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Abstract: Climate change, food shortage, water scarcity, and population growth are some of the
threatening challenges being faced in today’s world. Drought stress (DS) poses a constant challenge
for agricultural crops and has been considered a severe constraint for global agricultural productivity;
its intensity and severity are predicted to increase in the near future. Legumes demonstrate high
sensitivity to DS, especially at vegetative and reproductive stages. They are mostly grown in the
dry areas and are moderately drought tolerant, but severe DS leads to remarkable production losses.
The most prominent effects of DS are reduced germination, stunted growth, serious damage to
the photosynthetic apparatus, decrease in net photosynthesis, and a reduction in nutrient uptake.
To curb the catastrophic effect of DS in legumes, it is imperative to understand its effects, mechanisms,
and the agronomic and genetic basis of drought for sustainable management. This review highlights
the impact of DS on legumes, mechanisms, and proposes appropriate management approaches to
alleviate the severity of water stress. In our discussion, we outline the influence of water stress on
physiological aspects (such as germination, photosynthesis, water and nutrient uptake), growth
parameters and yield. Additionally, mechanisms, various management strategies, for instance,
agronomic practices (planting time and geometry, nutrient management), plant growth-promoting
Rhizobacteria and arbuscular mycorrhizal fungal inoculation, quantitative trait loci (QTLs), functional
genomics and advanced strategies (CRISPR-Cas9) are also critically discussed. We propose that
the integration of several approaches such as agronomic and biotechnological strategies as well as
advanced genome editing tools is needed to develop drought-tolerant legume cultivars.
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1. Introduction

Environmental stress factors, namely, heat, salinity, and drought, affect almost all aspects of the
plant ranging from germination to the maturity stage [1–4]. Drought is a major threat and the most
unpredictable constraint, with adverse effects on crop production worldwide [5–7]. Drought induces
several devastating effects on plants by disturbing various plant activities such as the carbon assimilation
rate, decreased turgor, increased oxidative damage, and changes in leaf gas exchange, thereby leading
to a reduction in yield [7,8]. Plant sensitivity to drought is a complex phenomenon and depends on
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numerous factors including the growth stage of the plant, genetic potential, duration and severity of
stress [9]. Drought also affects the leaf development, activity of enzymes, ion balance, and ultimately
leads to yield reduction [6,10].

Legumes are a nourishing and low-cost source of protein, which play a vital role in agriculture
due to their atmospheric nitrogen-fixation ability [11,12]. These distinct characteristics broaden their
adoptability to environments that have nitrogen deficiency [13]. Legume crops are vulnerable to
several abiotic threats, and drought has been known as a main constraint restraining crop yield [14–16].
Legume crops are commonly grown in rainfed regions, and different models (Global Climate Model)
have predicted increases in the frequency and intensity of drought, indicating the threat of water
scarcity [17]. Water deficiency at any stage can affect plant growth as a result of reducing crop
production, especially during grain filling and the reproductive phase [18,19]. Drought frequency and
severity limit grain yield, plant biomass and related components of legumes [20–24]. The extent of
decrease in yield depends on the intensity and duration of drought stress (DS), crop developmental
stage and genotypic variability. Therefore, the development of new approaches to improve drought
tolerance in legumes is critical for reducing yield losses in water-deficient environments. Development
of drought-tolerant varieties with improved water use efficiency (WUE) may lead to enhance crop
productivity in dry areas [25].

The substantial development and integration of advanced approaches for dry environments
are the primary elements that contribute to enhanced legume productivity in harsh environments.
Approaches such as the development of various traits for drought tolerance, innovative breeding and
water efficient practices, for instance, the use of drip irrigation and mulching, are promising ways
to mitigate the devastating effects of drought [26]. The adverse effects of drought on several other
crops have been previously reviewed [5,27–29], but no updated and comprehensive study is available
on impacts of DS in legume crops. Our study about effects, mechanisms and management strategies
may lead to managing the devastating effects of DS and to develop drought-tolerant genotypes in
dry environments.

2. Effect of Drought Stress (DS) on Legumes

Legumes vary in their responses/sensitivity at the onset of drought, but in all cases, final yield
is significantly decreased. This is linked with reduced germination and declined photosynthetic
activity [8], decreased assimilate translocation and carbon fixation [30,31], repressed flowering time and
an effect on reproductive organs [32], pollen grain sterility [33], fewer pods and lower grain set [34–36]
and declined sink activity [37]. Drought affects several aspects of legume growth and development,
including germination, shoot and root development, photosynthesis, and the reproductive stage.
Due to global climate change, drought has become one of the most uncontrolled and an unpredicted
factor which is continuously limiting crop production and has adverse effects on legume crops (Figure 1).
Studies showed that severe drought conditions disturb plant morphology, physiology, and growing
period, whereas moisture contents play an essential role in enzyme activation during germination
which could help to elucidate the sensitivity of plants to drought at the germination stage. Germination
and reproductive stages are highly sensitive to water deficit. Under DS, the germination rate was
significantly reduced in soybean [38]. Awari and Mate [39] noted a decrease in the germination rate in
chickpea under a water deficit. Li et al. [40] observed that DS commonly occurs at the seedling stage
and significantly reduced yield in faba bean.
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Figure 1. Effect of drought stress (DS) on plants and possible responses.

Photosynthesis is a fundamental process responsible for growth and development in plants and
is influenced by various environmental stresses [41]. The intensity, rate, and duration of stress will
affect plant responses to water deficit. DS affects carbon fixation by disturbing enzymatic activities of
different enzymes such as PPDK, PEPCase, EBPase and Rubisco [42]. DS affects the photosynthetic
machinery and ultimately decreases legume yield depending on the severity and extent of the stress.
Ohashi et al. [43] observed that the photosynthetic rate, stomatal conductance, and transpiration rate
significantly declined during DS. Similarly, a recent study reported a decline in net photosynthesis
in soybean under drought, which caused a reduction in dry matter accumulation and the podding
rate, directly decreasing the yield [44]. Hao et al. [45] reported that the chlorophyll content of
drought-stressed soybean plants was reduced by 31% compared to non-stressed plants. In faba bean,
DS considerably reduced the chlorophyll content, photosynthesis rate and impaired plant growth and
yield [46]. Abid et al. [47] reported that drought influences chlorophyll fluorescence and antioxidant
enzyme activities in faba bean. Likewise, in chickpea, DS affects the chlorophyll content, chlorophyll
fluorescence and photosynthesis [48].

Moreover, stomatal control is also considered as a main physiological factor for optimizing water
use during DS [49], preventing excessive water loss under extended drought conditions. For instance,
stomatal conductance as compared to the control decreased by 60% under DS in soybean [45,50,51].
Abdel and Stutzel [52] reported that the stomatal conductance declined as the DS progressed, confirming
the conclusion that the impact of drought was more significant under severe stress than under medium
stress. Atti et al. [53] observed a decline in the photosynthetic rate, transpiration rate, and stomatal
conductance by 78.4%, 85.4%, and 92%, respectively, during DS. They explained that the stomatal
conductance was correlated with the transpiration rate more than with the photosynthetic rate, which
was reported earlier [54]. The transpiration rate decreased by 53% [45] and 57% [50] under DS; this
decrease was due to the decline of stomatal conductance which was controlled by root-originated ABA,
as 50-fold xylem ABA was measured under drought conditions [55], with a significant increase as the
stress became severe [35].

The impact of drought on final yield is very complex and comprises different processes such
as fertilization, gametogenesis, embryogenesis and grain formation [56]. During the plant life cycle,
flowering and reproductive phases are highly vulnerable to water scarcity [15,32]. DS affects flowering
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time and flower development and leads to pollen grain sterility by decreasing the growth of pollen tubes
and pollen grain germination [15,57,58]. Drought severely affects the ability of the plant to produce more
flowers, pods and seed set; thus, the final yield is ultimately decreased [19]. For instance, the pods per
plant were reported to be reduced under water deficit by many scientists [22,50,59,60]. At the beginning
of pod development, DS reduced pod number by 92.7%, while during pod lengthening, the reduction
was 81.6% compared to controls, due to the cumulative effects of a reduction in pod induction, young
pod abortion [61], pod enlargement [53], and to the reduction in flower number [62]. In previous
studies, lower seed number per plant under DS was recorded [22,60,62]. The highest reduction in
seed numbers per plant occurred in the flowering stage [63]. José et al. [64] reported that drought
occurrence at flower formation led to a shorter flowering period and produced fewer flowers, fewer
pods, and consequently, a smaller number of seeds per plant. However, it was concluded earlier that
DS during the seed set period reduces seed number [65,66], and ultimately reduces final yield (Table 1).
A more recent study observed a significant decrease in seed yield (73–82%) per plant in soybean under
DS [67]. Farooq and co-workers reviewed the impacts of DS on legumes during the grain filling stage.
They reported that drought is harmful in certain developmental stages, including the generation and
function of reproductive organs and reported a 27–87% yield reduction [16]. For instance, water deficit
significantly reduces yield in mash bean [68], soybean [69], and in chickpea [32].

Table 1. Yield losses (%) in important legumes under drought stress (DS).

Legume Crops Growth Stage Yield Loss Reference

Soybean

Pod set 73–82% [67]

Reproductive phase 46–71% [70]

Pod set 45–50% [69]

Grain filling stage 42% [63]

Chickpea

Reproductive phase 45–69% [71]

Ripening stage 49–54% [32]

Anthesis stage 27–40% [48]

Ripening stage 50% [72]

Cowpea

Reproductive phase 60% [73]

Reproductive phase 34–66% [74]

Pod filling stage 29% [75]

Common bean

Reproductive phase 58–87% [76]

Pod filling stage 40% [77]

Flowering stage 49% [78]

Pigeonpea Reproductive phase 40–55% [79]

Mung bean Reproductive phase 26% [80]

Flowering stage 31–57% [81]

Faba bean Grain filling stage 68% [82]

Lentil
Pod development 70% [83]

Reproductive phase 24% [84]

3. Tolerance Mechanisms

To increase legume productivity under DS, it is imperative first to understand tolerance
mechanisms. Plants have evolved several adaptations including escape and avoidance, compatible
solute accumulation, antioxidant regulation, and hormonal regulation. Research progresses elucidating
these mechanisms are discussed below.
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3.1. Drought Escape and Avoidance

Drought escape (DE) is a primary adaptation mechanism which involves rapid plant growth and
development to facilitate the completion of the life span prior to the onset of drought events. Legume
crops can escape drought by shrinking their life span to avoid stress by retaining higher tissue water
potential by improving water uptake and reducing water loss [85]. DE occurs when phenological
development is successfully matched with periods of soil moisture availability, where the growing
season is shorter and terminal DS predominates [56]. For instance, local cowpea cultivars flower
prior along a transect from south to north through Sahelian and Sudanian regions of Africa headed
to the Sahara desert [86]. Flowering time coincides with the time of cessation of the rainy season,
which is an adaptive approach. Early flowering and seed set before an upcoming drought event is
an important trait in legumes and cereals [27,87]. Legume crops with an indeterminate growth habit
(such as common bean and cowpea) may mitigate the adverse effect of short-term DS by producing
new organs during the phase of stress recovery [88]. The plants having a deep rooting system and
a perennial growth habit have better capability to withstand stress than annuals with shallow-root
systems [8]. However, if drought occurs at earlier stages, DE plants can slowly switch to drought
avoidance with the succulent strategy or with a more progressive drought tolerance mechanism such
as production of osmolytes and high WUE [89].

3.2. Solute Accumulation

Compatible solute accumulation is a fundamental strategy for osmoprotection and osmotic
adjustment under DS. These compatible solutes accumulate primarily in drought-stressed cells
without interfering with the macromolecules and are either hydroxyl compounds like oligosaccharides,
polyhydric alcohols and sucrose or nitrogen-containing compounds such as amino acids and proline,
polyamines and ammonium compounds [90]. The mechanism of osmoprotection is based on the
close association of non-toxic elements with numerous components of the cell, whereas osmotic
regulation assists in maintaining turgor through maintaining the water contents of cells [91]. During
DS, proline plays an important role and act as a signalling compound to regulate mitochondria
function and affect cell proliferation by means of activating particular genes, which are essential
for stress recovery [92]. Proline accumulation aids in retaining membrane integrity by decreasing
oxidation of lipids through guarding cellular redox potential and scavenging free radicals [93].
Among compatible solutes, non-reducing sugars, particularly di, tri and tetra-saccharides assist in
maintaining the integrity of membranes [94]. For instance, Mannitol assists in stabilizing structures of
macromolecules such as glutathione, ferredoxin, thioedoxin, phosphoribulokinase, and scavenging
hydroxyl radicals [95,96]. Similarly, trehalose helps to stabilize macromolecules (e.g., membrane
lipids, protein) and biological structures, thereby helping to improve photosynthetic activity under
drought [97,98]. The defensive mechanism formation seems to be a consequence of hydrogen bonds
among osmolytes and macromolecules, thus avoiding the creation of intramolecular hydrogen bonds
that might irreversibly amend the three-dimensional structure of molecules. In legumes, the increased
sugar alcohol (inositol and sorbitol) with a concomitant decline in sugar is the main osmoticum under
water deficit [99].

3.3. Antioxidant Defense

Reactive oxygen species (ROS) production is an initial response of drought-stressed plants and
acts as a messenger to activate defense mechanisms in plant [100]. Under water deficit, ROS such as
hydrogen-peroxide (H2O2), hydroxylradical (•OH), superoxide-radical (O2

•−), and singlet-oxygen
(1O2) and alkoxy radicals (RO) are produced and accumulate, which damage macromolecules and
cell structure [101,102]. ROS acts as signalling compounds at low concentrations, and ROS trigger
various responses under drought. When the level exceeds the defense mechanism, ROS cause oxidative
stress to proteins, lipids and nucleic acids leading to altered intrinsic properties of biomolecules and



Int. J. Mol. Sci. 2019, 20, 2541 6 of 32

cell death [103]. Enzymatic and non-enzymatic components regulate the defensive mechanism of
ROS in the cells, and maintaining a higher concentration of antioxidants or antioxidant enzymes
has proven to be an adoptive response under DS [104,105]. Enzymatic antioxidants comprise
catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX), ascorbate peroxide
(APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and monodehydroascorbate
reductase (MDHAR) and non-enzymatic antioxidants include glutathione, ascorbate, tocopherols,
carotenoids, phenolics and ascorbic acid [42,106]. Among enzymatic antioxidants, the SOD activity
leads to detoxification of hydrogen peroxide (H2O2) and superoxide radicals [107]. APX helps to
generate NADP+ and changes H2O2 to water [108] (Figure 2). APX also helps to remove H2O2 whereas
DHAR and GR assist by providing a substrate for reactions. During oxidative stress, the concentrations
of antioxidants may be increased more in the recovery phase than in the stress phase, as observed in
green bean [109], pea [110,111], soybean [112], and chickpea [113]. Under DS, it been recorded that
SOD, APX, GR, GST, GPX and POD activities increased in resistant cultivars of common bean and
horse gram [114,115]. In conclusion, increased antioxidant activities in legumes would help to improve
drought tolerance by protecting from oxidative stress.
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Figure 2. Schematic representation of drought tolerance mechanism in legumes. Reactive oxygen
species (ROS), Ca2+, ABA, and JA are activated under DS. DS induces biosynthesis of ABA and JA,
which, in turn, up-regulate the transcription of ion transporter genes. Overexpression of transcription
factors (WRKY, GmNACs, DREB, ZIP, AP2/ERF, MYB) has been reported under DS. ABA, abscisic acid;
JA, Jasmonic acid.

3.4. Hormone Regulation

The phytohormones (including gibberellins, cytokinins, auxins, ABA and ethylene) regulate and
control all aspects of plant growth and development. These plant hormones are involved in drought
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tolerance [116]. For instance, the rise in cytokinin level under water deficit in xylem sap stimulates
stomatal opening by declining its sensitivity to ABA [117]. The concentration of gibberellins, cytokinins
and auxin declines under water deficit while ethylene and ABA tend to increase in plants [118]. Under
DS, the rise in ABA concentrations is due to a decrease in ABA catabolism hindering its entrance
from the phloem and rhizosphere. Enhanced xylem pH in water deficit conditions also triggers ABA
entry to root xylem [119]. For instance, declined stomatal conductance was linked with an increase
in ABA concentration triggered by re-watering in kidney bean [120]. ABA also promotes hydraulic
conductivity of roots which is accountable for increased water uptake and transport in plants [121,122].
ABA also increased the production of superoxide radicals and H2O2, enhancing the activities of
antioxidant enzymes such as GR. Thus, ABA-induced gene overexpression can serve as a beacon
of hope to improve drought tolerance. In addition, jasmonic acid (JA) is also essential to mitigate
DS (Figure 2). However, JA usually cross-talks with other hormones to enhance survival of plants
under water deficit. JA acid improves drought tolerance in plants by various means, including root
development, scavenging of ROS, and stomatal closure [116]. In soybean, methyl jasmonate (MeJA)
enhances drought tolerance and improves plant growth [123].

3.5. Potential Traits for Screening Legumes for Drought Resistance

The ever-increasing water shortage and frequent drought spells in agricultural ecosystems
have been causing significant yield losses for many crops worldwide. Great efforts and substantial
progress have been made through innovative research findings and rapid development of many novel
techniques and methodologies in drought-resistance breeding. However, accumulated knowledge
about drought-resistance in field crops as well in legumes is quite limited so far, and we still know little
about the complex genetic architecture of drought tolerance and need to reveal the genetic bases of any
trait associated with drought-resistance in crops, which can be applied in crop breeding [124]. Various
traits have been used to screen for DS tolerance, including smaller leaf area, leaf area maintenance,
water use efficiency, root and shoot biomass, osmotic adjustment, pod number per plant, and 100-grain
weight (Table 2).

Among many factors that are strongly associated with drought tolerance in legumes, architecture
of roots is one of the most promising traits for drought escape and could be used positively in drought
tolerance breeding programs [125]. This aims to improve drought-resistance, enabling the plant to
mine water efficiently from deeper soil layer under catastrophic dry environments and could be
introduced or manipulated by a single gene [126]. For example, in soybean, experiments suggested
that roots and root nodules are indispensable sensors of drought tolerance, and the feedback of these
crucial organs on drought tolerance is the key feature. Direct screening of roots and nodule traits in
the field along with identification of genes, proteins and metabolites will be necessary in order to
gain a comprehensive and thoughtful understanding of regulation of root architecture [127]. In the
context of drought-root cohesive bonds, this was investigated in common bean (Phaseolus vulgaris L.),
and revealed negative impacts of drought on bean roots growth and ultimately decreased reproduction.
This implies the existence of a core relationship between root traits and reproductive growth. Results
showed reduction in rooting depth (14%), root biomass (29%), total root length (35%), volume (41%),
pod set percentage (53%), and pod weight (43%) and illustrate how DS effects on root and shoot traits
and pod set percentage in common bean, and root traits have a correlation with reproductive success
under drought. Thus, DS adversely impacts bean yield, with severity of its intensity dependent on
time duration, type, and plant growth stage as we have also discussed earlier. Therefore, root traits
could be included in legume DS breeding programs [126].

In another study, 12 chickpea (Cicer arietinum L.) genotypes were evaluated under drought for
root traits, and root: shoot ratio (RSR) was estimated. Huge variations were observed for RLD, RDW,
deep RDW and RSR under drought conditions. Results depicted progressive contributions of RLD
(after 45 DAS), deep RDW in maturity and RSR from early pod filling stages to yield under drought.
Ramamoorthy and co-worker concluded that breeding for the more perfect combination of profuse RLD
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(at surface soil depths), and RDW (at deeper soil layers), would be best selection strategy, for efficient
water use and boosted terminal drought tolerance in chickpea [128]. In mungbean (Vigna radiate L.),
where twenty-five genotypes were tested under DS treatment at vegetative and reproductive stages.
There is a significant decline in the relative water content (RWC), membrane stability index (MSI),
proline content of leaves, leaf area plant height, and yield. They investigated direct links of these traits
to drought tolerance as varieties which have retained high in values of RWC, MSI, protein, proline
content, leaf area, plant height, and yield traits were identified as drought tolerant [129].

Moreover, slow canopy wilting (SW) has also a significant importance in drought tolerance.
SW is a water conservation trait controlled by quantitative trait loci (QTLs) in plants, for instance,
late maturity group of soybeans (Glycine max L. Merr.). Two exotic soybean landraces were identified
as new SW lines in early maturity groups. They shared the same water conservation strategy of limited
maximum transpiration rates. Yield trials of selected recombinant inbred lines from two top exotic
crosses have also given the indication to support the advantage of SW in favor of drought resistance.
Therefore, importance of SW under drought conditions provides a genetic means for improving
drought tolerance in early maturity group soybean [130]. Generally, soybean cultivars vary in how
swiftly they wilt in water scarcity situations and this pivotal trait may lead to improvement in yield
under DS. Previously researchers designed an experiment to determine the genetic mechanism of
canopy wilting in soybean and they used the plant material of a mapping population of recombinant
inbred lines (RILs). They sum up that the genetic mechanism regulating canopy wilting is polygenic
and environmentally sensitive and it would provide new insight in future research to scrutinize the
genotypes for canopy wilting in drought tolerance of soybean and other legume crops [131].

Quantitative description of plant anatomical, ontogenetical, physiological and biochemical
properties refers to plant phenotyping. Discovering and exploiting phenotyping traits also considerably
contribute to drought tolerance in different legume crops. That has been witnessed in extra-early
erect cowpea cultivars to escape terminal drought and should be recommended in regions with
short rainfall periods [132]. Similarly, in climatic zones with limited rainfall in the middle of the
growing season, delayed-leaf-senescence traits could be valuable characters for resistance to mid-season
drought. Likewise, genetic mechanisms of early flowering and maturity time, seedling vigor, and high
SPAD value (chlorophyll content), biological yield, and harvest index are exploited as primary
traits for high seed yield in lentil in drought-prone environments [133]. In addition, early maturity
(drought escape) and root trait (drought avoidance) drought tolerance in chickpeas and pigeon peas
were also reported [134]. Furthermore, water use efficiency (WUE) is a key factor in determining crop
yield, and is believed to relate to crop drought tolerance in many production systems. For example,
in soybean, genotypes that possessed high WUE not only high yielded but also increased root
penetrability of hardpans [135]. In conclusion, traits associated with drought tolerance in legumes
could be a most promising way for positive use in drought tolerance breeding programs.

Table 2. Potential traits/characters for screening legumes for drought resistance.

Legume Crops Trait Reference

Soybean

Water use efficiency, root architecture [135]

100-grain weight [67]

Lateral root thickness [136]

Presence of dense leaf pubescence [137]

Carbohydrate storage and remobilization [138]

Chickpea

Prolific root system, Rooting depth, root length [128,139]

Shoot biomass, leaf area index, canopy temperature decrease [140]

Smaller leaf area [141]

Grain size, early maturity and short stature [142]
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Table 2. Cont.

Legume Crops Trait Reference

Cowpea Short duration and erect plant type [86]

Common bean

Leaf RWC [143]

Deeper and vigorous roots [144]

Canopy biomass, pod partitioning index, stem biomass
reduction and pod harvest index [145]

Pigeonpea
Root and shoot biomass [146]

Leaf area maintenance [147]

Mungbean Dry matter partitioning [148]

Faba bean
vigorous growth [149]

Root growth [150]

Lentil Dry root weight and root length [133]

4. Management Strategies

To enhance legume productivity, concurrent development of drought-tolerant genotypes and
practices for efficient water management are important. Therefore, to sustain and increase production
of legumes under harsh environment, drought-tolerant genotypes and a site-specific package for
production technology are required. Therefore, to meet the challenge of feeding a continuously growing
population, scientists and breeders are looking for appropriate strategies to enhance legume productivity.
The following sections will briefly review the various strategies for improving drought-tolerance of
legumes under dry environments.

4.1. Agronomic Strategies

Agronomic approaches such as adjustment in time of sowing, plant geometry, and fertilizer
management can help to improve drought tolerance [151,152]. The main influence of these management
approaches to rainfall use efficiency is to improve total crop water use via transpiration and to lessen
the loss of water by evapotranspiration and weeds. While chemical limitations to root growth are
difficult to remediate, soil structure may be improved by the application of gypsum, which helps
flocculate soil particles to enhance water infiltration and root growth [153]. Other agronomic practices
such as mulching, zero tillage, and deep ploughing in the rainy season are critical agronomic practices
to alleviate the adverse effects of DS in legumes [154,155]. In this regard, suitable cultivar selection is
also critical.

4.1.1. Planting Time and Plant Geometry

Managing the planting or sowing time can affect critical plant developmental stages such as
flowering time and grain filling, thus mitigating the devastating effects of DS during these stages [156].
Early sowing with increased plant density can be a useful practice as it improves high rainfall use
or water use efficiency to improve yield [157]. Legume crops can be successfully grown in dry areas
by matching critical plant growth stages with the period of water availability to reduce final yield
losses. Maintaining optimum plant density is vital for better use of natural resources such as water,
light, space and nutrients. In rainfed areas, high planting density depletes moisture from soil prior to
maturity, and more water will be lost by transpiration, whereas low planting density will leave unused
soil moisture. Some scientists have observed that low plant density leads to low yield due to more
pinched grains especially in Mediterranean environments [158]. Matsuo [159] studied the influence of
plant density and row spacing on soybean growth and yield. They reported that plants produced at
higher densities were taller, lodged more, were more sparsely branched, set fewer pods and seed than
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those plants at lower densities. Similarly, [160] observed that plant and row spacing improve WUE
and yield components in soybean. Agajie et al. [161] studied the effect of spacing on yield components
and yield of chickpea. They described that proper row spacing is critical for growth, yield components,
and yield of chickpea. Thus, preferred plant density is a useful factor for high rainfall use efficiency
and to obtain maximum yield per unit area.

4.1.2. Nutrient Management

Managing micro- and macronutrient application is essential for developing drought-tolerant
plants as better nutrition can efficiently mitigate the harmful effects of water deficiency [89,162].
Management of nutrient fertilizer has a positive influence on rain water use efficiency and hence
on final yield. Both phosphorus and nitrogen fertilizers can improve crop water use efficiency and
result in a decreased evaporation rate. For example, phosphorus nutrition improved photosynthesis,
stomatal conductance, leaf water potential, membrane stability, and root development under drought
in soybean [163]. Adequate K application increases photosynthesis efficiency in legume crops by
maintaining higher tissue water potential during drought [164]. Nitrogen supply tends to enhance
plant protein concentration, yield and yield-related traits in chickpea [165]. In soybean, application
of inorganic fertilizers combined with farmyard manure enhanced organic carbon contents in soil;
WUE and final yield increased by 76% and 103%, respectively, as compared to the control [166,167].
The productivity of legumes can be significantly enhanced by timely and proper irrigation particularly
at critical stages, which can prevent pod abortion and decreased yield [168]. The addition of selenium
(Se) improves water uptake ability of the root system during drought [56]. Mohammadi et al. [169] also
reported that Se application reduces the lipid peroxidation and increases antioxidant enzymes activity
such as GPX and SOD in chickpea and soybean under DS. Application of Se can promote the growth of
ageing seedlings and delay leaf senescence [170]. Silicon (Si) application significantly improved the
relative water content (RWC) in plants by improving the levels of glycine betaine and proline [171].
Moreover, Xu et al. [172] noted that Si addition can improve the tonoplast and plasma membrane
structure in terms of integrity and function and chlorophyll florescence under water deficit. Si nutrition
enhanced nodule activity for active fixation of nitrogen in cowpea [173]. In chickpea, addition of Si in
combination with K significantly improved shoot dry matter during DS [174,175]. Zinc (Zn) application
significantly increased yield attributes in drought-stressed chickpea [176]. Thalooth et al. [177] noted
a significant improvement in growth, yield and related traits in mung bean with foliage application
of zinc sulphate. Iron (Fe) and Zn addition can improve RWC and also have a positive impact on
micronutrients and protein content of grains [178]. Boron is an important micronutrient, which is
helpful in nitrogen fixation and nodule development. Boron foliar application promotes nodule
formation in soybean during drought [179,180].

4.2. Plant Growth-Promoting Rhizobacteria and Arbuscular Mycorrhizal Fungal Inoculation

The use of plant growth-promoting rizhobacteria (PGPR) is a useful practice for alleviating the
harmful effects of drought in legumes [181]. Application of PGPR enhances plant growth under
drought through direct and indirect mechanisms [182–184], such as nitrogen fixation, phosphorus
solublization, production of siderophores, organic acids and plant growth-promoting compounds as
well as important enzymes such as ACC deaminase, glucanase and chitinase [182,185] (Table 3). PGPR
can regulate the main phytohormones such as gibberellins, auxins, cytokinins, ABA and ethylene [186].
PGPR addition mitigates the harmful effects of drought to boost crop yield [187]. Dimkpa et al. [186]
revealed that that inoculation with rhizobacteria (RBs) enhanced root hair development and lateral
root, helping to improve water and nutrient uptake. 1-aminocyclopropane-1-carboxylic acid (ACC)
hydrolysis by RBs hinders ethylene production and improves root growth in plants [188]. RBs such as
Bacillus, Burkholderia, and Arthrobacter also promote proline synthesis under DS [189,190]. In soybean
and cowpea, proton efflux activities in root systems were significantly and positively affected by
Azospirillum inoculation [191]. Another study examined hormonal signalling mediated improvements
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in WUE, growth and yield in stressed pea upon application of ACC-deaminase activity containing
Variovorax paradoxus [187]. Owing to ACC deaminase activity, RBs may convert ACC into a-ketobutyrate
and ammonia, thereby shielding crop plants from harmful concentrations of ethylene [192].

Arbuscular mycorrhizal fungi (AMF) help to improve plant growth, yield, and uptake of water
and nutrients under drought [193]. AMF can improve soil structure and soil water retention ability
through stabilization and formation of soil aggregates. AMF produces a glycoprotein (Glomalin),
which plays a vital role in improving soil structure [194]. The extra radical mycelium of AMF can
explore and extend a large soil volume which assists in the better uptake of nutrients and water from the
soil. Thus, AMF greatly assist in regulating tissue water potential, an avoidance mechanism to alleviate
the detrimental impacts of water deficit on plant growth and development [195,196]. Additionally,
inoculation with AMF can build up stress tolerance by increasing levels of osmoprotectants [195,196],
decreasing lipid peroxidation, and increasing antioxidant potential [197,198], which ultimately boost
final yield [196]. Gaur and Adholeya [199] observed improved plant growth and phosphate uptake in
legume crops with AMF. A number of previous studies has witnessed that PGPR and AMF application
have the ability to improve plant growth rate and crop yield under stress conditions by regulating
hormonal and nutritional balances, solubilizing essential plant nutrients and producing plant growth
regulators (Table 3). Besides the positive effects of sole inoculation of PGPR and AMF, their combined
application also improves drought resistance. For example, Figueiredo et al. [200] observed the effect
of application of Paenibacillus polymyxa and Rhizobium tropici on nodulation, N assimilation and growth
in common bean under DS. Inoculation enhanced growth, nitrogen assimilation, and nodulation under
water deficit compared with the control.

Table 3. Influence of arbuscular mycorrhizal fungi and rhizobacteria on drought resistance in
grain legumes.

Legume Crops Arbuscular Mycorrhizal
Fungi/Bacterial Strains Function Reference

Soybean

Bradyrhizobium japonicum Improve growth and yield [201]

Bradyrhizobium japonicum Improved grain yield [202]

Glomus mosseae, Glomus etunicatum Maintenance of high leaf water potential [203]

Bradyrhizobium japonicum Improved N contents [203]

Glomus intraradiecs Protected against oxidative stress
and root osmotic adjustment [195]

Pseudomonas cepacia Early growth and ACC-diaminase production [204]

Bacillus spp. Enhanced nodulation and pod formation [205]

Cow pea
Azospirillum spp. Improve proton efflux activities [191]

Glomus intraradiecs Improve Stomatal conductance [206]

Common bean

Paenibacillus polymyxa
and Rhizobium tropici Improved nodulation, N contents and plant growth [200]

Glomus intraradiecs Maintain root hydraulic conductance [207]

Gigaspora margarita Dehydration maintenance [208]

Glomus intraradiecs Improve Stomatal conductance [208]

Azospirillium brasilense Improve root growth [209]

Bacillus spp. Improved nodulation and root hair proliferation [210,211]

Green gram
Glomus mosseae, Glomus intraradiecs Improved water-use efficiency [212]

Pseudomonas putida Improved root growth
and ACC-diaminase production [213]

Pea
Varovorax paradoxus Plant growth improvement

through hormonal signaling [187]

Pseudomonas spp. Alleviating drought stress [214,215]

Lentil Pseudomonas putida Enhanced nodulation and plant growth [214]
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5. Development of DS-Tolerant Legumes Using Molecular and Biotechnological Approaches

To enhance legume productivity, concurrent development of drought-resistant genotypes and
strategies for efficient water management is strategically important. Hence, integrated use of modern
tools with conventional breeding protocols may produce significant benefits. This section discusses
the breeding, molecular and transgenic approaches used to improve DS resistance in legumes.

5.1. Breeding Approach

Enhancing DS tolerance in plants through conventional breeding is a useful approach and a
principal strategic for crop improvement [56]. However, selection and breeding approaches need
substantial heritable variation to DS tolerance in legume crops [216,217]. Nevertheless, the breeding
progress is often limited by quantitative genetic basis of traits and the inadequate knowledge of
the physiological basis of crop yield response under drought [218]. In addition, heritability is often
low due to high genotype and environment interactions, and variations in the amount and timing
of precipitation received under dry conditions. Regardless of this, it is imperative to identify traits
that confer yield potential and/or stability under DS. Furthermore, better characterization of the
environment is a prerequisite to improve the effectiveness of target traits [219]. Screening and mass
selection may be beneficial to achieve required phenotypic characteristics based on the traits correlated
with the yield.

In legumes such as soybean, chickpea, common bean, and cowpea, certain root traits, for
example, root length, fibrous root system, density and rooting depth are promising factors for DS
avoidance [86,149,220], and may be useful for screening genotypes for DS tolerance. Traits such as
early flowering, podding and maturity provide an escape mechanism, and may be used for mass
screening [220]. Cooler canopies and high stomatal conductance have often been associated with higher
grain yield under drought, and these traits possibly provide indirect selection criteria [220]. Canopy
spectral reflectance is an effective non-invasive high-throughput phenotyping technique [221,222],
enabling quick and easy measurements of several dynamic complex traits including carbon assimilation,
biomass accumulation and plant canopy size [221]. Canopy spectral reflectance may, therefore, be used
for mass screening of legume genotypes for drought resistance. Thermal infrared imaging (also called
infrared thermography), which estimates leaf or canopy temperature, may also be employed to screen
grain legumes for drought resistance [223]. Plant canopy temperature is a widely measured variable
that is closely associated with canopy conductance at the vegetative stage and thus provides insight
into plant water status [224]. Thermal infrared imaging for estimating conductance can be used at the
whole plant or canopy level over time.

Evaluation of delayed senescence may be helpful for indirect selection of grain and biomass yields
in breeding programmes targeting better drought tolerance [225]. Additionally, key physiological
characteristics involving water use efficiency [226], root growth [227], carbon isotope discrimination
(∆13C) and leaf temperature [149] may be beneficial in screening legume genotypes for drought tolerance.
Substantial genetic diversity in chickpea genotypes for carbon isotope discrimination [228] can be
used for improvements of root architecture as an indirect indicator in chickpea. Wide hybridization is
another strategy employed in breeding to achieve certain desirable traits within or between species.
Interspecific crosses have been undertaken in many grain legumes with variable success [229]. In this
perspective, Phaseolus vulgaris can be crossed with its wild relative Phaseolus acutifolius, which has
a higher osmotic adjustment than the former, hence demanding its transfer to cultivated beans
by interspecific hybridization [230]. Nonetheless, osmotic adjustment may have reduced stability
depending upon the physiological stage of the plant or stress level [231]. Promising germplasm
accessions have been developed in several legume crops in drought-related backgrounds, some of
which have been found in chickpea (e.g., ICC 4958), related to root depth, root length density, terminal
drought, and canopy temperature. Similarly, it has also been reported that wild genes were transferred
into cultivated chickpea from C. reticulatum, resulting in nine genotypes well adapted to drought [232].
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5.2. Quantitative Trait Loci (QTL) for Drought Tolerance

Genome-based approaches are valuable in finding desirable alleles, different QTLs having
the potential to affect desired responses. Farooq et al. [56] reported that physiological and
morphological traits, influencing the drought tolerance mechanism, are quantitatively inherited.
Therefore, identification of QTLs related to drought tolerance is one of the most promising approaches
using marker-assisted selection (MAS). Moreover, many breeding methodologies have been used in the
improvement of drought tolerance in legumes based on MAS. Hamwieh et al. [233] identified 12 QTLs
(NCPGR-50, TR-50, SCEA19, TAA-58, H6C-07, H5E-02, H5G-01, H6C-07, H1B-04, TA-113, H6C-07,
H1F-21) related to seedling drought tolerance in chickpea. Radika et al. [234] reported the QTL Qncl.Sw1
associated with grain yield in chickpea. In cowpea, Muchero et al. [235] reported seven markers
ACC-3, VuPAT1-2, CPRD8- 1, CPRD14-2, CPRD14-3, CPRD22-2, CPRD22-4 linked with Dro-1, Dro-2,
Dro-3, Dro-3, Dro-4, Dro-5, and Dro-5, respectively. Carpentieri-Pipolo et al. [236] identified four QTLs
qSV_Gm03, qSV_Gm05, qSV_Gm10, and qSV_Gm12 related to water deficit stress in soybean. QTL related
to WUE and LASH (leaf ash) under terminal drought conditions in soybean were also identified [237].
Similarly, two QTLs were identified for both leaf ash and WUE, affecting root architecture, an important
trait for adapting to drought [238]. Abdul-haleem et al. [239] reported five QTLs Gm01, Gm02, Gm03,
Gm04 and Gm20 related to fibrous roots in soybean. Khazaei et al. [240] applied SNPs derived from
Medicago truncatula L. to identify QTLs associated with stomatal characteristics in faba bean. Similarly,
Mukeshimana et al. [241] used SNPs from BARCBean6K_3 Beadchip to identify 14 QTLs for traits
related to drought tolerance in common bean. Furthermore, a recent study reported a cross between
AND-277xSEA-5 used to map QTLs associated with stress tolerance to assess the factors that determine
the magnitude of drought response in common bean [242]. They identified twenty-two QTLs for leaf
and stem fresh biomass, chlorophyll, leaf temperature, leaf biomass dry weight, days to flowering,
number of pods per plant, dry pod weight, number of seeds per plant, seed weight, and total yield
under and drought and well-watered conditions.

5.3. Biotechnology and Functional Genomics

Through the advancement of crop transgenic tools, gene-based technology has appeared as a most
valuable approach for comprehensive understanding of the complex mechanisms of resistance against
drought and considered a complementary method for providing genetic modification in desirable
plants. Recent progress in biotechnology enables us to identify specific genes that are resistant to
abiotic stress from any other organism’s or even from different species to alter the genetic makeup
of grain legume crops to protect against devastating drought conditions. Transgenic legumes can be
transformed in a number of ways such as biolistic or agrobacterium-mediated transformation. In past
studies, it has also been noticed that targeted resistant genes improved plant performance in drought
environment without any negative impact on plant yield when it incorporated into various genomes.
Many attempts are underway, but some experiments have already had success in different legume
crops where transgenes have been designed by using diverse genes isolated within the genome as well
as from other species.

Legume plants that were engineered based on single-gene transformation (Table 4), which encoding
enzymes involved in the modification of membrane lipids and biosynthesis of osmoprotectants, and late
embryogenesis proteins [243]. Many factors such as varying drought level, competency to transfer
resistance mechanisms, and effect on plant yield and biomass are involved in controlling the whole
process. Introduction of the osmoregulatory P5CSF129A gene into a chickpea genotype has been
reported an increase in proline synthesis with a simultaneous decrease in malonaldehyde and free
radicals levels, though there was no considerable rise in biomass accumulation [244]. Several genes
belong to the AP2/ERF family, and DRED transcription factors have an integral role in plant growth
and development, and they are considered pivotal in response to complex stress environments.
Overexpressing DREB1A transgenic chickpea plants driven by the Arabidopsis rd29A promoter showed
an increase in the expression of the DREB1A gene before 50% soil dehydration conditions [245].
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Previous research revealed that the efficacy of rd29A: DREB1A on mechanisms underlying stomatal
response, water uptake, rooting architecture, and transpiration efficiency under dry environments
of plants, thereby imparting drought tolerance compared to controls. Li et al. [246] reported that
overexpression LOSS/ABA3 enhanced drought tolerance in soybean via enhancing ABA accumulation,
which activates stress up-regulated gene expression and causes a series of biochemical and physiological
resistance responses. Luchi et al. [247] observed that VuNCED1 plays a key role in the synthesis of
ABA in cowpea during drought.

Table 4. Candidate genes explored for imparting drought resistance in legumes.

Legume Crops Gene Transferred Function Reference

Soybean

PgTIP1 Confers drought tolerance [248]

GmDREB2 Enhance drought tolerance [249]

GmRACK1 Improve drought tolerance during vegetative growth [250]

AtABF3 Improve drought tolerance [251]

GmFDL19 Enhance drought tolerance [252]

GmSK1 Enhance tolerance to drought [253]

GmNAC, GmDREB, GmZIP, ERF089 Transcription factors [238]

DREB1A, rd29A Transcription factors [254]

GmBIN2 Enhance tolerance to drought [255]

GmCaM4 Upreglate several drought-responsive genes [256]

CDPK Enhance water permeability across the membrane [257]

GmHK, GmCLV1A, GmCLV1B,
GmRLK1, GmRLK2,
GmRLK3, GmRLK4

Osmosensor [258]

Chickpea

Aquaporins drought stress tolerance [259]

DREB2A Transcription factors [260]

MYB, WRKY, bZIP Transcription factors [261]

MyB, AP2/ERF, XPB1 Transcription factors [262]

Cowpea VuPLD1, VuNCED1, CPRD8,
CPRD12, CPRD14, CPRD22 ABA-biosynthesis [263]

Mungbean

VrbZIP Drought-responsive gene [264]

codA Improve abiotic stress tolerance [265]

VrWRKY Enhance abiotic stress tolerance [266]

Common bean

Asr1, Asr2 ABA signaling pathway [267]

PvLEA3 Protein stabilization [268]

DREB2B Non-ABA dependent response [267]

Pigeonpea
C.cajan_29830, C.cajan_33874 Improve drought tolerance [269]

WRKY, MyB, NF-Y Transcription factors [270]

Broad bean VfPIP1 Aquaporin/water transport [271]

Alfalfa

AtEDT1 Confers drought tolerance [272]

SPL13 Improve drought tolerance [273]

CsLEA Enhance tolerance to drought [274]

GsZFP1 Confers drought tolerance [275]

codA Enhance tolerance to drought [276]

HaHB11 Confers tolerance to water deficit [277]

AVP1 Enhance drought tolerance [278]
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5.4. OMICS-Based Approaches

OMICS-based technology has been used to find out the desired trait genes and their specific
function. This new approach uses transcriptome, genome, microme, proteome, and metabolome data
(Figure 3) to locate candidate genes, thereby assisting in QTL mapping. Recently, scientific studies and
research series are available to elucidate the functions of genes, proteins, and metabolites in legume
sensitivity to DS. Another way to identify traits in OMICS approach is Phenomics; after launching
Next-generation sequencing (NGS) a new era has started off transcriptomics-based sequencing
of legumes. NGS approaches have been adapted to a wide variety of genome-scale surveys of
sRNAs [279,280]. For instance, in soybean, a transcriptome atlas has been developed to perform RNA
sequences of samples from 14 distinct drought-stressed conditions using the NGS approach [279].
Recently, Wang et al. [281] reported that RNA-sequencing assists in determining the transcriptional
response of soybean to DS. In another study, comparative transcriptome analysis explicates the
transcriptional alterations in drought-resilient and drought-sensitive soybean varieties under DS [282].
In chickpea, transcriptome analysis of oxylipin synthesis genes revealed early induction of jasmonate
in roots under water deficit conditions [283]. Proteomics studies in soybean showed the presence of
35 proteins in roots under DS. Ferritin-type proteins that provide a defensive shield against oxidative
stress expressed upregulation in roots under drought instead of the respective controls [284,285].
Likewise, drought-associated experiments were also conducted in chickpea, and SUPERSAGE analysis
exposed root traits, and recognized 106 expressed sequence tags (EST)-based markers, unitags and SSR
markers. ESTs serve as a source of high-quality transcripts for gene identification and development of
functional markers associated with drought tolerance and may prove as a helping factor in breeding
legumes for drought tolerance [286]. Pandey et al. [287] identified dehydration-responsive proteins
in chickpea, which play a vital role in signal transduction and cell wall modification under DS. They
reported 147 differentially expressed proteins and 205 differentially regulated protein spots found
to have a function in nucleocytoplasmic transport, molecular chaperones, gene transcription and
replication, chromatin remodeling, ROS pathway, and cell signaling. Similarly, [288] reported that some
LEA proteins called dehydrins (CaN-600) were produced under stress, thereby protecting enzyme
activity by scavenging ROS. Moreover, in many biochemical processes, proteomes are interlinked and
will synthesize several metabolic products under drought. In a recent study in soybean, Das et al. [289]
reported that metabolomic profiling revealed sugar and nitrogen metabolism have prime significance,
along with phytochemical metabolism under water deficit conditions. In conclusion, the integration of
such “omics” approaches would lead to drought-resilient legumes.
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5.5. CRISPR/Cas9: Powerful Tool for Genome Editing (GE)

CRISPR/Cas9 is the most powerful and precise genome editing (GE) tool ever seen to date.
Sustainable crop production under unpredictable environmental conditions is the most important
objective of researchers, breeders and policymakers as they have to ensure food security in face of the
rapidly growing human population. However, crop improvement through genetic recombination or
random mutagenesis is quite laborious and cannot keep pace with rising food demands. CRISPR/Cas9
has opened up new possibilities to engineer any genomic sequence more efficiently with any target
gene of interest. CRISPR/Cas9 leads to the development of non-genetically modified plants with
desired traits that can contribute to enhance crop production under abiotic stress (Figure 4). In recent
years, application of CRISPR/Cas9 has been reported in several crops: wheat [290], rice [291],
barley [292,293], maize [294,295], and potato [296]. The recent reviews revealed the essential role
of CRISPR/Cas9-mediated GE as a means to develop crops with improved tolerance to abiotic
stresses [297,298]. Although only a few studies have adopted CRISPR/Cas9 for editing drought
tolerance related genes have been reported in legumes, it has a vital role for future utilization in
molecular breeding to enhance drought tolerance. Cai and co-workers first successfully achieved
CRISPR/Cas9-mediated GE in soybean. They studied the efficiency of sgRNAs in hairy roots and used
a single sgRNA for transgene (bar) and six sgRNAs that targeted various sites of two genes (GmSHR
and GmFE12) in soybean [299]. In a most recent study, Cai et al. [300] reported CRISPR knockout
of soybean gene (GmFT2) associated with flowering time; GmFT2 mutants exhibiting late flowering
under both short-day and long-day conditions. Hence, CRISPR/Cas9 GE for targeted and precise
mutagenesis has huge potential in developing elite cultivars of legumes with durable and enhanced
climatic resilience. In conclusion, CRISPR/Cas9 will be future of crop breeding as well as to target gene
variation of complex quantitative traits, and thus will be the ultimate tool to maintain food security
and provide relief from global hunger.
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Figure 4. Schematic representation of an approach of genome editing (GE) with Cas9/sgRNA. First,
the target gene is selected; sgRNAs are designed and synthesized using online tools. Generally,
cloning of target sgRNA with Cas9 (or with its variant) is performed using a plant binary vector for
Agrobacterium-mediated transformation into target plant species. Transformed plants are then selected
for the presence of Cas9 and sgRNA, followed by PCR/RE genotyping. Finally, DNA sequencing is
used for selecting the plants with the desired editing/mutation.
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6. Conclusions and Future Research Perspectives

Given global climate change, sustainability of crop production is a serious challenging issue
due to increasing incidences of both biotic and abiotic stresses in farmer’s field. Among the various
abiotic stresses, DS is garnering serious attention, as it restricts plant growth and development and
causes significant yield loss in legume crops, causing global food insecurity. DS negatively impacts
overall plant growth ranging from the seedling stage to the reproductive stage and maturity stage.
Key physiological, biochemical and metabolic pathways are seriously disrupted under DS, ultimately
impacting plant performance negatively. In order to tackle the growing challenges of DS in legumes,
several strategies could be employed. Exploration of untapped adaptive traits from various crop gene
pools, and their precise incorporation into elite genotypes are urgently needed through pre-breeding
activity and advanced breeding approaches. Likewise, physiological trait-based breeding approach as
an alternative approach has tremendous potential for increasing the genetic gain under DS in legumes.
Thus, these traits are receiving serious attention and are being incorporated in crossing programs to
broaden the genetic base of legume varieties under various stresses including DS. Classical genetics
and molecular-based breeding approaches, especially bi-parental family based QTL mapping, have
shed light on the complex inheritance of drought tolerance in crop plants. In parallel, increasing
efficiency of high-throughput genotyping platforms resulted in the release of draft genome sequence of
various important global crops. Thus, this has allowed great opportunity to discover high-throughput
markers for performing genome-wide association studies for investigating novel genomic variants
related to drought tolerance existing across the crop genome. Moreover, emerging ‘omics’ sciences,
including genomics, transcriptomics, proteomics and metabolomics could greatly improve our current
understanding of the underlying drought-tolerant candidate genes and deciphering the intricate gene
networks, and various signalling cascades involved in drought tolerance in legumes. Importantly,
innovative techniques, viz., GE tools and ‘speed breeding’ will facilitate a deeper understanding
and will effectively speed up the development of DS-resilient legumes to minimize the risk of global
food insecurity.
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