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Immunotherapy has improved the treatment of malignant skin cancer of the melanoma type,
yet overall clinical response rates remain low. Combination therapies could be key tomeet this
cogentmedical need.Because epigenetic hallmarks represent promising combination therapy
targets, we studied the immunogenic potential of a dual inhibitor of histone methyltransferase
G9a and DNA methyltransferases (DNMTs) in the preclinical B16-OVA melanoma model.
Making use of tumor transcriptomic and functional analyses, methylation-targeted epigenetic
reprogramming was shown to induce tumor cell cycle arrest and apoptosis in vitro coinciding
with transient tumor growth delay and an IFN-I response in immune-competent mice. In
consideration of a potential impact on immune cells, the drug was shown not to interfere with
dendritic cell maturation or T-cell activation in vitro. Notably, the drug promoted dendritic cell
and, to a lesser extent, T-cell infiltration in vivo, yet failed to sensitize tumor cells to programmed
cell death-1 inhibition. Instead, it increased therapeutic efficacy of TCR-redirected T cell and
dendritic cell vaccination, jointly increasing overall survival of B16-OVA tumor-bearing mice.
The reported data confirm the prospect of methylation-targeted epigenetic reprogramming in
melanoma and sustain dual G9a and DNMT inhibition as a strategy to tip the cancer-immune
set-point towards responsiveness to active and adoptive vaccination against melanoma.

Keywords: melanoma, cancer vaccination, dendritic cell vaccination, adoptive T cell therapies, epigenetic
targeted therapy, histone and DNA methylation/demethylation, histone methyltransferase G9a, DNA
methyltransferase (DNMT)
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INTRODUCTION

Melanoma is a malignant skin cancer with an estimated
worldwide increase of 57% and 68% in the number of new
cases and deaths by 2040, respectively. Despite a four-fold lower
incidence compared to non-melanoma skin cancers, melanoma
accounts for half of skin cancer-related deaths (1). Conventional
therapies include surgery and chemo-radiotherapy, while
targeted therapies and immunotherapy represent novel
treatment options. Immunotherapy has gained attention owing
to the potential of melanoma-specific cytotoxic T cells to kill
melanoma cells irrespective of their location while ensuring long-
term protection (2). Immune checkpoint blockade has indeed
become standard-of-care for melanoma (3, 4), while active (5)
and adoptive (6) vaccination have shown promising results in
clinical trials. The yet low overall clinical response rates have
prompted research on combination strategies.

Epigenetic modifying drugs pledge promising, as epigenetic
events shape cell transformation of both cancer cells and cancer-
supportive cells within the tumor micro-environment.
Aberrations in both histone and DNA methylation patterns, in
part due to histone methyltransferase G9a (7, 8) and DNA
methyltransferase (DNMT) 1/3b overexpression (9, 10), have
indeed been identified in melanoma. G9a promotes gene
expression via monomethylation of histone 3 on lysine 9
(H3K9me1) (11). G9a together with DNMT1 represses gene
expression by dimethylation of histone H3 on lysine 9
(H3K9me2) and DNA cytosine methylation (5mC), respectively
(12). Together with de novo methylation implemented by
DNMT3b, these processes cooperate to govern cellular integrity
and to commit cells to a specific expression profile (13). Distinct
promotor CpG hypermethylation patterns in melanoma patients
have been recently identified to drive tumor immune cell
exclusion, thereby linking aberrant methylation patterns to
melanoma immune evasion, and as such suggestive of a
correlation between prognosis and epigenetic immune regulation
(14). The involvement of these epigenetic processes in melanoma
initiation and progression renders them valuable targets for
combined inhibition in the melanoma context (15–25).

CM-272 is a dual G9a/DNMT inhibitor with proven efficacy
in hematological and solid cancer models. The drug inhibited
tumor growth while promoting immunogenic cell death and IFN
responses (26–28), as such facilitating synergism with
programmed death ligand-1 (PD-L1) blockade in a preclinical
bladder cancer model (28). This brings forth CM-272 as a prime
candidate for combination with immunotherapy in melanoma.

To evaluate the combination of CM-272 with immunotherapy,
we exploited the B16-OVA (MO4) melanoma model, which
Abbreviations: 5mC, cytosine methylation; BD, Becton Dickinson; CFSE,
carboxyfluorescein diacetate succinimidyl ester; DC, dendritic cell; DNMT,
DNA methyltransferase; GSEA, gene set enrichment analysis; H3K9me2, di-
methylated lysine 9 on histone H3; m.p.c., mice per condition; NES, normalized
enrichment score; OVA, ovalbumin; PD-1, programmed cell death-1; PD-L1,
programmed death ligand-1; q-value, adjusted p-value; SD, standard deviation;
SEM, standard error of the mean; s.p.c., samples per condition; TGF-b,
transforming growth factor-b; TIL, tumor-infiltrating leukocyte; TP53, tumor
suppressor 53.
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expresses ovalbumin (OVA) as a model antigen (29). This enables
the evaluation of tumor/OVA-targeted active and adoptive
immunotherapy. This model is representative of BRAF wild-type
patients lacking p16Ink4a and p14Arf tumor suppressor proteins (29–
33). From an immunological perspective, it also represents the so-
called immunotype B patients, existing among both primary and
metastatic melanoma patients that have a limited number of tumor-
infiltrating lymphocytes, which has been identified as a poor
prognostic factor (34–36). This compromised immune set-point
manifests in the MO4 model as an inherent resistance to immune
checkpoint blockade therapy (37–40). These features render this
preclinical model relevant for evaluating more powerful
combination strategies.
MATERIALS AND METHODS

Mice, Cell Lines and Primary Cell Culture
Female 6-12 week old C57Bl6J, Crl:NU-Foxn1nu or C57BL/6-
Tg(TcraTcrb)1100Mjb/J (OT-I) mice were purchased from Charles
River (Saint-Germain-Nuelles, France; Calco, Italy). C57Bl6J
mice for programmed cell death-1 (PD-1) blockade therapy
were purchased from Harlan (Barcelona, Spain).

Cells were cultured at 37°C under humidified 5% CO2

atmosphere and tested negative for mycoplasma using
VenorGeM Classic and MB Taq Polymerase (Minerva Biolabs,
Berlin, Germany). MO4 cells were gifted by Ken Rock (Division
of Lymphocyte Biology, Dana Farber Cancer Institute, Boston,
Massachusetts; Department of Pathology, Harvard Medical
School, Boston, Massachusetts), authenticated by Eurofins
Scientific (Luxemburg, Belgium), and cultured in DMEM
(Sigma-Aldrich, Overijse, Belgium) supplemented with 10%
fetal bovine serum (TICO, Amstelveen, The Netherlands),
2mM L-Glutamine (Sigma-Aldrich), 100U/mL penicillin
(Sigma-Aldrich), and 100µg/mL streptomycin (Sigma-Aldrich).

Dendritic cells (DCs) were generated from bone marrow cells of
C57Bl6J mice, matured with lipopolysaccharide and pulsed with
OVA257-264, as previously described (41).Where indicated, CD4+ or
CD8+ T cells were isolated from C57Bl6J, OT-I or OT-II TCR
transgenic mice. OVA-specificity was inherent to OT-I (OVA-
derived SIINFEKL [OVA257-264] in H2-kb) and OT-II (OVA-
derived ISQAVHAAHAEINEAGR [OVA323-339] in I-Ab) T cells,
or was genetically engineered. For T cell isolation, spleens were
isolated and passed through a 40µm cell strainer (Corning, New
York, New York) before red blood cells were lysed. Single cell
suspensions were subsequently enriched for the CD8+ fraction using
negative MACS-selection (from OT-I mice for DC co-culture
assays), or for the CD4+ or CD8+ fraction using negative and
positive selection (from C57Bl6J, OT-I or OT-II mice for in vitro T
cell sensitivity assays), according to manufacturer instructions
(Miltenyi Biotec, Gladbach, Germany). For in vitro experiments
on MO4-mediated T-cell stimulation, OVA-specific T cells were
genetically engineered. To this end, a retrovirus encoding the OT-I
TCR was produced as previously described (42), and used to
transduce Concanavalin A/IL-7-activated mouse splenocytes by
spin infection in retronectin (Takara)-coated plates (43).
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Therapeutic Reagents
CM-272 was developed at Clinica Universidad de Navarra (26),
dissolved at 10mM in DMSO (Sigma-Aldrich), and diluted in
culture medium (in vitro) or 0.9% NaCl infusion solution (in
vivo) (Baxter, Lessines, Belgium). Combination therapy included:
(1) anti-PD-1 (clone RMPI-14) or isotype-matched antibody
(BioXcel, New Haven, Connecticut) at 0.5mg/mL in 0.9% NaCl-
solution, (2) 1x106 OT-I TCR-engineered or untransduced
T cells, (3) 5x106 DCs/mL in phosphate buffered saline (PBS)
or PBS (Sigma-Aldrich).

Experimental Set-Up - In Vivo Experiments
C57Bl6J mice were subcutaneously injected in the flank with
3x105 MO4 cells in 50µL PBS. Treatment regimen was started on
day 3 (unless stated otherwise), as an intraperitoneal CM-272
(5mg/kg)/vehicle injection for 5 consecutive days a week, until
1000 mm3 tumor volume endpoint was reached. Combination
treatment included: (1) 3 intraperitoneal injections of 50µg anti-
PD-1/isotype once a week starting from day 1 of treatment cycle
1 (day 7-10); (2) 1x106 OT-I TCR-engineered/untransduced T
cells (day 13). Treatment cycle 1 started on day 5; (3) 3-4
intravenous injections of 5x105 DCs/vehicle once a week,
starting from day 1 of treatment cycle 1. Tumor volume was
measured 3-5 times per week and calculated as: (length x
width2)/2, width being the smallest value. The ethical endpoint
of the experiment allowed a maximum tumor volume of 1500
mm3. For evaluation of therapy efficacy, we plotted the time to
reach a volume of 1000 mm3 (experimental endpoint) in a
Kaplan-Meier curve, using an algorithm build on the following
criteria. If on the day of monitoring the tumor volume reached
1000 ± 50 mm3, this day was plotted as experimental endpoint
(criterium a). If (a) was not met, the day at which the tumor
volume reached a volume closest to 1000 ± 150 mm3 was used
(criterium b). If (b) was never met, the first day at which the
tumor volume exceeded 1150 mm3 was used (criterium c). In
case tumor volumes remained <850 mm3, mice were censored,
i.e., scored as ‘alive’ (criterium d). Censoring was required when
mice had to be taken out of the experiment for ethical reasons,
e.g., ulcers of tumors combined with physical signs of declined
health status. Outlier removal analysis was subsequently
performed. The time to reach 1000 mm3 was plotted until the
last mouse in the vehicle group reached this endpoint. With
regard to tumor growth curves, mean tumor volume in time was
plotted for each experimental group, until the first mouse of the
concerning group had reached the experimental endpoint
tumor volume.

For ex vivo tumor tissue analysis, tumors were processed to
single cell suspensions either by application of the GentleMACS
isolation protocol (Miltenyi Biotec) in case of downstream flow
cytometry (at experimental endpoint), or by immediate lyses in
case of downstream multiplex analysis (at 706.9 ± 194.8 mm3).

Experimental Set-Up - In Vitro Sensitivity
MO4 Cells
Quantification of epigenetic marks was performed as previously
described (28), upon 48 hours (H3K9me2) or 5 days (5mC)
Frontiers in Immunology | www.frontiersin.org 3
exposure to 1.9mMCM-272. Furthermore, 1x104 MO4 cells were
exposed to 0.05-1mM CM-272 in 200mL in a flat-bottom 96-well
plate (Sarstedt, Nümbrecht, Germany). Confluence, cytotoxicity
and apoptosis were monitored with the IncuCyte Zoom (Essen
BioScience, Welwyn Garden City, UK), and the number of viable
cells was determined with CellTiter-Glo, as instructed (Promega,
Leiden, The Netherlands). IC50 value was determined based on
four-parameter nonlinear regression of vehicle-normalized
CellTiter-Glo data. Concerning RNA sequencing and
validation, 5x105 MO4 cells were exposed to 0.05-1mM CM-
272 in 5mL in a 6-well plate (Corning) for indicated timeframe.
Cells were harvested for flow cytometry, snap-frozen awaiting
western blot analysis, or processed for RNA sequencing.

Experimental Set-Up - In Vitro
Sensitivity T Cells
Purified CD4+/CD8+ or OT-I/-II T cells were labelled with
carboxyfluorescein diacetate succinimidyl ester (CFSE) (Becton
Dickinson [BD], Franklin Lakes, New Jersey) and stimulated
with 0.5µg/mL plate-coated anti-CD3 (clone 145-2C11;
Biolegend, San Diego, California) and 1µg/mL soluble anti-
CD28 (clone 37.51; Biolegend), or 10µg/mL OVA-derived
peptides (AnaSpec, Fremont, California) for 3 days,
respectively. Non-mitogenic IL-7 (5ng/mL) served as a
negative control (PeproTech, Cranbury, New Jersey). T cells
were treated with 0.125-1mM CM-272. Cells were collected for
flow cytometry at 72 hours and IFN-g was measured in culture
supernatants at 48 hours. MO4 cells were co-cultured for 48
hours with OT-I TCR-engineered T cells at 1:2 effector/target
ratio, while exposed to 0.125-0.5mM CM-272, before
IFN-g measurement.

Experimental Set-Up - In Vitro
Sensitivity DCs
5x105 DCs were exposed to 0.05-1mM CM-272 for 24 hours in a
48-well plate in 500mL complete RPMI-1640 (Sigma-Aldrich)
and cultured for an additional 24 hours with/without 1mg/mL
lipopolysaccharide (E. coli serotype O55:B5; Sigma-Aldrich).
DCs were collected for flow cytometry and IL-12p70 was
measured in culture supernatants. DCs pulsed with 10mg/mL
OVA257-264 were co-cultured at 1:10 ratio with OT-I T cells for
72 hours before IFN-g measurement. Unstimulated and CD3/
CD28-stimulated (ThermoFisher, Waltham, Massachusetts) T
cells served as negative and positive controls, respectively.

RNA Extraction From MO4 Cells or Ex Vivo
Tumor Tissue
Upon cell harvesting, cell integrity was evaluated using cell cycle
analysis and sub-G1-phase quantification. MO4 cells in the sub-
G1 phase amounted to 1.78% ( ± 0.67 SD) and 6.92% (± 2.32 SD)
in vehicle and CM-272 treatment conditions, respectively. RNA
was extracted from in vitro treated MO4 cells or ex vivo tumor
tissue using the RNeasy plus mini kit, according to manufacturer
instructions (Qiagen, Hilden, Germany). RNA quality control
was based on the RNA integrity number score and DV200 score
as determined on the 2100 Bioanalyzer (Agilent, Santa Clara,
May 2022 | Volume 13 | Article 799636
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California). The RNA integrity number ranged from 8.7 to 7.1
and the DV200 score from 90 to 95%, indicating that the RNA
was of sufficient (undegraded) quality to perform RNA
sequencing on. Concentration was determined using Qubit
RNA HS Assay (Invitrogen, Carlsbad, California). RNA was
subsequently used for RNA sequencing (in vitro MO4 cells) or
multiplex analysis (ex vivo tumor tissue).

RNA Sequencing Analysis on MO4 Cells
MO4 cells were treated for 24 hours with 1µM CM-272 or vehicle,
and further processed as to extract the RNA. 150ng RNA per
condition was used to construct an RNA library upon ribosomal
RNA depletion using the KAPA Ribo Erase (HMR) kit (Kapa
Biosystems, Basel, Switzerland), followed by sequencing on the
Illumnia NovaSeq 6000 (Illumnia, San Diego, California). Gene
expression counts were generated upon read alignment against the
mus musculus reference genome version GRCm38-83 using STAR
software (44), and subsequent analysis using HTSeq script in
Python (45). Normalized gene expression counts and log2-fold
change of gene expression were generated using DESeq2 script in
R. Genes, as calculated by DESeq2 on single-gene level, in
compliance with p-value <0.0005, q-value <0.002, and |log2-fold
change| >1 were listed (Supplementary Table 1). Principal
component analysis plot comparing vehicle and CM-272 samples
was provided (Supplementary Figure 1C). Normalized counts
from DESeq2 analysis were subjected to gene set enrichment
analysis (GSEA) making use of GSEA v4.1.0 software and the
Canonical Pathways (KEGG, PID, REACTOME and
WikiPathways) gene set collections from the Molecular Signatures
Database, as previously described (46–48). As such, gene sets were
pre-filtered to a minimum of 15 and maximum of 500 number of
genes, rendering 1776 gene sets (composed of 17870 gene markers)
out of 2523 to be evaluated. Using 17870 gene markers for the CM-
272 versus vehicle comparison, 1255 and 521 gene sets were
identified as up- or downregulated in CM-272 condition,
respectively. Significantly changed gene sets were defined as
nominal p-value <0.005, q-value <0.1, |Normalized Enrichment
Score (NES)| >1 (Supplementary Table 2). Results from
Supplementary Table 2 were visually presented using the
EnrichmentMap Cytoscape application, as previously described
(Figure 1B) (49).

Multiplex Analysis on Ex Vivo
Tumor Tissue
Tumors were resected from 6 mice (total 12) treated with CM-
272 or vehicle, and further processed as to extract the RNA. RNA
of each individual tumor was then analyzed with the nCounter
PanCancer Mouse Immune Profiling Panel on the nCounter
MAX Analysis System (Nanostring, Seattle, Washington).
Quality control was performed using nSolver software.
Expression counts (transcripts per million) were normalized
making use of the Nanostring analysis-adjusted RuvSeq
method (50). Principal component analysis plot comparing
vehicle and CM-272 samples was provided (Supplementary
Figure 3A). Normalized counts were subjected to GSEA, using
Canonical Pathways (BIOCARTA, KEGG, PID, REACTOME
and WikiPathways) gene set collections, as previously described
Frontiers in Immunology | www.frontiersin.org 4
(46–48). As such, gene sets were pre-filtered to a minimum of 15
and maximum of 500 number of genes, rendering 106 gene sets
out of 2871 to be analyzed. Using 359 gene markers for the CM-
272 versus vehicle comparison, 70 and 36 gene sets were
identified as up- or downregulated in CM-272 condition,
respectively. Significantly changed gene sets were defined as
nominal p-value <0.005; FDR-value <0.1; |NES| >1
(Supplementary Table 3) and visualized using the
EnrichmentMap Cytoscape application (Figure 4D). Tumor-
infiltrating leukocyte (TIL)-scoring was performed in R as
previously described (51), using cell type specific marker genes
as specified by the PanCancer Mouse Immune Profiling Panel
(Nanostring). Briefly, cell scores were calculated as the mean of
log2-normalized gene expression value of all marker genes. Total
TIL score per sample were calculated as the mean of all cell scores
whose correlation with CD45 exceeded 0.6. Cell type enrichment
score was calculated as the residual from the linear regression
curve simulating cell score from total TIL score, combining all
samples data for each cell type separately.

IncuCyte Zoom Live Cell Imaging
The IncuCyte Zoom live cell imaging device was used to monitor
cell confluence, cytotoxicity - 1:800 dilution of Incucyte Cytotox
Red Dye (Sartorius, Göttingen, Germany), and expression of
caspase-3/7 – 1:1500 dilution of Incucyte Caspase-3/7 Dye,
according to manufacturer instructions (Sartorius).

ELISA
Supernatant was collected from cell culture of DCs, T cells, DC/T
cell co-cultures, or MO4/T cell co-cultures at indicated time-
points. IL-12p70 and IFN-g levels were measured according to
manufacturer instructions (Invitrogen, BD Pharmingen).

Flow Cytometry
Antibody staining was performed in 0.02% sodium azide/1% PBS
supplemented with bovine serum albumin (prepared in-house),
unless stated otherwise, for 1 hour at 4°C. Cells were acquired on the
LSR Fortessa/Canto (BD) and data was analyzed with FlowJo v10
software (BD). Forward- and side-scatter properties were used to
gate-out debris and aggregating cells before viable cells were selected
using a viability dye. Cell cycle analysis included dead cells. MO4
cells were analyzed for: (1) cell cycle distribution: 3x105 cells in
500mL PBS were fixated by addition to 4,5mL of a -20°C pre-cooled
70% Ethanol solution while vortexing. After 2 hours of incubation
at -20°C, cells were washed twice and rehydrated for 15 minutes in
PBS. DNA was stained by 10 minutes incubation with 200mL
propidium iodide solution: 1 mg/mL sodium nitrate (Merck
KGaA, Darmstadt, Germany), 0.1% Triton-X (Merck), 100 µg/mL
RNase A (Boehringer, Ingelheim, Germany), and 50 µg/mL
propidium iodide (Sigma-Aldrich). Gating strategy was provided
(Supplementary Figure 1F). (2) Expression of SIINFEKL/H-2Kb

(phycoerythrin [PE], clone eBio25-D1.16; eBioscience, San Diego,
California) and PD-L1 (brilliant violet 421 [BV421], clone MIH5;
Novus, Centennial, Colorado). The DC phenotype was analyzed
based on surface expression of: CD11c (peridinin chlorophyll
protein cyanine 5.5 [PerCP-Cy5.5], clone N418; Biolegend), CD40
(PE-cyanine 7 [PE-Cy7], clone 3.23; Biolegend), CD80 (BV421,
May 2022 | Volume 13 | Article 799636
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clone 16-1OA1; BD), CD86 (fluorescein isothiocyanate [FITC],
clone GL1; BD), I-A/I-E [I-Ad] (allophycocyanin [APC], clone
M5.114.15.2; Biolegend). Gating strategy was provided
(Supplementary Figure 4A). Ex vivo tumor T-cell infiltrate
of vehicle or CM-272-treated mice was analyzed based on: 7-
AAD (Biolegend), PD-1 (PE, clone J43; BD), CD8a (Pacific
Blue, clone 53-6.7; BD), CD4 (Alexa Fluor 700 [AF700], clone
RM4-5; BD), CD3e (PE-Cy7, clone 17A2; Biolegend), CD45.2
(APC-eFluor 780 [APC-eFluor 780], clone 104; Invitrogen). Ex
vivo tumor T-cell infiltrate of DC vaccine alone or DC vaccine
and CM-272-treated mice was analyzed based on: Fixable
Frontiers in Immunology | www.frontiersin.org 5
viability dye eFluor506 (eBioscience), PD-1 (PE-Cy7, clone
J43; Invitrogen), CD8a (Horizon v450, clone 53-6.7; BD),
CD4 (alexa fluor 700 [AF700], clone RM4-5; BD), CD3e
(PerCP-Cy5.5, clone 145-2C11; BD), CD45.2 (APC-cyanin 7
[APC-Cy7], clone 104; BD). For ex vivo tumor tissue analysis,
cells were pre-stained with anti-CD16/32 (unconjugated, clone
93; Biolegend) and samples were fixed with Cytofix/cytoperm
(BD), according to manufacturer instructions. Gating strategy
was provided (Supplementary Figure 4F). T-cell proliferation
was measured based on CFSE dilution in viable CD4+ or CD8+

T cells.
A C

B

FIGURE 1 | Dual G9a and DNMT inhibition shapes the transcriptional profile of melanoma cells, impacting on cell cycle progression and immunogenicity.
(A) H3K9me2- and 5mC-levels upon 1.9mM CM-272 treatment (2 or 5 days respectively), relative to vehicle-treated cells (mean ± SD; n=3/4). (B, C) Gene
expression changes in MO4 cells upon treatment with 1mM CM-272 for 24 hours (n=1, 2 s.p.c.). The percentage of cells with fractionated DNA (sub-G1-phase,
indicative of cell death) amounted to 1.78 ± 0.67 and 6.92 ± 2.32 (SD) in vehicle and CM-272 treated conditions, respectively. (B) Graphical representation of GSEA
on gene expression changes in MO4 cells. (C) Enrichment plot of a gene set involving epigenetic regulation of gene expression. Heatmap lists row-normalized gene
expression of leading-edge genes. Vehicle and CM-272 conditions were compared using unpaired two-tailed student t-test (A). Asterisks indicate statistical
significance: **p ≤ 0.01; ****p ≤ 0.0001.
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Western Blot
Western blot-mediated quantification of epigenetic marks was
performed as previously described (28). For the detection of p21
protein, MO4 cells were lysed in 400µL buffer (5% ß-
mercaptoethanol laemmli buffer; prepared in-house) and
boiled at 95°C for 10 minutes. 20µg of protein was size-
separated on a SDS-PAGE gel next to size-reference
(PageRuler; ThermoFisher) and transferred to a nitrocellulose
membrane (Amersham, Little Chalfont, United Kingdom). The
membrane was blocked in 5% low-fat milk TTBS (prepared in-
house) before overnight incubation at 4°C with 5mL of 1:500
rabbit polyclonal IgG p21Waf1/Cip1 (clone C-19; SantaCruz,
Dallas, Texas) or 1:1000 rabbit polyclonal ß-actin (Cell
Signaling, Danvers, Massachusetts). Blots were incubated for 1
hour at room temperature with anti-rabbit horseradish
peroxidase-linked IgG (Cell signaling). Proteins were detected
using WesternBright chemiluminescent reagent (Advansta, San
Jose, California), visualized on the Odyssey FC (LI-COR,
Lincoln, Nebraska), and quantified relative to background
making use of Image Studio Lite software (LI-COR).

Statistical Analysis
Statistical analysis was performed using GraphPad Prism v9.1.0
or RStudio v1.3.1093. Outliers were selected using ROUT
method at 0.1% (in vivo) or 1% (in vitro/ex vivo). Normality
was tested using Shapiro-Wilk test. Sample sizes ≤ 4 were tested
assuming normality. Asterisks or symbols indicate statistical
significance: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤
0.0001. Only significant differences were indicated in graphs.
Statistical tests, sample sizes (mice per condition [m.p.c.] or
samples per condition [s.p.c.]), data variability (standard
deviation [SD] or standard error of the mean [SEM]), and
number of repeats (n) were indicated in figure legends.
RESULTS

Dual G9a and DNMT Inhibition Results
in Melanoma Cell Cycle Arrest and
Cell Death
To study melanoma-intrinsic CM-272 effects, MO4 cells were
first exposed to the drug in vitro. H3K9me2- and 5mC-levels
were significantly reduced upon treatment, suggesting G9a and
DNMT1 to be active in MO4 tumors and inhibitable by CM-272
(Figure 1A). Also, cell number and viability were significantly
reduced by CM-272 doses above 0.25mM, reaching IC50 at
0.3844mM after exposure for 72 hours (Supplementary
Figures 1A, B). These data show that MO4 cells are sensitive
to epigenetic modulation by CM-272 in vitro.

To gain further insights and study transcriptional consequences,
MO4 cells were treated for 24 hours with 1mM CM-272 and
subjected to RNA sequencing. A total number of 1595 and 823
genes were identified as significantly up- or downregulated
respectively in CM-272-treated MO4 cells, at single-gene level
(Supplementary Table 1). Since the net consequence of single-
gene expression changes in big data is generally considered difficult
Frontiers in Immunology | www.frontiersin.org 6
to assess, wemade use of the GSEAmethod to evaluate net effect on
pre-established signaling pathways (further referred to as ‘gene
sets’). Significantly changed gene sets with associated gene set
enrichment score and significance were listed in Supplementary
Table 2. In addition, we visually represented significantly changed
gene sets using the EnrichmentMap Cytoscape application
(Figure 1B). Each significantly changed gene set is presented as a
node, whose size and color indicated the number of associated
genes and the associated enrichment score. Edges between nodes
indicate gene overlap and overlap size. Biologically associated
nodes are visually grouped and annotated with an appropriate
term, indicating various biological processes. Finally, biological
processes are also visually grouped according to whether they
pertained to cell metabolism, immune response, or other
biological pathways. Some relevant gene sets were further
disclosed, showing normalized gene expression of leading-edge
genes (Figure 1C) or of the top 20 up- and down-regulated genes
(Supplementary Figures 1D, E). GSEA identified 218 and 100
gene sets as significantly down- or upregulated respectively in CM-
272-treated MO4 cells (Figure 1B and Supplementary Table 2).
Among the downregulated gene sets, those pertaining to cell
metabolism, particularly cell cycle regulation, were most
represented. In addition, CM-272 downregulated gene sets
critical for cell functioning, such as mRNA processing,
translation and degradation; the DNA damage response; protein
SUMOylation; and epigenetic regulation, including DNMT1/3
(dnmt1/3) and G9a (ehmt2). (Figure 1C). Also, gene sets
involving tumor suppressor 53 (TP53) regulation were
downregulated, apart from one upregulated gene set, pointing
toward cyclin-dependent kinase inhibitor protein p21 (cdkn1a)-
induced cell cycle arrest and apoptosis (Figure 1B; Supplementary
Figure 1D). GSEA also identified upregulation of gene sets linked
to carcinogenesis (TP53 regulation, neural cell adhesion molecule
signaling and extracellular matrix metabolism) and immune
responses (antigen presentation, complement system,
inflammatory response through IL-10 signaling, and IL-4/12/13/
23/27, IFN-I/II, transforming growth factor-b [TGF-b] and toll-
like receptor signaling) (Figure 1B and Supplementary
Figure 1E).

Next, we validated selected pathways possibly causing acute
cytostatic or cytotoxic events. Using flow cytometry, CM-272 was
shown to cause cells to arrest in the G1-phase of cell cycle by 24
hours of treatment in a dose-dependent manner (Figure 2A), and
the accumulation of sub-G1 cells, representative of apoptotic cells
with fractionated DNA, by 48 and 72 hours (Figure 2B and
Supplementary Figure 1G) (52). At transcriptional level, the
upregulation of cyclin D1 (ccnd1) at 24 hours accompanied the
G1-arrest (Supplementary Table 1), along with that of cdkn1a
(Supplementary Table 1) and concomitant accumulation of p21
(Figure 2C and Supplementary Figure 1H). These events were
concomitant to a rise in cytotoxicity and caspase-3/7 activation,
significantly detected at 1-2mM CM-272 (Figures 2D, E). These
results suggest that CM-272-treated MO4 cells undergo cell cycle
arrest followed by cell death. Notably, the finding that CM-272
concomitantly reduced cell growth while causing an upregulation
of immune-related gene sets suggested that CM-272-treated
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tumors in vivo might develop a different sensitivity to
immune recognition.

Dual G9a and DNMT Inhibition Favors
Tumor Cell Recognition by Tumor-Specific
T Cells In Vitro
To address effects on tumor/T-cell recognition, we first investigated
if CM-272 promoted MO4 antigen presentation. SIINFEKL/H-2Kb

complexes were found to be upregulated by CM-272 in a dose-
dependent manner (Figure 3A). Notably, CM-272 also increased
PD-L1 expression (Figure 3B), questioning net effects on T-
cell activation.

We also investigated putative T-cell intrinsic effects of CM-
272. T-cell expansion to polyclonal (Figure 3C; Supplementary
Figure 1I) and antigen-driven (Figure 3D) stimulation as well as
IFN-g production (Figure 3E) were comparable in the absence or
presence of CM-272. In addition, in MO4 and OVA-specific
TCR-engineered T cell co-cultures, IFN-g production
(Figure 3F) was significantly increased upon CM-272
exposure. These results indicate that CM-272 promotes tumor/
T cell recognition.

Dual G9a and DNMT Inhibition Transiently
Delays Melanoma Growth in Immune-
Competent Mice
CM-272’s therapeutic activity was evaluated in immune-
competent and -deficient mice bearing subcutaneous MO4
tumors. CM-272 or vehicle were injected intraperitoneally
Frontiers in Immunology | www.frontiersin.org 7
starting at day 3, and tumor growth was monitored in time
(Figure 4A, treatment scheme). Of note, MO4 tumors developed
faster in immune-deficient mice compared to immune-
competent ones (Figure 4B and Supplementary Figure 2A).
CM-272 delayed tumor growth only in immune-competent mice
and only transiently. Indeed, effects were most evident at day 12
(Figure 4C) and omitted to significantly impact survival (data not
shown). As the tumor delay effect of CM-272 in vivo was prone to
variability (50% efficacy across 6 independent experiments,
conducted at independent sites), further investigation into
transcriptional reprogramming by CM-272 in vivo was deemed
necessary. By extension thereof, these data support the possibility
that, in context of melanoma, CM-272 exerts anti-tumor activity
mainly via immune-mediated mechanisms.

To address this, we performed multiplex gene expression
analysis on MO4 tumors from immune-competent mice to
study the tumor immune-contexture. CM-272 upregulated toll-
like receptor and IFN-I signaling, as identified by GSEA
(Figure 4D). Although this corroborated in vitro findings on
CM-272’s ability to fuel immune-signaling, at present we cannot
discriminate whether in vivo effects are due only to tumor-intrinsic
effects or also to effects on other tumor-infiltrating/resident cells.
Enrichment of a TCR-signaling gene set was also observed,
potentially reflecting the upward trend in (CD8+) T-cell
representation (including cytotoxic and exhausted T cells as well
as T helper 1 cells) and the downward trend in regulatory T cells,
as identified by TIL-scoring (Supplementary Figures 3B–D).
Although the CD8+ T cell/regulatory T cell ratio remained
unchanged, DCs were significantly increased within CM-272-
A

C

D

E

B

FIGURE 2 | Dual G9a and DNMT inhibition causes MO4 cell cycle arrest and cell death. (A, B) Percentage of MO4 cells in cell cycle phases (mean ± SD; n = 4).
Asterisks represent significant differences in (A) G1-phase at 24 hours or (B) sub-G1-phase at 48 hours. (C) p21 protein expression and ß-actin loading control
(representative blot; n = 3). (D, E) Cell death induction: (D) Loss of cell membrane integrity and (E) caspase-3/7 activity in time (mean ± SD; n = 3). Vehicle and CM-
272 conditions were compared using ordinary one-way Anova and post-hoc Dunnett’s multiple comparison tests (A, B) or REML modeling with Geisser-Greenhouse
correction and post-hoc Sidak multiple comparison test (D, E). Asterisks indicate statistical significance: *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.
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treated tumors (Figure 4E). These data support CM-272-driven
immunomodulation in vivo.

Dual G9a and DNMT Inhibition Promotes
the Therapeutic Efficacy of
DC Vaccination
Given that CM-272 impacts on antigenicity (SIINFEKL/H-2Kb

complexes,Figure 3A) and immunogenicity (PD-L1,Figure 3B) in
vitro, and on the immune-contexture in vivo (Figures 4D, E), we
investigated possible cooperation with various immunotherapy
strategies. We studied the combination of CM-272 with PD-1
blockade therapy (2.5mg/kg intraperitoneal, on day 7, 14 and 21),
which we reasoned could counteract CM-272-induced PD-L1
upregulation and thereby ameliorate the narrow therapeutic
window for PD-1/PD-L1 blockade in melanoma subsets (37–39,
53). However, no benefit was observed as PD-1 blockade failed to
delay tumor growth when administered alone and in combination
with CM-272 (Figure 4F and Supplementary Figure 2B).

We then reasoned that T-cell representation might be
insufficient and therefore tested the combination with adoptive T-
cell therapy in the form of SIINFEKL-specific TCR-engineered T
cells (Figure 5A, treatment scheme). Provision of T cells improved
the therapeutic effects of CM-272, allowing the survival of 69.2% of
mice at the time all vehicle controls reached endpoint (survival
proportion 0%) (Figure 5B). Yet, the combination of CM-272 and
T-cell therapy was not sufficient for durable responses.

We thus reasoned that T-cell priming might be a limiting
factor. We therefore investigated active DC-mediated vaccination as
to better instigate tumor-directed CD8+ T-cell responses in vivo.
Frontiers in Immunology | www.frontiersin.org 8
DCs of bone marrow origin were matured with lipopolysaccharide
and pulsed with SIINFEKL. Lipopolysaccharide-matured DCs
expressed CD40, CD80 and CD86 co-stimulatory molecules
(Supplementary Figures 4A–C) and secreted IL-12p70
(Supplementary Figure 4D) to comparable extent in the absence
or the presence of CM-272. Likewise, mature DCs induced
comparable IFN-g secretion by SIINFEKL-specific CD8+ T cells
(Supplementary Figure 4E). In vivo, DC vaccination delayed tumor
growth compared to vehicle- and CM-272-only treatments
(Figure 5C). Adding CM-272 to DC vaccination further
increased tumor growth control. This was best found on day 10,
13, 17, and 18 (Figures 5C, D). Flow cytometry analysis of the
tumor at end-stage confirmed that DC vaccination caused tumor
infiltration by both CD4+ and CD8+ T cells, which remained
unchanged in combination with CM-272 (Figure 5E). A
significant fraction of T cells upregulated PD-1, indicative of acute
tumor recognition (Figure 5F). The combination of CM-272 and
DC vaccination best promotedmouse survival, with 100% of treated
mice being alive at the time all vehicle mice had reached endpoint
(survival proportion 22.5%), compared to 63.5% upon DC
vaccination only (Figure 5G). These data indicate that the dual
G9a and DNMT inhibitor CM-272 promotes the therapeutic effect
of cancer vaccination against melanoma.
DISCUSSION

We report that the dual G9a and DNMT inhibitor CM-272 can
be used in combination with adoptive T cell therapy and active
A B

C

DE F

FIGURE 3 | Dual G9a and DNMT inhibition favors tumor cell recognition by tumor-specific T cells in vitro. (A, B) MO4 cell surface presentation of (A) SIINFEKL/H2-
Kb or (B) PD-L1 after CM-272 treatment for 24 hours (mean ± SD; n = 4). (C, D) T-cell proliferation upon 72 hours of polyclonal (anti-CD3/CD28) or peptide
(SIINFEKL/ISQAVH) stimulation of (C) CD4+ and CD8+ T cells or (D) OT-I and OT-II T cells, respectively, in the presence or not of CM-272 (representative
histograms; n=4 [B]/n=2 [C]). (E, F) IFN-g production upon 48 hours of (E) polyclonal stimulation of T cells (mean ± SD; n = 2, total 4 s.p.c.) or (F) MO4-mediated
stimulation of (un)transduced T cells (mean ± SD; n=2/3). Vehicle and CM-272 conditions were compared using ordinary one-way Anova and post-hoc Dunnett’s
multiple comparison test (A,B,F). Asterisks indicate statistical significance: *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.
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cancer vaccination against melanoma. The data support the
notion that both tumor cell-intrinsic and -extrinsic events
shape in vivo responses to such combination therapies, and
that counteractive effects might be concomitantly induced,
possibly hindering full efficacy of such combined strategies.

In vitro, CM-272 caused MO4 cell cycle arrest and cell death.
This corroborates recent findings that correlated G9a- and
DNMT1-activity to melanoma cell proliferation (7–9). Also,
restoring wild-type TP53 transcriptional activity, or at least
tipping the balance away from oncogenic mutant isoforms, has
been receiving attention as a means to tackle melanoma cell
proliferation and therapy resistance (54). Our results advocate for
epigenetic regulation of isoform expression, as CM-272 induced
TP53 signaling towardp21-mediated cell cycle arrest andapoptosis.
Though p21 effects are ambiguous, it is considered to mediate G1
Frontiers in Immunology | www.frontiersin.org 9
arrest at high concentrations (55). This substantiates the anti-
proliferative effect of CM-272 on MO4 cells. Notably, p21
upregulation has been shown to sensitize melanoma cells to T-cell
cytotoxicity (56). Accordingly, we found improved recognition of
CM-272-treated tumors by T cells in vitro.

We also found evidence of CM-272 having immune-
modulatory consequences both in vitro and within the TME in
vivo, suggesting that it might help shifting the cancer-immune
set-point beyond the activation threshold (57). Indeed, in
transcriptomic analyses we found that CM-272 induced the
upregulation of several gene sets related to immune responses,
including toll-like receptor and IFN-I signaling. We appreciate
that IFN-I signaling could be due to MYD88 signaling resulting
from epigenetic re-expression of retroviral elements or from the
response to genetic material from dying cells (58), and operates
A

B C

D

F

E

FIGURE 4 | Dual G9a and DNMT inhibition transiently delays MO4 tumor growth in immune-competent mice. (A, C) CM-272 therapy in immune-deficient (NUDE)
and -competent (C57Bl6J) MO4-bearing mice. (A) Schematic representation of treatment regimen (n=1, 11 m.p.c.). (B, C) Tumor volume in time (mean ± SEM [B]/
mean ± SD [C]). (D, E) Multiplex tumor analysis (706.9 ± 193.8 mm3; n=1, 12 m.p.c.). (D) Graphical representation of GSEA. (E) TIL-scoring (10-90 percentile
Box&Whiskers). (F) Mice survival (Kaplan-Meier curve) upon CM-272 combination with PD-1 blockade (aPD-1; n=1, 6-8 m.p.c.). Vehicle and CM-272 conditions
were compared using REML modeling and post-hoc Sidak multiple comparison test (B); unpaired one-tailed student t-test with Welsh correction or Mann-Whitney
test (C); Wilcoxon rank sum test (E); Log-rank test (F). Asterisks indicate statistical significance: *p ≤ 0.05; **p ≤ 0.01.
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as a bridge between innate and adaptive anti-tumor immunity.
IFN-I has been previously shown to promote DCmaturation and
IL-12p70 production, instruct the local release of chemo-
attractants for monocyte and lymphocyte recruitment, and
induce antigen and co-stimulatory ligand expression, as such
facilitating T cell reactivation and tumor recognition (59–62).
Although not all transcriptional changes defined in vitro were
validated in explanted tumors, we appreciate that they could all
Frontiers in Immunology | www.frontiersin.org 10
participate in establishing a more favorable immune contexture
in vivo. Accordingly, CM-272 caused DC enrichment in the
tumor, thus supporting the promise for synergistic activity in
combination with immunotherapy. Nevertheless, it should be
noted that CM-272 also caused PD-L1 upregulation on tumor
cells, a known IFN-I feedback mechanism protecting tumors
from IFN-mediated toxicity (63). In addition, tolerogenic signals
including IL-10 (64) and TGF-b (65) were also upregulated by
A B

C D

F

G

E

FIGURE 5 | DC vaccination best cooperates with dual G9a and DNMT inhibition in prolonging mouse survival. (A–G) CM-272 combination therapy with (B) adoptive
T-cell therapy (n = 3, total 7-14 m.p.c.) or (C–G) DC vaccination (n = 2, total 12 m.p.c.). (A) Treatment regimen. (B, G) Survival (Kaplan-Meier curve) upon CM-272
combination with (B) T-cell therapy or (G) DC vaccination. (C, D) Tumor volume in time (mean ± SEM [C]/mean ± SD [D]). (E, F) Tumor-contexture upon CM-272
combination with DC vaccination (n = 1, 4-8 m.p.c.). (E) CD4+/CD8+ T-cell abundance. (F) PD-1 expression on CD4+/CD8+ T cells. Vehicle and experimental
conditions were compared using Log-rank test (B,G); REML modeling with Geisser-Greenhouse correction and post-hoc Sidak multiple comparison test (C);
unpaired one-tailed student t-test or Mann-Whitney test (D); ordinary one-way Anova and post-hoc Tukey’s multiple comparison test (E, F). Asterisks indicate
statistical significance: *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001. Statistical significance of panel C is supplemented in Table S4.
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CM-272. GSEA thus identified CM-272 ’s epigenetic
reprogramming as a putative in vivo double-edged sword. We
believe that such dual activity is consistent with the transient
therapeutic effects reported in vivo. The fact that CM-272
depends on an intact immune system to exert an anti-tumor
effect suggests that the direct tumor inhibition observed in vitro
is not as prominent in vivo. This may be due to insufficient drug
penetration into the tumor site in vivo to confer direct tumor-cell
intrinsic cytotoxic effects. Ensuing this notion, suboptimal CM-
272 tumor-cell intrinsic effects in vivo could also explain its
failure to confer a significant survival improvement when
provided as a single agent. Regardless, in vivo tumor
transcriptional changes upon CM-272 treatment suggest the
drug to be active at the tumor site, and able to instigate a
signaling cascade toward immune activation. In line with our
statement above, we contend that the reported results reflect
some tumor cells being affected by CM-272 in vivo, e.g., by cell
death induction or cellular stress as observed in vitro, and this to
be sufficient to initiate transcriptional events reflective of
reprogramming of the tumor microenvironment and of
immune-mediated destruction.

Since PD-L1 levels were augmented by CM-272, and DC
influx and TCR-signaling (local T-cell activity) were induced by
CM-272 in vivo administration, we first tested possible synergy
with PD-1 blockade therapy. The decision to target PD-1 rather
than PD-L1 was based on previous published results. Indeed, a
meta-analysis of melanoma patients treated with PD-1 or PD-L1
blockade reported a 37% response rate in former compared to
16% in the latter (66). In addition, while anti-PD-1/PD-L1
blocking antibodies were proven similarly efficacious in B16
melanoma-bearing mice, even at elevated PD-L1 levels (37),
the potency of anti-PD-L1 and not that of anti-PD-1 was
found to decline with age in the B16 model (67). Thus, both
for putative translational purposes and to avoid confounding
effects, the synergy with anti-PD-1 was first investigated. We
found that CM-272 failed to sensitize MO4 tumors to PD-1
blockade. This contradicts the successful combination of anti-
PD-L1/CM-272 in a bladder cancer model (28) and of anti-PD-
1/UNC0642 (G9a inhibitor) in the parental B16F10 model (68),
as well as other preclinical reports on G9a or DNMT inhibition
across different tumor models (8, 69, 70), and yet can be
explained by diverse immune contextures or pharmacokinetics
of epigenetic remodeling. In agreement with our findings, clinical
trials have reported on a significant patient subgroup that does
not respond to such combined treatments. While phase I/II
clinical trials in melanoma patients testing DNMTi’s in
combination with anti-CTLA-4 or anti-PD-1 mAbs are still
ongoing (71), a phase II trial in acute myeloid leukemia reported
on the combination of the DNMTi Azacitidine and PD-1 inhibitor
Nivolumab. Here, despite an encouraging overall response rate of
33%, low pre-therapy tumor infiltration by T cells remained a
limiting factor for therapeutic response (72). Still, we acknowledge
that implementation of PD-1 blockade, albeit increased PD-L1
expression uponCM-272 treatment, could be subject to discussion.
As stated before, the decision to target PD-1 was made to avoid
confounding effects in the B16 model as well as for translational
Frontiers in Immunology | www.frontiersin.org 11
purposes, based on previous published results (37, 66, 67).
Notwithstanding the grounds for testing PD-1 blockade, future
studies might address the blockade of PD-L1 or of other immune
checkpoints when of relevance. Also, using anti-PD-L1 as a single
agent or in combination with anti-PD-1 might further improve
therapeutic efficacy of the combined vaccination treatment. Future
studies are needed to address this possibility.

On these grounds, and with the aim of promoting T-cell
responses, we moved to adoptive T-cell therapy and active
vaccination. Adoptive T-cell therapy showed capable of some
cooperative effects in the MO4 model. Indeed, the combination
of CM-272 and TCR-redirected T cells promoted longer survival
in a significant fraction of tumor-bearing mice, although tumors
eventually escaped control. Cooperative activity could be
explained by the ability of CM-272 to promote direct peptide/
MHC-complex presentation, rendering melanoma cells better
targets for adoptively transferred effector T cells (73). Pursuant to
this, we reasoned that CM-272-induced sustained IFN-I/II
signaling and/or factors like IL-10 and TGF-b could indeed
hinder tumor antigen presentation by tumor-resident DCs,
thereby restraining successful combination therapy of CM-272
and PD-1 inhibition (60, 74–81). We also found cd209
expression to be increased by CM-272, potentially reflecting
monocyte-derived DCs, known to have paradoxical effects on
T-cell responses (82). Directly improving in situ tumor antigen
presentation by DCs should thus enable the generation of a
successful anti-tumor T-cell response if indeed it is the limiting
factor. To test this, we vaccinated mice with antigen-loaded
mature DCs, known to promote protective immunity in
preclinical models and clinical trials (38, 83). Combining CM-
272 with DC vaccination prolonged tumor growth control and
increased survival compared to individual therapies to extents
that surmised those evoked by the combination of adoptive T-
cell therapy and CM-272. We attribute this to the ability of
mature DCs to express co-stimulatory ligands and to secrete IL-
12p70, key for cytotoxic T-cell induction (84), and local
reactivation of T cells combined with the cytotoxic and
immune-shaping support from CM-272.

Thus, our work extends previous in vitro reports on increased
melanoma antigenicity upon methylation-targeted epigenetic
treatment in cancer vaccination context (73, 85) and underlines
epigenetic reprogramming as a strategy to tip the cancer-immune
set-point toward responsiveness to immunotherapeutic strategies.
We expect additional studies to stem from this proof-of-principle
report as to include the validation of the therapeutic robustness of
this combined strategy when targeting unmutated tumor-
associated self-antigens, the selection of the most appropriate
vaccination platform (e.g., mRNA vaccination), and the
definition of markers of epigenetic reprogramming capable of
predicting sensitivity to the most appropriate immunotherapy.
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José Lasarte, orcid.org/0000-0003-1641-3881; Anna Mondino, orcid.org/0000-
0003-0833-6927; Karine Breckpot, orcid.org/0000-0003-4331-3480
Copyright © 2022 De Beck, Awad, Basso, Casares, De Ridder, De Vlaeminck, Gnata,
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