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We use least squares support vector machine (LS-SVM) utilizing a binary decision tree for classification of cardiotocogram to
determine the fetal state. The parameters of LS-SVM are optimized by particle swarm optimization. The robustness of the method
is examined by running 10-fold cross-validation. The performance of the method is evaluated in terms of overall classification
accuracy. Additionally, receiver operation characteristic analysis and cobweb representation are presented in order to analyze
and visualize the performance of the method. Experimental results demonstrate that the proposed method achieves a remarkable
classification accuracy rate of 91.62%.

1. Introduction

There is a growing tendency to use clinical decision support
systems in medical diagnosis.These systems help to optimize
medical decisions, improve medical treatments, and reduce
financial costs [1, 2]. A large number of the medical diagnosis
procedures can be converted into intelligent data classifica-
tion tasks. These classification tasks can be categorized as
two-class task andmulticlass task.The first type separates the
data between only two classes while the second type involves
the classification of the data with more than two classes
[3].

Cardiotocographywas introduced into obstetrics practice
in the early 1970s, and since then it has been used as a world-
wide method for antepartum (before delivery) and intra-
partum (during delivery) fetal monitoring. Cardiotocogram
(CTG) is a recording of two distinct signals, fetal heart rate
(FHR), and uterine activity (UA) [4]. It is used for deter-
mining the fetal state during both pregnancy and delivery.
The aim of the CTG monitoring is to determine babies who
may be short of oxygen (hypoxic); thus further assessments
of fetal condition may be performed or the baby might be
delivered by caesarean section or natural birth [5]. The visual
evaluation of the CTG not only requires time but also

depends on the knowledge and clinical experience of obste-
tricians.

A clinical decision support system eliminates the incon-
sistency of visual evaluation.There have been proposed seve-
ral classification tools for developing such system [4, 6–10].

One of these tools is support vector machine (SVM)
and it is used in [4, 8, 10]. In [4, 8], SVM is used for FHR
signal classification with two classes, normal or at risk. The
risk of metabolic acidosis for newborn based on FHR signal
is predicted in [4] while the classification of antepartum
FHR signal is made in [8]. In [10], a medical decision supp-
ort system based on SVM and genetic algorithm (GA) is pre-
sented for the evaluation of fetal well-being from the CTG
recordings as normal or pathologic.

In [6], an approach based on hidden Markov models
(HMM) is presented for automatic classification of FHR
signal belonging to hypoxic and normal newborns. In [7],
an ANBLIR (Artificial Neural Network Based on Logical
Interpretation of fuzzy if-then Rules) system is used to eva-
luate the risk of low-fetal birth weight as normal or abnormal
using CTG signals recorded during the pregnancy.

In [9], an adaptive neurofuzzy inference system (ANFIS)
is proposed for the prediction of fetal state from the CTG
recordings as normal or pathologic.

http://dx.doi.org/10.1155/2013/487179
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Support vector machines (SVM) is developed for two-
class task, but classification problems generally requiremulti-
class task. There are several methods proposed in the litera-
ture based on binary decision tree (BDT) to extend the binary
SVMs to multi-class problems, for example, [11, 12].

LS-SVM is a modified version of SVM in a least square
sense [13]. The higher computational load of SVM is over-
come by LS-SVM because LS-SVM solves the problem using
a set of linear equations while SVM solves as a quadratic pro-
gramming problem.

The choice of appropriate kernel function and the model
parameters (including kernel parameters) is crucial for SVM-
based methods, and this influences directly the classification
performance.Themost common kernel functions used in the
literature are polynomial, Gaussian radial basis, exponential
radial basis, and sigmoid.

Performance evaluation of classifiers is a fundamental
step for determining the best classifier or the best set of para-
meters for a classifier [14]. In general, the overall classification
accuracy is a natural way to measure the performance of the
classifiers. The classifier predicts the class for each data point
in the data set; if the prediction is correct it is counted as a
success and if it is wrong it is counted as an error. The overall
classification accuracy is computed as the ratio of the number
of successes over the number of the whole data points to be
classified.

For many classification problems, especially in the med-
ical diagnosis, the overall classification accuracy is not ade-
quate alone because in general not all errors have the same
consequences. Wrong diagnoses can cause different cost and
dangers depending onwhich kind ofmistakes have been done
[15].Therefore, for such situations, in addition to overall clas-
sification accuracy receiver operation characteristic (ROC)
analysis is usually performed [16].

In this paper, we use LS-SVM utilizing a BDT for clas-
sification of the CTG data to determine the fetal state as
normal, suspect, or pathologic. Gaussian radial basis function
is chosen as the kernel of LS-SVM, and themodel parameters,
which are the penalty factor and thewidth ofGaussian kernel,
are optimized by using particle swarm optimization (PSO).
The robustness of the proposed method LS-SVM-PSO-BDT
is examined with 10-fold cross-validation (10-fold CV) on the
CTG data set taken from UCI machine learning repository.
The performance of the method is evaluated in terms of
overall classification accuracy. Additionally, ROC analysis
and cobweb representation are presented in order to analyze
and visualize the performance of the method.

2. Support Vector Machine (SVM)

SVM is a powerful supervised learning algorithm based on
statistical learning theory that has been widely used for
solving a wide range of data classification problems since it
was first introduced by Boser et al. [17]. SVM builds a hype-
rplane separating the data points into two different classes
with a maximummargin.
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𝑖
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where 𝑤 is the normal vector to hyperplane, 𝑏 is the bias or
offset scalar, 𝜉

𝑖
are the slack parameters which are used to

allow softmargins,𝐶 is the penalty parameter which controls
the trade-off between minimizing the error and maximizing
the margin, and 𝜑(𝑥
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space to the higher dimensional feature space [4, 8, 13, 17, 18].
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where 𝛼
𝑖
are Lagrange multipliers, the term 𝐾(𝑥
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kernel function representing the inner product of two vectors
in the feature space, that is,𝜑𝑇(𝑥
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)𝜑(𝑥
𝑗
). Kernel functionmust

satisfy thewell-knownMercer’s condition.Thedata points for
which 𝛼
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> 0 are called support vectors, which construct the

following decision function [4, 8, 13, 17, 18]:
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3. Least Squares SVM (LS-SVM)

LS-SVM is originally proposed by Suykens andVandewalle as
a modification to SVM regression formulation [13]. The idea
behind the modification is to transform the problem from
a quadratic programming problem to solving a set of linear
equations.

The optimization problem has been modified as follows:
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where 𝛾 and 𝑒
𝑖
are similar to the penalty parameter 𝐶 and

the slack variable 𝜉
𝑖
of SVM, respectively. In (4), it can be

easily seen that the following twomodifications aremade; the
first one is that the inequality constraints are replaced by the
equality constraints, and the second one is that the squared
loss function is taken for 𝑒

𝑖
. These modifications significantly

simplify the problem [19].
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To solve the optimization problem in (4), Lagrangian
function is defined as given below:
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LS-SVM classifier takes the form as in (9) which is similar
to SVM case as in (3) and found by solving the linear set of
equations in (7):
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4. Particle Swarm Optimization (PSO)

PSO is a swarm intelligence based optimization method pro-
posed by Kennedy and Eberhart inspired by social behavior
of bird flocking andfish schooling [20]. In PSO, the procedure
begins with an initialization step in which a population
(swarm) of possible solutions (particles) is chosen in the
search space and then searches for optimum solution by
updating particles over generations.

Table 1: Confusion matrix.

Predicted Actual
Positive Negative

Positive TP (true positive) FP (false positive)
Negative FN (false negative) TN (true negative)

The particles are updated by iteratively by using the follo-
wing equations:
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are the best position of the swarm and the best position of the
𝑖th particle, respectively.

The value of inertia weight 𝜔 is a trade-off between global
search and local search. A bigger value of inertia weight
allows the particles to search new areas in the search space
(global search) while a smaller value let the particles move
in the current search area for fine tuning (local search). The
cognitive and the social learning factors 𝑐

1
and 𝑐
2
are positive

constants, and 𝑟
1
and 𝑟
2
are random numbers in the range

[0, 1] [20, 21].

5. Binary Decision Tree (BDT)

BDT architecture for classification of data sets with 𝑅 classes
requires𝑅−1 classifiers.The architecture for classification of a
data set with𝑅 classes is shown in Figure 1.There is a classifier
at each node in the tree to make a binary decision.

6. Cross-Validation (CV)

CV is amost commonly used statisticalmethod for evaluating
and comparing the learning algorithms by separating the data
set into two sets as training and testing. In CV, the training
and testing sets must cross-over in successive rounds, and
thus each data point has a chance of being validated against
[22].

General form of CV is 𝑘-fold CV in which the data set is
divided into 𝑘 groups of (almost) equal size, and 𝑘 iterations
are made. In each iteration step, one of the 𝑘 groups is used
for testing and the remaining 𝑘 − 1 groups are used for
training.

7. ROC Analysis

ROC analysis has been used a standard tool for the design,
optimization, and evaluation of two-class classifiers [23]. In
ROC analysis with two classes, the notation, which is given
in Table 1, is used for the confusion matrix [24].

ROC analysis investigates and employs the relationship
between sensitivity and specificity of two-class classifiers
while decision threshold varies [25]. Sensitivity is the true
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Figure 1: BDT architecture for classification of data set with 𝑅 classes.

positive rate while specificity is the true negative rate, and
they are defined as TP/(TP+FN) and TN/(TN+FP), respec-
tively [24].

ROC curve represents the performance of a classifier in a
two-dimensional graph, and conventionally the true positive
rate is plotted against the false positive rate [25]. Detailed
information about ROC analysis can be found in [23–28].

The extension of ROC analysis for more than two classes
has been studied extensively in the literature [15, 23, 27, 29,
30]. For 𝑅 classes, the confusion matrix is 𝑅 × 𝑅 matrix such
that its diagonal entries contain the 𝑅 correct classifications
while its off-diagonal entries contain 𝑅

2
− 𝑅 possible errors.

Therefore, generating ROC curves for visualizing the perfor-
mance of a classifier becomes difficult as the number of classes
increase, for example, a six-dimensional space is required
for three classes. Recently, cobweb representation is used to
visualize the performance of the classifiers in the form of
multiclass version of ROC analysis [30].

8. Cobweb Representation

The cobweb representation is generated by using the mis-
classification ratios of the confusion ratio matrix, which is
column-normalized version of the confusion matrix. Let us
consider a chance classification with 𝑅 classes.The confusion
ratio matrix has 𝑅

2
− 𝑅 misclassification rates which are

equal to 1/𝑅. The misclassification rates of 1/𝑅 show that

when confronted with a data point from one of the classes
the classifier classifies it as having the same chances of
being from any of 𝑅 classes. A polygon with 𝑅

2
− 𝑅 equal

sides can be formed to map the misclassification rates of
the confusion ratio matrix. This polygon (chance polygon)
is used to compare the performance of any classifier with
the chance classifier in terms of misclassification rates. Any
polygon within the chance performance polygon shows a
better performance than chance performance. For a chance
classification with three classes, the misclassification rates are
(0.33, 0.33, 0.33, 0.33, 0.33, 0.33), and the chance polygon
becomes a hexagon given as in Figure 2 [30, 31].

9. CTG Data Set
The CTG data set used in this study is taken from UCI
Machine Learning Repository [http://archive.ics.uci.edu/ml/
datasets/Cardiotocography], (last accessed: June, 2013) and
the details can be found in [32]. This data set has 2126
data points from three classes representing the fetal state
as normal, suspect, or pathologic. All data points have 21
features, and these features are listed in Table 2.

10. Proposed LS-SVM-PSO-BDT Method
The proposed LS-SVM-PSO-BDT method for fetal state
determination is described in this section. Its architecture is
given in Figure 3.

http://archive.ics.uci.edu/ml/datasets/Cardiotocography
http://archive.ics.uci.edu/ml/datasets/Cardiotocography
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Figure 2: Misclassification cobweb for a chance classification with
three classes.

Table 2: Features used for determining the fetal state.

Features
LB FHR baseline (beats per minute)

AC Number of accelerations per second

FM Number of fetal movements per second

UC Number of uterine contractions per second

DL Number of light decelerations per second

DS Number of severe decelerations per second

DP Number of prolonged decelerations per second

ASTV Percentage of time with abnormal short term variability

MSTV Mean value of short term variability

ALTV Percentage of time with abnormal long term variability

MLTV Mean value of long term variability

Width Width of FHR histogram

Min Minimum (low frequency) of FHR histogram

Max Maximum (high frequency) of FHR histogram

Nmax Number of histogram peaks

Nzeros Number of histogram zeros

Mode Histogram mode

Mean Histogram mean

Median Histogram median

Variance Histogram variance

Tendency Histogram tendency

There are two nodes in BDT due to that the CTG data
has three classes. A Gaussian radial basis function, which

PSO 

Normal Suspect, pathologic 

PSO 

Suspect Pathologic 

Normal, suspect, and pathologic

LS-SVM 1

LS-SVM 2

Figure 3: The proposed method’s architecture.

is illustrated in (11), is chosen as the kernel function of LS-
SVMs:

𝐾(𝑥, 𝑥
𝑖
) = exp (−

1

2𝜎2
(𝑥 − 𝑥

𝑖
)
2
) , (11)

where 𝜎2 is the width of the kernel.
LS-SVM parameters, the penalty factor 𝛾, and the kernel

width 𝜎
2 are optimized by using PSO.

Training procedure of the method is summarized as the
following sequential steps.

Step 1. Training data points are put into the root node and
divided into two groups as PS (pathologic and suspect) and
Nr (normal).

Step 2. LS-SVM 1 is trained on the data points in the root
node to classify the data points as PS or Nr. Meanwhile LS-
SVM 1 parameters are optimized by using PSO.

Step 3. LS-SVM 2 is trained on the data points in the
subnode PS to classify the data points as P (pathologic) or S
(suspect). Meanwhile, LS-SVM 2 parameters are optimized
by using PSO.

In the first step, the reason why we combine pathologic
and suspect data points in one group instead of combining
normal and suspect data points is to minimize the risk of
making decisions that cause abnormalities in babies.

11. Experimental Results and Discussions

The proposed method LS-SVM-PSO-BDT is used for the
classification of the CTGdata set which is taken from theUCI
Machine Learning Repository.

In order to validate the robustness of themethod a 10-fold
CV procedure is performed. The entire data set is randomly
divided into ten subsets of approximately equal size while
keeping the proportion of data points from different classes
in each subset roughly the same as that in the whole data set.
In each fold, one subset is left out for testing, and the union
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Table 3: Classification accuracy for each fold.

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Fold-6 Fold-7 Fold-8 Fold-9 Fold-10
89.67% 94.84% 91.08% 94.84% 92.49% 91.55% 88.27% 90.14% 92.96% 90.14%

Table 4: Comparison of LS-SVM-PSO-BDT with the existing
methods in similar works.

Method
Maximum
classification
accuracy

Number of
classes

Number of
data points

LS-SVM-PSO-BDT 91.62% 3 2162
SVM
Krupa et al., 2011 [8] 81.50% 2 129

SVM
Georgoulas et al., 2006 [4] 81.25% 2 80

Hidden Markov models
Georgoulas et al., 2004 [6] 83.00% 2 36

ANBLIR system
Czabanski et al., 2010 [7] 97.50% 2 685

ANFIS
Ocak and Ertunc, 2012 [9] 97.15% 2 1831

SVM and GA
Ocak, 2013 [10]

99.30%
(specificity)

100%
(sensitivity)

2 1831

of the remaining nine sets is used for training.Thus, after ten
folds, each subset is used once for testing purpose. The final
result is average result of these ten folds.

In the experiment, the parameters for LS-SVM-PSO-BDT
are set as follows. Twenty-five particles are used in PSOs.The
initial values of 25 particles for the penalty factor 𝛾 and the
kernel width 𝜎

2 are chosen on the intervals 𝛾, 𝜎2 ∈ [2
−4
, 212].

The inertia weight, cognitive, and social learning factors
of PSOs are chosen as 𝜔 = 0.75, 𝑐

1
= 2, and 𝑐

2
= 2. The codes

for the proposed method have been developed in MATLAB
[33], without using any toolbox. The classification accuracies
for ten folds are reported in Table 3.

The overall classification accuracy of LS-SVM-PSO-BDT,
which is average accuracy of ten folds, is obtained as 91.62%.

There have been similar works focusing on the classifi-
cation of the CTG data in the literature [4, 6–10]. It is not
possible to make a direct comparison of the methods in these
works with the proposedmethod because they are all used for
two-class task and additionally the properties of theCTGdata
sets used in [4, 6–8] are different. But, based on the overall
classification accuracy, a comparison of the proposedmethod
with themethods used in abovementionedworks is provided
in Table 4.

Although the number of classes and the number of data
points in the CTG data set used in our work are larger
than those in above mentioned works, LS-SVM-PSO-BDT
achieves a remarkable classification accuracy rate of 91.62%.

In addition to overall classification accuracy ROC meth-
odology is used to analyze the performance of the method
in more detail. Therefore, a confusion matrix is created to

Table 5: Confusion matrix of LS-SVM-PSO-BDT.

Predicted Actual
Normal Suspect Pathologic

Normal 1604 70 12
Suspect 38 208 29
Pathologic 13 17 135
Total 1655 295 176

Table 6: Confusion ratio matrix of LS-SVM-PSO-BDT.

Predicted Actual
Normal Suspect Pathologic

Normal 0.969 0.237 0.068
Suspect 0.023 0.705 0.165
Pathologic 0.008 0.058 0.767

analyze the classification results, which is given in Table 5.
This table shows the number of correctly and incorrectly
classified data points from the CTG data.

In order to visualize the performance of the proposed
method a cobweb representation is presented. Cobweb
representation is generated by using the misclassification
ratios from the confusion ratio matrix, which is column-
normalized version of the confusion matrix. The confusion
ratio matrix of the proposed method is given in Table 6.

Diagonal entries of the confusion ratio matrix show the
correct classification ratios while its off-diagonal entries show
the misclassification ratios. From Table 6, 96.90% of normal
data points, 70.50% of suspect data points, and 76.70% of
pathologic data points are correctly classified as normal,
suspect, and pathologic, respectively.

Cobweb representation of the proposed method is given
in Figure 4. It can be seen from Figure 4 that the misclassifi-
cation ratios of LS-SVM-PSO-BDT are smaller than those of
the chance classifier.

12. Conclusions

In this work, we use LS-SVMutilizing a BDT for classification
of the CTG data to determine the fetal state as normal,
suspect, or pathologic. Gaussian radial basis function is
chosen as the kernel of LS-SVM, and the model parameters,
which are the penalty factor and thewidth ofGaussian kernel,
are optimized by using PSO.The robustness of LS-SVM-PSO-
BDT is examined by running 10-fold CV. The performance
of the proposed method is evaluated in terms of overall
classification accuracy. According to empirical results, the
proposed LS-SVM-PSO-BDTmethod achieves a remarkable
overall classification accuracy rate of 91.62%.

Additionally, ROC methodology is used to analyze the
performance of the method in more detail. The correct
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Figure 4: Misclassification cobweb for LS-SVM-PSO-BDT.

classification and misclassification ratios of the method with
the respect to each individual class are presented. 96.90%
of normal data points, 70.50% of suspect data points, and
76.70% of pathologic data points are correctly classified as
normal, suspect, and pathologic, respectively. In order to
visualize the performance of the method, a cobweb rep-
resentation is presented. This representation indicates that
misclassification ratios of the proposed method are smaller
than those of the chance classifier. Empirical results show that
the proposedmethod can help the obstetricians tomakemore
accurate decision in determining the fetal state.
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