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Abstract: Multicellular tumor spheroids and tumoroids are considered ideal in vitro models that reflect
the features of the tumor microenvironment. Biomimetic components resembling the extracellular
matrix form scaffolds to provide structure to 3-dimensional (3D) culture systems, supporting the
growth of both spheroids and tumoroids. Although Matrigel has long been used to support 3D
culture systems, batch variations, component complexity, and the use of components derived from
tumors are complicating factors. To address these issues, we developed the ACD 3D culture system
to provide better control and consistency. We evaluated spheroid and tumoroid formation using
the ACD 3D culture system, including the assessment of cell viability and cancer marker expression.
Under ACD 3D culture conditions, spheroids derived from cancer cell lines exhibited cancer stem
cell characteristics, including a sphere-forming size and the expression of stem cell marker genes.
The ACD 3D culture system was also able to support patient-derived primary cells and organoid
cell cultures, displaying adequate cell growth, appropriate morphology, and resistance to oxaliplatin
treatment. These spheroids could also be used for drug screening purposes. In conclusion, the ACD
3D culture system represents an efficient tool for basic cancer research and therapeutic development.

Keywords: 3D scaffold culture; multicellular tumor spheroid; cancer stem cell

1. Introduction

The recent development of 3-dimensional (3D) culture systems for mammalian cells
has revealed various cell biology features [1]. Compared with conventional 2-dimensional
(2D) culture methods, 3D culture is considered a better model for both basic and clinical
studies, as most mammalian cells grow and function in 3D environments in vivo. Mul-
ticellular tumor spheroids (MCTSs) are cancer cell aggregates grown in suspension or
embedded in gels using 3D culture methods [1]. Previous studies have used tumor-derived
spheroids to study cancer stem cells (CSCs) in vitro [1–4]. Tumor-derived spheroids are
enriched in cells with CSC characteristics [5], including the expression of CSC-specific
marker genes CD24, CD44, CD133, Oct-4, Sox-2, and Nanog [6,7]. Enriched CSC populations
in spheroids display drug resistance to conventional chemotherapies [2,8,9]. Spheroid cell
cultures can be used to study tumor cell signaling, changes in the tumor microenvironment,
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and the basic properties of CSCs [3]. Primary cancer cells can also be cultured into tumor-
oids using 3D culture systems for both basic research and anti-cancer drug screening [10].
Combined with genomic testing and patient-derived xenograft animal models, tumoroids
may represent a cost-effective and efficient model for improving the development and
evaluation of future anti-cancer drugs [11,12].

Several 3D culture methods have been developed for the generation of MCTSs, in-
cluding static suspension, hanging drop, rotating bioreactor, magnetic levitation, electrical
force assistance, and matrix-based hydrogels [1,10,13,14]. Matrix-based hydrogels utilize
various biological materials that form scaffolds, combining mechanical strength and bio-
chemical properties that resemble those found in the extracellular matrix (ECM) to provide
physical support and promote cell growth, facilitating the formation of a 3D spheroid
structure [15,16].

Natural materials, such as collagen [17,18], hyaluronic acid [17,19], chitosan, and
alginate [20–22] have been used as biomimetic scaffolds for 3D spheroids grown from cancer
and stromal cells [1]. Matrigel is a widely used scaffold material for 3D cultures using many
cell types. Matrigel is derived from the basement membrane of Engelbreth–Holm–Swarm
mouse tumor cells, composed of collagen IV, laminin, entactin, and multiple cytokines and
growth factors [23–25]. Previous studies have examined the CSC properties of 3D culture
systems using Matrigel. However, Matrigel is expensive, and its complex composition
has led to manufacturing inconsistencies that have been linked to inconsistencies in study
outcomes [25–27]. In addition, freeze–thaw cycles can lead to inconsistencies in the aqueous-
to-solid phase of Matrigel during resolidification processes [27]. These disadvantages make
the use of Matrigel for spheroid cell culture experiments challenging.

In this study, we developed a scaffold system using alginate, a natural polysaccharide
extracted from brown algae [21,28] that is widely used in medical implants and various
cell culture scaffolds [21,28]. A 3D scaffold model using alginate was previously used to
study the Wnt/β-catenin signaling pathway in liver CSCs. The cells formed spheroids and
maintained the functional structure and characteristics of CSCs [29]. However, alginate
lacks the cell adhesion peptide Arg–Gly–Asp (RGD), which is essential for attachment
between cells and the surrounding ECM [21,28]. Gelatin, a denatured collagen derived
from connective tissue and contains the RGD sequence, is commonly added to alginate gels
to interact with integrins on the cell membrane [30,31]. Cell attachment is the initial step in
a cascade of cell–biomaterial interactions and is important for various cellular processes,
including cell guidance, proliferation, and differentiation [31].

In the current study, we tested the efficacy and sphere-forming capabilities of the ACD
3D culture system using human carcinoma cell lines. In the ACD 3D culture system, gelatin
is rapidly cleared, and the procedures are easy to follow.

2. Results
2.1. Preparation of the ACD 3D Culture System

Cells were cultured in the ACD 3D cultures system as described in Materials and
Methods and illustrated in Figure 1A,B. Gel formation occurred after 20 min, which is faster
than the 30 min required for Matrigel. In the ACD system, A gel contains cross-linked
alginate that forms a scaffold structure and gelatin to provide the initial cell adhesion
sequences. The gelatin is gradually released into the culture medium, providing more
space for spheroid cells to grow (Figure 1C).
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Figure 1. The procedures and principles underlying the ACD 3D culture system. (A) The process of 
gel formation. Cells suspended in culture medium are mixed with A gel, and 30 μL of the cell–gel 
mixture were plated on a 24-well plate. After 5 min of reaction on ice and 15 min of reaction with C 
buffer to promote gel cross-linking, the gel becomes stable and flexible and can maintain and sup-
port cell growth for up to 14 days. (B) The process for dissolving the gel to collect spheroid cells. 
The culture medium is removed, and the gel is washed once with 1× PBS. D buffer is added and 
incubated for 5 min to dissolve the gel. D buffer is diluted with 3 volumes of 1× PBS, followed by 
centrifugation for 10 min. Finally, cells are resuspended in 1× PBS for analysis. (C) The principle 
mechanism of the ACD 3D culture system. Alginate and gelatin are the main components of A gel. 
Alginate forms the scaffold, and gelatin provides a cell adhesion motif for cancer cells and is released 
into the culture medium over time. 
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noma (PDAC)), and HepG2 (hepatocellular carcinoma (HCC)) cells were examined (Table 
1). The doubling times for AGS and MDAH-2774 cells were 15.9 h and 24.6 h, respectively, 
which were both faster than the doubling times for PanC-1 (29.4 h), HepG2 (37.7 h), and 
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cluding AGS (GCa), SKOV3, MDAH-2774 (EOC), PanC-1 (PDAC), HepG2 (HCC) cells. 
Regardless of the basal cell growth rate, all 5 human carcinoma cell lines examined were 
able to form spheroids. We observed that fast-growing cancer cell lines were able to form 
spheroids rapidly when grown using the ACD 3D culture system. The fastest growing cell 

Figure 1. The procedures and principles underlying the ACD 3D culture system. (A) The process of
gel formation. Cells suspended in culture medium are mixed with A gel, and 30 µL of the cell–gel
mixture were plated on a 24-well plate. After 5 min of reaction on ice and 15 min of reaction with
C buffer to promote gel cross-linking, the gel becomes stable and flexible and can maintain and
support cell growth for up to 14 days. (B) The process for dissolving the gel to collect spheroid cells.
The culture medium is removed, and the gel is washed once with 1× PBS. D buffer is added and
incubated for 5 min to dissolve the gel. D buffer is diluted with 3 volumes of 1× PBS, followed by
centrifugation for 10 min. Finally, cells are resuspended in 1× PBS for analysis. (C) The principle
mechanism of the ACD 3D culture system. Alginate and gelatin are the main components of A gel.
Alginate forms the scaffold, and gelatin provides a cell adhesion motif for cancer cells and is released
into the culture medium over time.

2.2. Basal Cell Growth Profile of Cell Lines in 2D Culture

To evaluate the cell growth rate for cells grown in the ACD 3D culture system, the
basal cell growth rate (calculated as the doubling time) was determined for cells grown
in 2D culture. Various cancer cell lines, including AGS (gastric cancer (GCa)), SKOV3,
MDAH-2774 (epithelial ovarian cancer (EOC)), PanC-1 (pancreatic ductal adenocarcinoma
(PDAC)), and HepG2 (hepatocellular carcinoma (HCC)) cells were examined (Table 1). The
doubling times for AGS and MDAH-2774 cells were 15.9 h and 24.6 h, respectively, which
were both faster than the doubling times for PanC-1 (29.4 h), HepG2 (37.7 h), and SKOV3
(39.4 h) cells. A shorter doubling time indicates faster cell proliferation, providing basal
information for evaluating the rate of spheroid formation in the ACD 3D culture system.

Table 1. The doubling time for different cancer types.

Cancer Type Cell Line Doubling Time (h)

Gastric cancer AGS 15.9
Epithelial ovarian cancer,

endometrioid type MDAH-2774 24.7

Pancreatic ductal
adenocarcinoma PanC-1 29.4

Hepatocellular carcinoma HepG2 37.7
Epithelial ovarian cancer,

serous type SKOV3 39.4

2.3. Fast and Viable Spheroid-Forming Performance in ACD 3D-Culture System

To evaluate the spheroid-forming capacity and efficiency of the ACD 3D culture
system, we evaluated the sphere-forming times and morphologies of 5 cancer cell lines,
including AGS (GCa), SKOV3, MDAH-2774 (EOC), PanC-1 (PDAC), HepG2 (HCC) cells.
Regardless of the basal cell growth rate, all 5 human carcinoma cell lines examined were
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able to form spheroids. We observed that fast-growing cancer cell lines were able to
form spheroids rapidly when grown using the ACD 3D culture system. The fastest grow-
ing cell lines, AGS and MDAH-2774 cells, formed spheroids rapidly by Day 3, whereas
PanC-1, HepG2, and SKOV3 cells formed spheroids by Day 4 (Figure 2A, Table 2). Spheroid
morphologies and sizes differed according to cancer type. AGS, SKOV3, and HepG2 cells
formed spheroids that were ovoid, whereas PanC-1 and MDAH-2774 spheroids were round.
We also observed variations in spheroid size, with AGS, MDAH-2774, and SKOV3 cells
forming larger spheroids than those formed by HepG2 and PanC-1 cells (Figure 2A).
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Spheroids were collected on Days 1, 4, and 7. After resuspension of spheroids to obtain single-cell 
suspensions, cell viability was evaluated by 0.2% trypan blue. Cells obtained from AGS, MDAH-

Figure 2. Spheroid formation and cell viability of cancer cell lines cultured using the ACD 3D culture
system. (A) Five different cancer cell lines, AGS, MDAH-2774, SKOV3, PanC-1, and HepG2 cells were
cultured for 3 days in 2D culture. Bright-field images show the morphologies of cells in adherent
culture. AGS, MDAH-2774, SKOV3, PanC-1, and HepG2 cells can form spheroids when 3000 cells are
seeded into 24-well plates within 4 days after incubation in the ACD 3D culture system. Bright-field
images show the morphologies of spheroids on Days 1, 4, and 7 in the ACD 3D culture system. On
Day 7, AGS, MDAH-2774, and SKOV3 cells formed large, ellipsoid spheroids, whereas HepG2 cells
formed small, ellipsoid spheroids and PanC-1 cells formed small, round spheroids. Images were
captured using phase-contrast microscopy on Days 1, 4, and 7. Scale bar = 500 µm. (B) Spheroids
were collected on Days 1, 4, and 7. After resuspension of spheroids to obtain single-cell suspensions,
cell viability was evaluated by 0.2% trypan blue. Cells obtained from AGS, MDAH-2774, PanC-1, and
HepG2 spheroids exhibited greater than 80% viability on Days 1 and 4. On Day 7, the cell viabilities
of AGS, MDAH-2774, PanC-1, and HepG2 cells were greater than 70%. Data shown as mean ± SD of
triplicate independent experiments.
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Table 2. Characteristics of different cancer cell lines grown in 3D culture.

Cancer Type Cell Line Doubling Time (h) Time to Spheroid
Formation (Days) Cell Viability (%)

Gastric cancer AGS 15.9 3 90
Epithelial ovarian cancer,

endometrioid type MDAH-2774 24.7 3 75

Pancreatic ductal
adenocarcinoma PanC-1 29.4 4 84

Hepatocellular carcinoma HepG2 37.7 4 90
Epithelial ovarian cancer,

serous type SKOV3 39.4 4 91

Next, we evaluated cell viability during both early and late stage spheroid formation.
Cell viability was approximately 90% during early spheroid formation. At Day 7 of culture,
the cell viabilities were greater than 70% for AGS (90%), MDAH-2774 (75%), PanC-1 (84%),
HepG2 (90%), and SKOV3 (91%) cells (Figure 2B, Table 2). These results indicate that the
ACD 3D culture system can support long-term spheroid growth. Taken together, these data
indicate that the ACD 3D culture system not only provides suitable conditions for rapid
spheroid formation and growth but also for maintaining long-term cell viability.

2.4. Cancer Stem Cell Marker Expression in Spheroids Grown Using the ACD 3D Culture System

Previous studies described spheroids as displaying CSC characteristics. We evaluated
whether spheroids cultured using the ACD 3D culture system expressed CSC markers.
After 7 days of culture, we collected spheroids and extracted RNA to examine the expression
of Oct-4, Nanog, CD24, CD44, and CD90 using Real-time PCR. CSC marker gene expression
varied across different cancer cell types. In HepG2 cells, CD24 expression in spheroids
differed by 2-fold compared with cells grown in 2D culture. In AGS cells, CD44, CD90,
Oct-4, and Nanog expression levels increased in spheroids compared with cells grown in
2D culture. PanC-1 and SKOV3 cells expressed CD24, CD44, CD90, Oct-4, and Nanog when
grown in ACD 3D cultures. MDAH-2774 cells express higher levels of CD24, CD90, Oct-4,
and Nanog when grown in spheroids than when grown in 2D cultures (Figure 3). Taken
together, these results indicate that cancer cells cultured using the ACD 3D culture system
are able to form spheroids that express CSC-related genes, indicating that cells grown using
the ACD 3D culture system may be useful for CSC research.
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Figure 3. Spheroids derived from cancer cell lines cultured using the ACD 3D culture system exhibit
cancer stem cell characteristics. Cells grown in 2D culture cells and spheroids grown in 3D culture
were collected on Day 7 for mRNA extraction. mRNA levels of the stemness markers CD24, CD44,
CD90, Oct-4, and Nanog were examined in parent and spheroid cells using Real-time PCR. The white
bars show the levels measured in cells from 2D culture, and the black bars show the level measured
in spheroids grown in 3D culture. All gene expression levels were normalized against the expression
level of β-actin. All results are expressed as the fold change relative to the expression level in cells
grown in 2D culture. Data shown as mean ± SD of triplicate independent experiments.

2.5. Anti-Cancer Drug Effects on Spheroids Grown Using the ACD 3D Culture System

Spheroids and tumoroids grown in 3D culture have previously been used as anti-
cancer drug screening models [10]. To test whether spheroids grown using the ACD 3D
culture system could be utilized for anti-cancer drug screening purposes, HCT116 colon
cancer cells grown using the ACD 3D culture system were harvested to examine their
response to the anti-cancer drug OXA (Figure 4A). HCT116 spheroids grow well in the
ACD 3D culture system for 5 days (Figure 4B). ACD gels containing embedded HCT116
spheroids were dissolved with D buffer, and spheroids were collected. Spheroids were
cultured in untreated wells for 2 days in medium containing 5% Matrigel to maintain
the spheroid structure. After 4 days of OXA treatment, the cell viability was examined.
The half-maximal inhibitory concentration (IC50) for OXA is 23.77 ± 4.97 µM in HCT116
spheroids (Figure 4C). The ACD 3D culture system can be used as a tool for drug screening.
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Figure 4. The anti-cancer drug test was performed in HCT116 spheroids grown using the ACD
3D culture system. (A) A flowchart showing the anti-cancer drug test procedures performed using
cells cultured in the ACD 3D culture system. (B) HCT116 spheroid formation using the ACD 3D
culture system (left, 20×) and the spheroids collected from gels (right, 40×). (C) After 4 days of OXA
treatment, spheroid cell viability was examined using Cell Titer-Glo® 3D Cell Viability Assay. The
IC50 of oxaliplatin (OXA) is 23.77 ± 4.97 µM in HCT116 spheroids grown using the ACD 3D culture
system. Data shown as mean ± SD of triplicate independent experiments.
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2.6. Primary Cells from Patient-Derived Cancer Tissue Grown Using the ACD 3D Culture System

To examine whether the ACD 3D culture system can support the formation of tumor-
oids, primary cells isolated from patient-derived colon cancer samples were seeded on
ACD gels. This study was approved by the Institutional Review Boards at the Chung Shan
Medical University Hospital (CS1-20040). When cultured using an appropriate culture
medium, patient-derived colon cancer cells steadily grew and formed tumoroids starting on
Day 3 of the 3D culture (Figure 5A). Cells in the center of the mass became dark starting on
Day 10 most likely due to insufficient nutritional penetration from the culture medium. To
further confirm that the observed masses were derived from colon cancer cells, the gel was
dissolved with D buffer, and the masses were isolated intact. The expression of colon cancer
markers, including E-Cadherin and F-actin, were examined in the isolated cell masses
(Figure 5B). E-Cadherin is localized at cell–cell junctions, whereas F-actin is distributed
not only at cell–cell junctions but also at the edges of the cell mass. The expression and
distribution of E-Cadherin and F-actin indicate that the cell masses represent tumoroids
derived from primary colon cancer cells.
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Figure 5. Primary colon cancer cells from patient-derived tissue samples were grown using the ACD
3D culture system. (A) Primary colon cancer cells obtained from patient-derived tissue samples were
trypsinized and cultured using the ACD 3D culture system for 9 days. Bright-field images show
the morphologies of spheroids grown in the ACD 3D culture system on Days 0, 1, 3, 5, 7, and 9.
Images were captured using a phase-contrast microscope. Scale bar = 100 µm. (B) The expression of
cancer markers E-Cadherin and F-actin in primary colon cancer tumoroids. Tumoroids isolated from
ACD 3D culture system gels were subjected to immunofluorescent staining. Images were captured
using a laser scanning confocal microscope at the magnification of 400×. Blue: Hoechst 33258; green:
E-Cadherin; red: F-actin. Data shown from triplicate independent experiments.

2.7. Human Liver Organoid Formation with ACD 3D-Culture System

Organoid culture is an in vitro system intended to recapitulate tissues in a culture
dish. Organoids derived from healthy donors or patients can be used as research models to
investigate healthy liver development and disease mechanisms [32]. Liver organoids can
also be used to perform drug screening and assess gene therapy [32]. To evaluate whether
the ACD 3D culture system can support organoid growth, we thawed previously stored,
organoid-derived, single-cell suspensions for culture using the ACD 3D culture system.
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Organoid-derived, single-cell suspensions were able to regenerate into organoids when
cultured using the ACD 3D culture system, with organoids appearing on Day 6 and stable
growth observed until Day 14 (Figure 6A). Next, we evaluated the cell viability of organoid
cells. Single-cell viability was 76% when measured using freshly thawed cells. After culture
using the ACD 3D culture system, cell viability increased to 86% by Day 7, and 50% cell
viability was maintained at Day 14. Therefore, the ACD 3D culture system can support
organoid cell growth and survival.
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Figure 6. Human liver organoid formation and cell viability when cultured using the ACD 3D culture
system. (A) Thawed single-cell organoid suspensions are able to regenerate organoids when grown
using the ACD 3D culture system, starting at Day 6, and growing stably until Day 14. Bright-field
images show the morphologies of organoids on Days 0, 1, 3, 6, 10, and 14. Organoids appeared
round. Images were captured using a phase-contrast microscope. Scale bar = 500 µm. (B) Organoids
were collected on Days 0, 7, and 14 and resuspended into single-cell suspensions. Cell viability was
evaluated by 0.2% trypan blue. Cell viability was greater than 80% on Day 7. On Day 14, cell viability
was greater than 50%. Data shown as mean ± SD of triplicate independent experiments.

3. Discussion

Several 3D culturing methods have been developed, including suspension culture,
hanging drop culture, and matrix-based gels. Suspension culture uses a serum-free medium
containing higher concentrations of growth factors [1,3], in which cells are grown in low-
adhesion conditions, preventing migration. However, spheroids grown in suspension
culture do not provide a good representation of the tumor microenvironment, and cell
viability is low for long-term suspension cultures, making them difficult to passage [33].
The hanging drop method is another type of suspension culture. Briefly, a small cell
volume is placed onto a culture plate, and the plate is inverted to create droplets. Cells will
aggregate and form a spheroid at the drop tip [1,34]. Although this method is simple, it also
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has disadvantages. The droplet must be prevented from falling, and once the droplet begins
to form, the removal or replacement of the medium becomes difficult. These disadvantages
limit the applications of hanging drop cultures. Hydrogels are widely used in 3D cultures
because they provide a scaffold structure and ECM-like properties to promote cell adhesion
during the spheroid initiation stage [16].

In general, scaffold materials can be categorized into two types: natural polymers, such
as collagen, chitosan, hyaluronic acid, fibroin, agarose, and alginate; and synthetic polymers,
such as polyglycolic acid, polylactic acid, and aliphatic polyester polycaprolactone. Natural
polymers have reduced toxicity and can improve biocompatibility compared with synthetic
polymers. Although synthetic polymers have higher reproducibility and easier production
procedures, they lack bioactivity [10].

The ACD 3D culture system utilizes a combination of alginate and gelatin to provide a
scaffold structure. Alginate and gelatin are both natural materials that are easily obtained
at a low cost. Alginate is commonly used in hydrogels to provide a scaffold structure.
However, alginate lacks a cell adhesion motif [30], and cells do not express receptors that
recognize alginates [28]. Therefore, we used gelatin to provide a cell adhesion signal. In
addition, due to the physical properties of gelatin, gelatin is slowly secreted from the
hydrogel into the culture medium over time.

Achieving good conditions for spheroid formation and growth requires the optimiza-
tion of scaffold porosity, strength, structural stability, and degradation kinetics. The stiffness
of hydrogels can affect the phenotypes and growth patterns of cancer cells. The numbers
and sizes of cancer cell spheroids tend to be smaller when cultured in stiff hydrogels. We
also observed the effects of hydrogel stiffness on spheroid formation. When using the
ACD 3D culture system, proper stiffness helped to stablize spheroid cell formation than
harder gels [16,35]. Therefore, the stiffness of hydrogels for optimization by modifying the
concentrations of the composition materials was conducted.

Alginates are linear copolymers composed of two building units, β-D-mannuronic (M)
acid and α-L-guluronic (G) acid, and the entire molecule consists of MM or GG monomeric
or MG dimeric blocks [36]. High viscosity is achieved through increased M concentrations,
whereas increased G concentrations result in stronger gelling properties. Alginate has a
high affinity for alkaline earth metals, and hydrogels can form in the presence of divalent
cations. The affinity of alkaline earth metals upon alginate gel is varied [36–38]. In the ACD
3D culture system, we use alkaline metals to achieve alginate gel cross-linking, resulting in
a gel with low viscosity and high flexibility. The flexible alginate gel was combined with
gelatin to promote stable cell adhesion on the scaffold, allowing for the rapid formation
of spheroids.

Spheroids were enriched in cells with CSC characteristics [5]. In a previous study,
multiple CSCs were successfully enriched by culturing them with alginate gel beads [22],
suggesting that alginate gel may represent a useful biomaterial for enriching CSCs in culture.
Our ACD 3D culture system results demonstrated similar findings. In the spheroids
experiment using the ACD 3D culture system, we’ve examined the expression of CSC
marker genes, such as CD24, CD44, CD90, and stemness-related transcriptional factor
Nanog and Oct-4. It’s known that Nanog and OCT4 expressed in many cancer types [39].
High expression of Oct-4 has been associated with patients of poor prognosis as well [39].
High expression of Nanog promote the epithelial-mesenchymal transition (EMT) and
improve cancer progress development. CD24, CD44 and CD90 are stemness-related surface
marker and the most widely used markers in CSC research. [40,41].

High expressed Oct-4 and Nanog in Spheroids of 5 cancer types with ACD system
indicating CSC characteristics. In the HCC, CD24 and CD44 are related to drug resistance
and tumorigenesis. CD44 is also a cell surface marker for identification of gastric CSC.
In ACD system, spheroids of AGS express CD44, which is consistent with previous re-
search [39,42]. In pancreatic cancer, CD24 and CD44 are recognized as malignant CSC
marker [39,43,44]. The PanC-1 spheroid exhibited high level of CD24 and CD44, indicating
CSC was enriched in the culture. CD90 has been reported as a marker of ovarian CSCs
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and highly expressed in epithelial ovarian cancer [39,45]. Our data showed that SKOV3
and MDAH-2774 exhibited high CD90 expressed in spheroid, which is consistent with
previous research. In sum, using 5 cancer types with ACD system without the stimulation
of additional growth factors, the expression of CSC markers demonstrated the calibers
ACD system for in vitro stemness study.

Spheroids display higher drug resistance due to the exclusion of drugs and the higher
concentration of hypoxic cells that results from the gradient of nutrients and oxygen able
to reach the outer and inner layers [46]. In this study, HCT116 spheroids were cultured
using the ACD 3D culture system and tested for anti-drug efficacy. OXA is a chemotherapy
drug commonly used to treat various cancers, including colon cancer. In the HCT116 drug-
resistant colon cancer cell line, the OXA IC50 is typically 10–15 µM [47]. When HCT116
cells were cultured using the ACD 3D culture system, the OXA IC50 was 23.77 ± 4.97 µM.
These data indicate that spheroids generated using the ACD 3D culture system may be
useful tools for the future effective drug-screening.

The ACD 3D culture system not only supported spheroid formation from various
cancer cell lines but also supported the generation of human cancer tumoroid and organoid
cultures. In this study, primary cells isolated from patient-derived colon cancer samples
successfully formed tumoroids when grown in the ACD 3D culture system. The ACD
3D culture system also supported human liver organoid growth, even when using freeze–
thawed cells. The ACD 3D culture system supported the stable growth of organoid cells
and maintained cell viability in long-term culture.

4. Materials and Methods
4.1. ACD 3D Culture System Procedure

The ACD 3D culture system (purchased from GEcoll Co., Ltd., Tainan, Taiwan) is
constituted with A gel, C buffer and D buffer. The A gel was prepared with 2% alginate
(Sigma, Singapore), 10% gelatin (GEcoll, Tainan, Taiwan) and 0.01 M HEPES (Sigma,
Singapore) in distill water. The C buffer was prepared with 0.5% SrCl2 (Sigma, Singapore)
in distilled water. The D buffer was prepared with 2% EDTA (Sigma, Singapore) in distilled
water. All the prepared reagent was adjusted to pH 7.4 and sterilized with autoclave.

All steps were performed in a laminar flow hood, and each component was added
using the volumes or ratios indicated. A thermally conductive sheet was placed on an ice
pack to facilitate the rapid and even cooling of the culture plate. Cells were resuspended in
500 µL culture medium and mixed with 500 µL A gel at a 1:1 ratio. A 24-well plate was
placed on the thermally conductive sheet, and a 30 µL cell—gel mixture was added to each
well and maintained 4 ◦C for 5 min to ensure gel formation. After gel formation, 1 mL
cold 1× C buffer was added to each well to cover the gel and incubated for 15 min. After
15 min, the C buffer was carefully removed, and 1 mL culture medium was added. Cells
were incubated at 37 ◦C in a 5% CO2 incubator. Cell viability and spheroid cell morphology
were observed and recorded at Day 0, 1, 4, 7.

4.2. Spheroid Collection and Cell Viability

The experimental procedure was modified from previously described procedures [48].
After spheroids were cultured in a 24-well plate, the culture medium was carefully removed,
and the gel was washed the gel with cold 1× phosphate-buffered saline (PBS), followed
by the addition of 1 mL 1× D buffer to each well and incubation for 5 min at room
temperature. After incubation, the solution was gently mixed with repeated pipetting until
the gel was completely dissolved. The solution was then transferred to a new 50-mL tube,
and 3× volumes of PBS were added. The tube was centrifuged at 200× g for 10 min. The
supernatant was discarded, and the cells were resuspended in 500 µL PBS and 0.2% trypan
blue was added to evaluate cell viability and perform cell counting.
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4.3. Real-Time PCR

The experimental procedure was modified from previously described procedures [49].
Spheroid cells were collected on Day 7 and washed once with 1× PBS, followed by cen-
trifugation at 1500 rpm for 5 min. Total RNA was extracted from cells grown in both
2D-culture and as spheroids using Trizol reagent (Cat: T9424, Sigma-Aldrich, St. Louis,
CA, USA), following the manufacturer’s protocol [50]. mRNA expression levels were
validated in triplicate by Q- PCR. Briefly, reverse transcription from 5 µg RNA was carried
out using PrimeScript™ RT reagent kit (Cat: RR037A, TaKaRa, Tokyo, Japan), according to
the manufacturer’s protocol [51]. Real-time PCR was performed using KAPA SYBR FAST
qPCR Master Mix (KAPA Biosystems, KM4100) with the specific primer shown in Table 3
on a Bio-Rad CFX96 Real-Time System (Bio-Rad, Hercules, CA, USA). Gene expression
levels were normalized against the expression level measured for actin and using the ∆∆Ct
method to quantify the relative gene expression [52].

Table 3. Real-time PCR Specific Primers.

Primer Sequence (5′–3′)

β-actin Forward TCACCCACACTGTGCCCATCTACGA
Reverse CAGCGGAACCGCTCATTGCCAATGG

CD24
Forward TTTACAACTGCCTCGACACACATAA
Reverse CCCATGTAGTTTTCTAAAGATGGAA

CD44
Forward GACCTCTGCAAGGCTTTCAA
Reverse TCCGATGCTCAGAGCTTTCTC

CD90
Forward CTAGTGGACCAGAGCCTTCG
Reverse TGGAGTGCACACGTGTAGGT

Oct-4
Forward GGCCCGAAAGAGAAAGCGAACC
Reverse ACCCAGCAGCCTCAAAATCCTCTC

Nanog Forward GGGCCTGAAGAAAACTATCCATCC
Reverse TGCTATTCTTCGGCCAGTTGTTTT

4.4. Immunofluorescence

Cells from patient-derived primary colon cancer samples were trypsinized and seeded
in the ACD 3D culture system with culture medium. After 9 days, cultured tumoroids were
isolated from the gel using D buffer, according to the manufacturer’s instructions. Isolated
tumoroids were fixed with 100% methanol for 1 h and washed twice with 1× PBS at room
temperature. Fixed tumoroids were blocked with 1 mg/mL BSA at room temperature
for 1 h. Tumoroids were then stained with anti-E-Cadherin primary antibody (Cat#3195,
Cell Signaling) and 1 µM Andy Fluor 594-conjugated phalloidin (Cat#C054, GeneCopoiea)
for F-actin staining at room temperature for 2 h, followed by two washes with 1x PBS.
After 1 h incubation with Alexa Fluor 488-conjugated secondary antibody (Cat#111-545-003,
Jackson ImmunoResearch) the samples were washed twice with 1× PBS. Residual 1× PBS
was removed, and the tumoroids were mounted with mounting buffer and covered with
cover glass for observation under a laser scanning confocal microscope at the magnification
of 400×.

4.5. Drug Screening

HCT116 cells were cultured using the ACD 3D culture system in Dulbecco’s modi-
fied Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS) for 5 days.
Spheroids began forming on Day 2. After 5 days of incubation, grown spheroids were
isolated using buffer D according to the ACD 3D culture system instructions. The con-
centration of isolated spheroids was measured, and 2000 spheroids were seeded into
untreated 96-well plates containing 100 µL of DMEM + 10% FBS and 5% Matrigel. Af-
ter 2 days of culture, the culture medium was replaced with DMEM medium + 10%
FBS containing different concentrations of the anti-cancer drug oxaliplatin (OXA). After
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4 days of OXA incubation, 100 µL Cell Titer-Glo® 3D Cell Viability Assay (Promega, Cat#
G9681) was added to each well, mixed gently, and incubated for 25 min at room tem-
perature. The luminescence of each sample was examined with GraphPrism 8, and cell
viability was determined. The set of spheroids cultured in the medium without OXA was
considered as Blank. The IC50 values were performed using GraphPad Prism (Intuitive
Software for Science, San Diego, CA, USA) and 95% confidence intervals were obtained by
nonlinear repression.

4.6. Statistics

Data are displayed as the mean ± standard deviation and were analyzed with Prism
version 8.0 (GraphPad Software). An unpaired Student’s t-test was used to perform
comparisons between two groups. A p-value < 0.05 was considered significant.

5. Conclusions

These data demonstrate that the ACD 3D culture system represents a low-cost, simple,
and easy-to-operate culture system. Optimizing the composition of the alginate hydrogel
could improve the efficiency and quality of spheroid research. In the future, the ACD 3D
culture system can be more widely used when performing 3D culture studies.
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