite
efforts to improve global health. The adipose tissue is now regarded as an endocrine organ since its
multitude of secretions, lipids chief among them, regulate systemic functions. The loss of normal
adipose tissue phenotypic flexibility, especially related to lipid homeostasis, appears to trigger
cardiometabolic pathogenesis. The goal of this manuscript is to review lipid balance maintenance by
the lean adipose tissue’s propensity for phenotype switching, obese adipose tissue’s narrower range
of phenotype flexibility, and what initial factors account for the waning lipid regulatory capacity.
Metabolic, hypoxic, and inflammatory factors contribute to the adipose tissue phenotype being made
rigid. A better grasp of normal adipose tissue function provides the necessary context for recognizing
the extent of obese adipose tissue dysfunction and gaining insight into how pathogenesis evolves.

Keywords: adipose tissue; phenotype; hypertrophy; lipolysis; lipid buffering; hypoxia; inflammation;
postprandial

1. Introduction

One in four deaths in the western world can be attributed to cardiovascular disease [1].
The majority of cardiovascular diseases are vascular in origin, and, despite advances in
therapeutics and lifestyle adjustments, vascular disease prevalence is increasing throughout
the world. This trend is expected to worsen as our population ages and younger individuals
adopt a more sedentary lifestyle [2]. Metabolic syndrome is a clustering of medical condi-
tions that include increased abdominal adiposity and hyperlipidemia, which predispose
patients to systemic inflammation and atherosclerotic vascular disease [3]. While vascular
and metabolic diseases, such as insulin resistance and diabetes, are diagnosed indepen-
dently, it is clear that they share risk factors and promote the pathogenesis of the other [4–8].
As a result of the complex interconnectedness of cardiometabolic diseases, patients with
multiple pathologies are especially difficult to treat. To this end, a multifactorial approach
is required to better understand the molecular and cellular mechanisms of cardiometabolic
diseases to combat this global pandemic. The treatment of patients with substantiated
cardiometabolic diseases (increasing case clearance) and the prevention of new cases de-
veloping (decreasing case appearance) are major socieoeconomic as well as major medical
concerns. With this shared etiology and process complexity, a better understanding of
relevant cellular phenotypes is essential to make these goals more attainable.

White adipose tissue is a secretory organ, and a unique driver of metabolism and cellu-
lar phenotypes throughout the body due to its influence over blood lipid concentration via
lipid storage and secretion. Alterations in lipid exposure cause phenotypic shifts in insulin-
sensitive cell types, such as hepatocytes, pancreatic beta cells [9], cardiomyocytes [10],
and skeletal muscle cells [11,12]. The same is true of anatomically ubiquitous cells not
typically described as metabolic in nature. For example, the phenotypic fate of immune
cells [13,14], endothelial cells [15], and smooth muscle cells [16] is determined in part by
energetic substrates such as plasma free fatty acids. In this way, a wide variety of cell types
throughout the body take their phenotypic cues from the adipose tissue phenotype and, in
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particular, the balance between lipolysis and lipid clearance. Therefore, the preservation of
white adipocyte phenotypic flexibility is central for maintaining cardiometabolic health.
Consequently, adipocyte dysregulation is an under-characterized and overlooked point of
therapeutic intervention with untapped potential.

In addition to stromal cells, healthy white adipose tissue comprises adipocytes that
regularly switch between prioritizing lipid mobilization and storage depending on the
energy demands of tissues and the concentration of energetic substrates in the blood.
Therefore, feeding cycles are a large determinant of adipocyte behavior. Recent studies
of the postprandial phase emphasize the dynamism of adipose phenotype switching and
suggest adipose tissue dysregulation is an early event in cardiometabolic pathogenesis.
This evidence suggests recurrent phases of adipocyte dysfunction raise the blood lipid
concentration, which then acts as a pathogenic positive feedforward mechanism, ultimately
resulting in hyperlipidemia and a predisposition for cardiometabolic diseases. This discus-
sion will characterize how phenotypically flexible versus rigid white adipose tissue respond
to fasting/feeding cycles and will identify what early cellular events predispose adipocytes
to pathological behavior. The authors recognize that adipose tissue phenotypes may be
influenced by epigenetic and transgenerational factors [17,18] and also that the browning
of adipose tissue is a relevant form of adipocyte phenotype shifting. An entire review
article could be devoted to that important topic alone. However, we will limit the focus of
this review to the pathological loss of flexibility that occurs in the white adipocytes of an
individual organism. A goal of this report is the highlighting of pathways and potential
targets for ameliorating lipid homeostasis. A better recognition of eroding adipose tissue
phenotype flexibility will improve treatment strategies for patients with dysfunctional
adipose tissue and will inform techniques toward preventing pathology development.

For our search methodology, we searched Pubmed for the terms “lipolysis”, “adipocyte
lipid storage”, “postprandial adipose”, and “hypertrophic adipocytes” using relevance to
adipocyte physiology as the only exclusion criteria. We did not limit publication age, so
seminal papers in the field could be included.

2. Flexible Adipose Tissue
2.1. Lipid Secretion

The fasted condition is characterized by an imbalance in tissue energy demands and
energetic substrates supplied to tissues by the blood. To compensate for this imbalance,
white adipocytes undergo lipolysis, wherein triacylglycerides (TAG) stored in lipid droplets
are sequentially hydrolyzed in a series of enzymatic reactions mediated by adipose triglyc-
eride lipase (ATGL), hormone-sensitive lipase (HSL), and monoacylglycerol lipase (MGL)
to produce and secrete non-esterified free fatty acids into the blood for delivery to tissues.
The regulation of lipolysis occurs at the transcriptional, post-translational, and neuroen-
docrine levels in processes that have recently been reviewed [19–22]. The lipolytic process
is summarized in the following section and Figure 1A.

The catecholamine ligation of beta-adrenergic G-protein coupled receptors on the
adipocyte plasma membrane is the primary stimulus for lipolysis, although natriuretic
peptides also trigger lipolysis. Following catecholamine stimulation, activated adenylyl
cyclase (AC) generates an accumulation of the second messenger cyclic AMP (cAMP).
cAMP is a key regulator of stimulated adipocyte increments in lipolytic kinetics, as it
binds to and activates protein kinase A (PKA) [23–25]. PKA exerts its pro-lipolytic activity
by direct and indirect mechanisms. PKA activates HSL by phosphorylating it on three
serine residues (S552, S649, and S650) [26]. In addition to HSL, PKA also phosphorylates
perilipin1, a lipid-droplet-associated scaffold protein that, under basal conditions, shields
lipid droplets from hydrolytic lipases [26,27] and binds the ATGL peptide co-regulator
comparative gene identification-58 (CGI-58), also known as alpha/beta-hydrolase domain-
containing protein 5 (ABHD5). PKA targets and phosphorylates six perilipin1 serine
residues (S81, S222, S276, S433, S492, and S517) [26]. After PKA phosphorylation, perilipin1
undergoes conformational changes that significantly increase the efficiency of lipolysis:
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(1) perilipin1 dissociates from the lipid droplet, exposing its TAG to hydrolytic lipases [28,29];
(2) CGI-58 disengages from perilipin1 and then binds and activates ATGL [30,31]; (3) perilipin1
provides the necessary scaffolding to facilitate the colocalization of lipases and their associated
proteins to the lipid droplet [32–34].

Figure 1. Lipid secretion and storage model. (A): Catecholamine stimulation of lipolysis results in
cAMP accumulation, PKA activation, and phosphorylation of lipolytic enzymes. A Insert: Stepwise
hydrolysis reactions mediated sequentially by ATGL, HSL, and MGL. (B): Insulin stimulates the
PI3K/Akt pathway to decrease lipolysis via lowered cAMP and activation of protein phosphatase 1.
Simultaneously, AS160 downstream of insulin promotes CD36 and GLUT4 translocation from the
cytosol to the cell membrane.

ATGL hydrolyzes TAG to form diacylglycerol (DAG) and fatty acid [35]. TAG hy-
drolysis by ATGL is regarded as the rate limiting step of lipolysis due to its relatively
slow reaction rate compared to the HSL-mediated hydrolysis of DAG to monoacylglycerol
(MAG) [36]. The PKA phosphorylation of HSL activates HSL hydrolytic activity. While
HSL has been shown to hydrolyze TAG, DAG, cholesteryl esters, and retinyl esters, its
primary substrate is DAG [37]. This preference for DAG hydrolysis is corroborated by
experiments performed in HSL-null mice, which demonstrate an accumulation of DAG,
not TAG, in mouse adipocytes [38]. The hydrolysis of DAG by HSL releases a fatty acid and
forms MAG [37,39,40], which is hydrolyzed by MGL to form fatty acids and glycerol. This
sequence is summarized in the Figure 1A insert. The authors acknowledge that alternative
lipases contribute to lipolysis (reviewed elsewhere—[19–22]) but have chosen to focus on
the canonical ATGL and HSL, as they have been shown to be responsible for nearly 90% of
TAG hydrolysis [41].

More work is needed to gain a deeper understanding into the mechanisms governing
the export of non-esterified fatty acids (NEFAs). The predominant theory is that fatty acids
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liberated by lipases require molecular chaperones for transport between the lipid droplet
and the plasma membrane, a role filled by fatty acid binding proteins (FABPs) [42]. In
adipocytes, FABP4, also known as adipocyte protein 2 (aP2) is known to interact with both
HSL [43] and CGI-58 [44] at the lipid droplet to increase lipolytic activity. The specific
mechanism by which FABP4 transports fatty acids from the lipid droplet to the plasma
membrane remains to be fully elucidated. The complexity of the adipocyte lipolytic process
assures many points of control and opportunities for therapeutic intervention.

In summation, the catecholamine stimulation of adipocytes initiates signaling events
that promote the translocation of lipolytic enzymes to the lipid droplet and lipid-droplet-
associated protein conformational changes, which facilitate lipase–lipid interactions. TAG,
DAG, and MAG are hydrolyzed by ATGL, HSL, and MGL, respectively, wherein the first
two reactions produce a free fatty acid and the third and final reaction produces fatty acid
and glycerol. How liberated free fatty acids are exported remains to be fully elucidated;
however, it is expected that this process relies on chaperones such as FABP4.

2.2. Lipid Storage

In the postprandial state, adipocytes demonstrate a phenotypic dynamism by shifting
away from lipolysis and towards lipid storage. Lipolysis is downregulated by insulin
signaling, which mediates cAMP-dependent and independent mechanisms. The canon-
ical lipid storage signaling pathway includes insulin binding its receptor, increasing the
insulin receptor tyrosine kinase activity, which, in turn, phosphorylates insulin receptor
substrate (IRS) proteins [45]. IRS activates phosphatidylinositol 3-kinase (PI3K), which gen-
erates phosphatidylinositol 3,4,5-triphosphate (PIP3) in the cell membrane. Accumulated
PIP3 stimulates phosphoinositide-dependent kinase-1 (PDK1) [46], which then activates
Akt/PKB. Akt is thought to then phosphorylate phosphodiesterase 3 (PDE3), which de-
grades cAMP, reducing PKA activity and interrupting the phosphorylation of perilipin1
and HSL (Figure 1B). Consequently, ATGL and HSL hydrolytic activity are attenuated [47].
In addition to this mechanism, insulin activates protein phosphatase 1, which directly
dephosphorylates HSL [48] and may also downregulate ATGL mRNA [49], which could
partially explain the observation that ATGL is suppressed during refeeding [35].

In addition to blocking lipolytic activity, insulin also stimulates nutrient import and
lipid storage [50]. Downstream of the PI3K/Akt/PKB pathway, Akt phosphorylates the Akt
substrate of 160 kDa (AS160) to facilitate the translocation of glucose transporter-4 (GLUT4)
from the cytosol to the plasma membrane to import circulating glucose from the blood
(Figure 1B) (reviewed in [51]). Intracellular glucose is recognized to undergo multiple
metabolic fates. A small portion of glucose is converted to glycogen for storage [52].
Glycolysis also generates glycerol 3-phosphate (G3P), which may be used as the backbone
for triacylglycerol. Glucose may also be metabolized to acetyl-coA for de novo lipid
synthesis (reviewed in [53,54]). Finally, depending on need, glucose may also be converted
to lactate, which may act in an anti-lipolytic, autocrine fashion or be exported for use by
other cell types (reviewed in [55–57]).

In the postprandial phase, dietary fat is largely transported in the blood by lipoproteins,
such as very-low-density lipoprotein and chylomicrons. White adipose tissue has the
unique ability of removing lipids from the blood for storage in a process that has historically
been described as a lipid-buffering capacity [58]. Insulin stimulates lipoprotein lipase (LPL)
activity, enabling the hydrolysis of lipoprotein-bound TAGs that either enter adipocytes [59]
for re-esterification or remain in the blood in a phenomenon called lipid spillover [60].
Fatty acids cross the adipocyte plasma membrane both by passive diffusion [61] and active
protein transport [62,63]. Cluster of differentiation-36 (CD36), also known as fatty acid
translocase, is a scavenger receptor capable of binding many ligands, and is responsible
for a large percentage [61,64] of fatty acid active transport [65]. Increases in the surface
expression of CD36 are rapid due to roughly 50% of CD36 being stored in the cytosol
until recruitment to the membrane for lipid internalization (reviewed in [66]); however,
hyperlipidemia in ob/ob mice has been shown to increase CD36 mRNA [67]. Like GLUT4,
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CD36 is downstream of the insulin/AS160 signaling pathway (Figure 1B). Fatty acid
transport proteins facilitate this process, but the exact mechanism remains unclear. Once
in the cell, fatty acids are esterified in a series of reactions mediated by acyl transferases,
including lipids and diacylglycerol acyltransferases (DGAT) [68]. Resultant TAGs are
stored in adipocyte lipid droplets. When taken together, flexible adipose depots are nimble
metabolic regulators and secretory organs. Adipocyte flexibility is exquisitely regulated and
an attribute of healthy adipose tissue. Conversely, unhealthy adipose tissue is characterized
by rigid adipocytes, which has multiple negative ramifications for the organism as a whole.

In response to feeding, insulin simultaneously applies a break on adipocyte lipolysis
and accelerates adipocyte lipid clearance from the blood. Insulin’s anti-lipolytic actions
includes decreasing cAMP/PKA activity and increasing protein phosphatase-1 activity.
The lipid-storage-promoting effects of insulin include increasing LPL activity and CD36
translocation to the adipocyte membrane. Maintaining the adipose tissue’s lipid-buffering
capacity is critical for whole-body lipid homeostasis.

3. Rigid Adipose Tissue
3.1. Lipid Mobilization Dysfunction

In obesity, enlarged adipose depots comprising a heterogenous mixture of normal-
sized and hypertrophic adipocytes lose their ability to maintain lipid homeostasis. The
phenotype shifting between fasting and fed states observed in the adipose tissue of lean
subjects is lost. Instead, obese adipose tissue responds weakly to catecholamine stimula-
tion and is described as resistant to insulin’s anti-lipolytic effects. With respect to lipid
mobilization, the adipose tissue appears inert and phenotypically rigid.

The hyperlipidemia associated with obesity is a risk factor for a wide range of poor
cardiac, vascular, and metabolic outcomes and, as such, a large effort has been made to
identify the source of the pathologically elevated blood NEFAs and TAGs. Hypertrophic
adipocytes, a hallmark of obese adipose tissue, are widely regarded as hyperlipolytic
and the presumptive main culprit. Resistance to the anti-lipolytic effects of insulin is the
primary explanation for the increased basal lipolytic rate of rigid adipose tissue [69,70].
Insulin’s effects on lipolysis are multi-modal and, therefore, many intermediate points
between insulin receptor ligation and decreased lipolysis may be disrupted. A decreased
insulin receptor density and diminished insulin receptor tyrosine kinase activity relative
to normal-sized counterparts may partly explain adipose tissue insulin resistance [71–74].
Insulin’s downstream protein targets are also altered in dysfunctional adipocytes. For
example, perilipin1, the lipid-droplet-associated protein responsible for shielding lipid
droplet TAGs from lipases, has been shown to be decreased relative to the fat cell size in
obese adipose tissue [75].

Comparisons of metabolic variables, such as insulin sensitivity and the lipolytic rate
between lean and obese adipose tissue, are obfuscated by differences in total adipose
mass [76]. Insulin clamp studies testing insulin sensitivity in lean and obese subjects clearly
demonstrate that an equal dose of insulin elicits a stronger response from the lean cohort.
Add to this observation the close association of hyperlipidemia, hyperinsulinemia, and
obesity, and it is easy to understand the insulin-resistant, hyperlipolytic characterization
ascribed to the obese adipose tissue that is so prevalent in the literature. Nevertheless, sev-
eral studies challenge the notion that this paradigm is always true. Experiments conducted
with stable isotope fatty acid tracers [77,78] have shown that the rate of NEFA secretion
in obese individuals is high relative to their lean tissue mass, but low relative to their fat
mass, when compared to lean individuals following an overnight fast [77]. An increased
adiposity coincided with a decreased NEFA release from fat; however, this drop in lipolytic
rate was not sufficient to ameliorate lipid metabolism due to the large increase in fat mass.
These data are consistent with the observation that both ATGL and HSL are downregulated
in obese adipose tissue [79,80]. In addition to lower NEFA mobilization out of the cell, fatty
acid uptake by the obese adipose tissue is diminished relative to lean adipose tissue in
the postprandial phase [78]. Finally, a recent report [81] has shown that insulin secretion
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is determined by adiposity before the onset of insulin resistance. These studies provide
both revelations about adipose tissue metabolism and highlight how anatomical context
alters data interpretation (Figure 2). Taken together, these data suggest that, under certain
circumstances, lipid transport in and out of obese adipocytes is depressed whereas insulin
sensitivity is maintained. More work is necessary to clarify whether these are two distinct
phenotypes or one phenotype interpreted in two ways.

Figure 2. Metabolic variable interpretation is dependent on anatomical context. NEFA secretion, for
example, is low relative to fat mass but high relative to lean mass in obese individuals. Imprecise
language describing data may lead to confusion.

The data surrounding reductions in catecholamine-induced lipolysis rate elevations
are less ambiguous [79]. The balance of surface expression between pro-lipolytic beta-
adrenergic receptors and anti-lipolytic alpha-adrenergic receptors in adipocytes may be
responsible for this loss of function. Obese adipose tissue from Zucker rats was found
to have an increased alpha-adrenergic receptor density [82]. Importantly, weight loss
in human subjects is associated with an increased sensitivity to catecholamine-induced
lipolysis [83], despite the number of beta-adrenergic receptors being unchanged during
weight loss [84]. Disturbances to catecholamine-induced lipolysis have been observed
downstream of adrenergic receptor dynamics as well. A decrease in the activity of adenylyl
cyclase, which generates cAMP upstream of PKA activation, was detected in obese adipose
tissue relative to lean adipose tissue [83]. It is likely that varying degrees of these events
exist concurrently and contribute to adipocyte rigidity.

There seems to be a limit to tolerable adipocyte hypertrophy. Upon reaching this
threshold, the adipocytes’ ability to store lipids and sensitivity to both lipolytic agonists
and antagonists is decreased on the adipose depot level. Due to the fact that the adipose
tissue contains a heterogeneous adipocyte population, there is likely variability in the lipid
mobilization capacity among individual adipocytes, but the average storage and sensitivity
to regulatory stimuli across the organ is lower. More work is required to determine the
various lipid mobilization-related phenotypes of adipocytes, such that more effective
therapeutic strategies may be developed.

3.2. Pathogenic Signaling Patterns

The hormone secretion profile of hypertrophic adipocytes is altered compared with
lean adipocytes. Leptin is a pro-lipolytic hormone secreted by adipocytes that acts lo-
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cally [85–87] and on the hypothalamus to reduce food consumption and increase energy
expenditure [88]. Leptin-deficient individuals suffer from obesity [89], and the adminis-
tration of recombinant leptin has been shown to effectively reduce fat tissue mass [90,91].
That said, clinical trials exploring whether the apparent antagonistic relationship between
leptin and fat storage may be utilized as treatment for obesity by recombinant leptin admin-
istration yielded disappointing results [92]. Compared to lean adipocytes, hypertrophic
adipocytes overproduce leptin, directly impairing insulin’s anti-lipolytic effects on PKA-
mediated lipolysis [93]. Further, hyperleptinemia and leptin resistance are associated with
obesity [92]. A recent study has demonstrated that a partial reduction in leptin levels
in obese mice by genetic modulation or monoclonal antibody neutralization ameliorates
weight gain and insulin sensitivity [94], suggesting precise leptin lowering strategies may
offer benefits to obese individuals.

Adiponectin is another adipose-derived hormone that has been intensely studied since
its discovery [95]. Insulin resistance and obesity are inversely correlated with adiponectin
in humans. Experiments with rodent models have shown depressed adiponectin pro-
duction in hypertrophic, rigid adipocytes [88,95]. Mouse models of reduced adiponectin
expression are associated with insulin resistance and poor metabolic health [96] whereas
adiponectin-overexpressing mice exhibit preserved metabolic health, despite being more
obese than their wild-type counterparts [97]. The benefits of adiponectin include increased
vascularization [97] and ceramidase activity [98,99]. Adiponectin’s numerous beneficial
metabolic effects have recently been reviewed [100] and its insulin-sensitizing mechanisms
are still under investigation. A recent report demonstrated that adiponectin treatment
increased the LPL activity and TAG uptake in the adipocytes of obese mice. These results
correlated with improved metabolic outcomes in insulin-sensitive tissues and on the whole-
body level [101]. These studies demonstrate the importance of preserving the adipocyte’s
lipid-buffering capacity and ability of the adipose depots to expand [58,102].

In addition to hormonal secretions, adipocytes produce cytokines, enabling autocrine,
paracrine, and endocrine communication. Hypertrophic rigid adipocytes are a significant
source of potent, pro-inflammatory cytokines, such as tumor necrosis factor alpha (TNFα),
interleukin-6, interleukin-1β, and monocyte chemoattractant protein-1 (MCP-1) [103,104].
The deleterious consequences of inflammation in adipose tissue in the cardiometabolic
pathology have recently been reviewed [105]. TNFα acts in autocrine and paracrine fash-
ion to inhibit IRS-1 [106], decreasing the insulin efficacy, and to activate MAPKs and
JNK, which then downregulate perilipin mRNA and protein [107,108]. Lower levels of
perilipin are found in adipose tissue from obese individuals [75]. Importantly, MAPK and
ERK1/2 have been shown to phosphorylate and activate HSL in a PKA-independent mech-
anism [109]. While inflammation does play a role in the pathogenesis of cardiometabolic
disorders, clinical trials employing TNFα antagonism as treatment for metabolic syn-
drome have mostly been unsuccessful in improving insulin sensitivity [110,111], despite
evidence that targeting the IKKb/NFkB pathway can lower hyperglycemia [112–114]. This
suggests that anti-inflammatory efforts alone are not sufficient to restore lost adipocyte
phenotype flexibility.

It has long been known that the adipose tissue is not a passive energy storage organ.
White adipocyte hormonal and cytokine secretions have demonstrated regulatory abilities
related to numerous physiological domains, including satiety, energy expenditure, vascu-
larity, and inflammation. Rigid, hypertrophic adipose tissue has a pathological secretion
profile that perpetuates cardiometabolic pathologies.

4. How Phenotype Flexibility Is Lost

Adipose tissue from obese organisms is characterized by metabolic dysfunction, in-
flammation, fibrosis, and hypoxia (Figure 3) [115]. The sequence of these pathological
developments has been the subject of debate for decades, and recent studies have refined
our understanding of how adipocytes lose their phenotypic flexibility. When dysfunctional
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adipocytes render the adipose tissue incapable of buffering lipids, the systemic pathology
quickly follows and exacerbates cardiovascular morbidity.

Figure 3. Characteristics of flexible and rigid adipose tissue phenotypes. Adipocyte size is a determi-
nant of lipid-buffering function and responsiveness to stimulation.

Clinical and animal studies on inflammatory cascade intervention have demonstrated
that inflammation is a contributor to cardiometabolic pathologies [105]. Inflammatory
signaling [106] and immune cell accumulation [116–120] in adipose tissue cause metabolic
dysfunction; however, the initial source of the inflammatory action has remained elusive.
Whether the pathogenesis of cardiometabolic disease is initiated by metabolic dysfunction
or inflammatory action has long been debated. Substantial evidence now exists indicating
that not only does adipocyte metabolic dysfunction occur in the absence of the chronic low-
grade inflammation associated with obesity, but the metabolic dysfunction also stimulates
immune cell recruitment. In mammals, the target of rapamycin complex 2 (mTORC2) is
stimulated by insulin to promote glucose clearance in insulin-sensitive tissues [121–123].
The rapamycin-insensitive companion of mTOR (RICTOR) is a component of mTORC2,
and the genetic ablation of RICTOR in mice renders them mTORC2-deficient. Mice with
adipocyte-specific knockout of RICTOR and mTORC2 deficiency challenged by a high
fat diet were insulin-resistant prior to immune cell buildup in the adipose tissue [124]. A
diminished insulin sensitivity was associated with an increased expression of the potent
leukocyte chemoattractant, MCP1, and recruitment of M1 macrophages. While inflamma-
tory action has been shown to affect insulin sensitivity in various ways, this study unveils
a model of pathogenesis in which inflammation is a contributor, but not the initiator,
of pathogenesis.

Efforts have been made to determine a causal relationship between adipocyte hyper-
trophy and metabolic dysfunction. Cell culture experiments have demonstrated that 3T3-L1
adipocytes become hypertrophic when stimulated with saturated or monounsaturated
fatty acids, but only saturated fatty acid treatment increased pro-inflammatory cytokine
mRNA levels and secretion [125]. Despite the absence of an inflammatory reaction, hyper-
trophic adipocytes stimulated with monounsaturated fatty acid exhibited insulin resistance
comparable to saturated fatty-acid-stimulated hypertrophic adipocytes. To corroborate this
data, mice deficient in Toll-like receptor 4 were fed a high fat diet that caused adipocyte
expansion and insulin resistance in the absence of inflammation [125]. Analyses of human
adipose tissue biopsies have shown that adipocyte hypertrophy in the visceral adipose
depot, specifically, is a close correlate to whole-body insulin sensitivity, regardless of the
local immune cell activity [126]. Further, the “metabolically healthy obese” phenotype
(reviewed in [127]), which has been regarded as benign, has recently been shown to be
associated with a higher long-term risk of cardiovascular disease and metabolic syndrome
than lean counterparts [128,129].
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While the insights gained from these studies are valuable, it remains unclear whether
hypertrophic adipocytes alone are a significant enough perturbation to metabolic home-
ostasis to cause pathology. Mice overexpressing adiponectin are protected against the
inflammatory and metabolic consequences of severe obesity [97]. The adipose tissue cap-
illary density of diet-induced obese (DIO) adiponectin transgenic mice was significantly
higher than in wild-type controls, suggesting that tissue hypoxia may play a role. In
addition, the treatment of type 2 diabetes with thiazolidinediones, a class of drug targeting
peroxisome proliferator-activated receptor-γ (PPARγ), increases insulin sensitivity but is
paradoxically associated with adipose tissue expansion and weight gain [130,131]. This
phenomenon is purportedly owed to induced adipogenesis [132]. These observations
suggest that an inability of adipocytes to expand, a natural consequence of adipocyte hy-
pertrophy, may be the root cause of adipocyte dysfunction. Fat-specific protein 27 (Fsp27) is
a lipid-droplet-associated protein that regulates unilocular lipid droplet formation through
interactions with perilipin1 [133]. Mice lacking adipocyte-specific Fsp27 challenged with
a high fat diet had a decreased lipid clearance from the blood and reduced adipose tis-
sue expansion, resulting in severe hepatic lipotoxicity and metabolic dysfunction, all in
the absence of adipose tissue inflammatory remodeling [134]. These data emphasize the
importance of preserving the adipocyte’s lipid-buffering capacity [58].

The aforementioned studies do not address the question of lean adipocyte dysregu-
lation, which likely occurs before the manifestation of obesity. To define the initial steps
of adipose tissue dysfunction, the postprandial phase must be observed in lean, healthy
subjects. Human studies have revealed that the acute consumption of saturated fatty
acid [135] and monounsaturated fatty acid [136] results in systemic, hepatic, and adipose
tissue insulin resistance during the postprandial phase in healthy volunteers. A similar
rapid induction of insulin resistance has been observed in skeletal muscle, although satu-
rated fatty acids induced higher levels of ceramides and activated different protein kinase
C isoforms compared to monounsaturated fatty acids, a possible explanation for discrepan-
cies in long-term outcomes [137]. It is hypothesized that repetitive nutrient overload is the
impetus for cardiometabolic pathogenesis. Lean mice fed single high-fat meals undergo
a transient inflammatory response in the visceral adipose tissue that is extended with
continued high-fat feeding [120]. Perhaps the most convincing evidence that the chronic
overfed state is responsible for pathogenesis comes from studies employing intermittent
fasting. Disrupting ad libitum access to a high-fat diet prevents mice from developing
obesity, hyperinsulinemia, hepatic steatosis, and inflammation, despite eating equivalent
calories [138,139]. Preliminary reports on the effectiveness of intermittent fasting as a
treatment for patients with metabolic syndrome are promising [140], and clinical work to
corroborate these preliminary data is underway [141].

Insufficient oxygen delivery to adipocytes is a likely contributor to metabolic dys-
regulation. Exposing mice to chronic intermittent [142] and acute hypoxia [143] increases
adipocyte lipolysis by increased sympathetic stimulation and decreases lipid uptake by
limiting LPL activity. Unfortunately, efforts to reproduce these phenomena in lean hu-
mans have been unsuccessful [144]. Nonetheless, hypoxia due to insufficient angiogenesis
and oxygen supply to match the adipocyte demand has long been regarded a driver of
pathological adipose tissue remodeling. Indeed, increasing angiogenesis in DIO mice by
overexpressing adiponectin has been shown to improve metabolic outcomes [97]. Tissue
oxygenation is dependent on both oxygen supplied to the tissue by vasculature and the
tissue metabolic demand for oxygen. Insufficient neovascularization to match adipose
tissue expansion and to adequately deliver oxygen results in tissue hypoxia, increased
inflammatory action, and reduced insulin sensitivity [145–147]. The question of whether
variations in adipocyte oxygen demand, independent of vascular density, drive adipocyte
dysfunction has more recently been addressed [148,149]. Accumulated intracellular satu-
rated fatty acids have been proposed to stimulate uncoupled mitochondrial respiration,
increasing the oxygen consumption and HIF1-alpha expression, in an adenine nucleotide
transporter-2 (ANT2)-dependent fashion [148]. ANT2 is a mitochondrial protein involved
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in the exchange of ATP and ADP across the mitochondrial inner membrane. The genetic
knockdown of adipose tissue ANT2 in mice demonstrated that obese adipocytes are under
a significantly higher oxygen demand relative to lean adipose samples. Adipocyte hypoxia,
therefore, precedes adipose tissue hypoxia, and targeting adipocyte ANT2 expression
ameliorated adiponectin levels, insulin sensitivity, and inflammatory markers [149]. These
data suggest that the unchecked accumulation of saturated fatty acids in the adipocyte
is, in itself, pathological, and that this process may be a candidate for early intervention
in pathogenesis.

While inflammation has been shown to contribute to metabolic dysfunction, recent
work has demonstrated that metabolic dysregulation may precede and even cause energy-
imbalance-related inflammatory action [124]. Further, experiments with 3T3L1 adipocytes
have shown that adipocyte hypertrophy and metabolic dysfunction occur in the absence
of inflammation when treated with monounsaturated fatty acids [125]. The relationship
between hypertrophic adipocytes and metabolic function does not explain observable
disturbances in metabolism and inflammation that occur in lean individuals [135,136]
and rodents [120]. In mice, the ultimate culprit appears to be frequent, repetitive high-fat
feeding [138]. Time-restricted feeding ameliorates high-fat feeding outcomes in mice [138]
and humans [140]. The mechanistic explanation for why intermittent fasting has so far been
effective may be related to an improved overall energy balance and decreased adipocyte
hypoxia due to a reduced accumulation of saturated fatty acids [148,149].

5. Conclusions

The adipose tissue’s unique ability to secrete and internalize lipids is dependent
upon its phenotypic flexibility. A chronic energy imbalance associated with adipocyte
hypertrophy narrows the adipose tissue’s range as a source of or reservoir for lipids,
resulting in hyperlipidemia, lipotoxicity, and obesity. To this end, dysfunctional lipolysis
and lipid clearance are often discussed as physiological points of intervention. Anti-lipolytic
strategies have been suggested, with the goal of reducing hyperlipidemia; however, a way
to make the hypertrophic adipose tissue, which already has diminished responses to
lipolytic stimuli, even less responsive, would be to increase the adipocyte rigidity. On
the other hand, increasing lipolytic rates without also increasing the energy expenditure
may increase the lipotoxicity. Efforts to improve the adipose tissue lipid clearance and
adipocyte expandability may improve lipid levels, but will also increase the total adiposity,
as is observed with thiazolidinedione treatment. The efficacy of intervening in lipid
mobilization processes will ultimately depend upon restoring the energy balance.

Novel strategies to aid restoring the energy balance in patients with a high incidence of
cardiometabolic risk factors are still needed. Obesity is associated with hyperleptinemia and
leptin resistance. Paradoxically, reducing leptin levels in mouse models of obesity improved
metabolism, suggesting a new hormonal technique for combatting disease. Adiponectin
administration may also be valuable in improving metabolic outcomes; however, increasing
the adiposity of overweight individuals may prove counterproductive. Anti-inflammatory
approaches alone appear insufficient in improving cardiometabolic outcomes; however,
whether their use in conjunction with other techniques is effective remains unclear. Recent
studies have revealed that adipocyte hypoxia due to saturated fatty acid accumulation may
be an early driver of metabolic dysfunction. To that end, ANT2 inhibition may aid efforts to
improve metabolic homeostasis in hypertrophic adipose tissue. Rodent and human studies
employing time-restricted feeding have shown promise. This technique addresses the
core problem of adipocyte hypertrophy, energy imbalance, and likely ameliorates several
molecular mechanisms simultaneously.

Pathological lipid dysregulation is a risk factor for the development of metabolic
syndrome, type 2 diabetes, nonalcoholic fatty liver disease, and atherogenesis. The car-
diometabolic disease epidemic is likely to become more severe before improving, as the rate
of new cases has not slowed and society is moving further into sedentary lifestyles. A better
understanding of how phenotypically rigid adipose tissue manifests will aid scientists
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and clinicians in identifying therapeutic strategies for the treatment of obesity-related
pathologies and will provide guidance on the prevention of new cases. Rodent models
have made clear that adipocyte metabolic dysfunction, tissue hypoxia, and inflammation
work in concert to render adipose tissue incapable of buffering blood lipids. The loss
of adipose-dependent lipid homeostasis regulation causes systemic metabolic disease.
Re-establishing the adipose tissue lipid uptake in obese humans has reliably improved
metabolic outcomes (thiazolidinediones, recombinant adiponectin), but new techniques
and strategies are required.
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