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Abstract

Orientation selectivity is a key property of primary visual cortex that contributes, down-

stream, to object recognition. The origin of orientation selectivity, however, has been

debated for decades. It is known that on- and off-centre subcortical pathways converge onto

single neurons in primary visual cortex, and that the spatial offset between these pathways

gives rise to orientation selectivity. On- and off-centre pathways are intermingled, however,

so it is unclear how their inputs to cortex come to be spatially segregated. We here describe

a model in which the segregation occurs through Hebbian strengthening and weakening of

geniculocortical synapses during the development of the visual system. Our findings include

the following. 1. Neighbouring on- and off-inputs to cortex largely cancelled each other at

the start of development. At each receptive field location, the Hebbian process increased

the strength of one input sign at the expense of the other sign, producing a spatial segrega-

tion of on- and off-inputs. 2. The resulting orientation selectivity was precise in that the band-

widths of the orientation tuning functions fell within empirical estimates. 3. The model

produced maps of preferred orientation–complete with iso-orientation domains and pin-

wheels–similar to those found in real cortex. 4. These maps did not originate in cortical pro-

cesses, but from clustering of off-centre subcortical pathways and the relative location of

neighbouring on-centre clusters. We conclude that a model with intermingled on- and off-

pathways shaped by Hebbian synaptic plasticity can explain both the origin and develop-

ment of orientation selectivity.

Author summary

Many neurons in mammalian primary visual cortex are highly selective for the orientation

of visual contours and can therefore contribute to object recognition. Orientation selectiv-

ity depends on on- and off-centre retinal neurons that respond, respectively, to light and

dark. We describe a signal-processing model that includes both subcortical pathways and

cortical neurons. The model predicts the preferred orientation of a cortical neuron from

the empirically determined spatial layout of retinal cells. Further, the subcortical-to-corti-

cal connections change in strength during visual development, meaning that cortical neu-

rons in the model have orientation selectivity just as precise as real neurons. Our model
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can therefore explain the origin of orientation selectivity and the way it develops during

visual system maturation.

Introduction

Response properties in the visual system undergo a remarkable change in the transition from

subcortical pathways to cortex. Cortical neurons are selective for stimulus characteristics such

as contour orientation, motion direction and depth. In primate and carnivore subcortical neu-

rons, by contrast, these selectivities are weak or absent [1–3]. This change in neuronal tuning

characteristics–from camera-like to one that supports object recognition [4]–depends on the

geniculocortical synapse, where subcortical signals converge onto cortical neurons.

Orientation selectivity is a clear example of the subcortical-to-cortical transformation.

Many cortical neurons respond best to a contour with specific orientation (for example, verti-

cal) and less well to other orientations. Orientation selectivity was first described by Hubel and

Wiesel [5], who also provided a model for its origin. They proposed that on-centre and off-

centre subcortical channels converge on cortical neurons, that the two inputs are driven by

separate locations in the visual field, and that the preferred orientation is approximately per-

pendicular to the displacement of the inputs.

Parts of this model have survived the test of time. Simultaneous recording of cortical neu-

rons and their subcortical inputs have demonstrated the convergence of on- and off-pathways

[6–8]. These same studies have shown a pattern of convergence that is consistent with the mea-

sured orientation preference. The model has also been extended to the retinal level. Anatomi-

cal data shows that nearest neighbours in the retina are usually of opposite sign [9]. Soodak

[10] proposed that the convergent pathways at the cortex originate in neighbouring retinal

ganglion cells, and Ringach [11] showed that a model based on this idea fits well with several

cortical properties.

The Hubel and Wiesel model has also, however, encountered significant challenges. A

recent study [12] has shown that the inputs to a cortical column do not neatly segregate into

on- and off-dominated neurons as earlier envisaged [13]. Instead, there is substantial spatial

overlap between the population of on- and off-inputs to a cortical column. How do these over-

lapping areas segregate into the on- and off-subfields of a cortical receptive field? That is one

of the questions we aim to answer with the modelling in the present paper. Another question

concerns intracortical inhibition, which plays a major part in shaping cortical receptive fields

[14]: what are the relative roles of subcortical convergence and intracortical inhibition in pro-

ducing orientation preference?

A third challenge to the convergence model for orientation selectivity comes from response

amplitude. In the Soodak [10] and Ringach [11] models, a cortical neuron linearly sums

responses from a number of neighbouring subcortical neurons. But nearest retinal neighbours

are almost always of opposite sign [9], which will result in signal cancellation and very low

response amplitudes in the cortex. Indeed, it has been shown that cells in the kitten’s primary

visual cortex are insensitive compared to their mature counterparts [15] and that substantial

areas of the orientation preference map in the immature ferret are noisy [16]. We therefore

tested the idea that the same on/off segregation responsible for cortical receptive fields can

raise response amplitudes. We find that responses in the mature cortex are an order of magni-

tude larger than before segregation.

In this paper, we describe a signal-processing model that complies with known anatomy

and physiology of the early visual pathways. On-centre and off-centre inputs to a cortical
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neuron are co-extensive; a Hebbian development process functionally segregates the two signs

of input. Intracortical inhibition, which is assumed to derive from a widespread, slow-acting

network that indiscriminately reduces membrane potential, contributes to orientation selectiv-

ity through the iceberg effect [17]. Our aim is to show how developmental refinement of geni-

culocortical connections can lead to cortical response characteristics–time courses, precise

orientation tuning, and orientation preference maps–that match well with those seen in the

laboratory.

To make the modelling manageable, the scope of the model is limited in several ways. First,

the model is designed to describe the cat’s visual pathway because the visual literature for this

species is particularly rich (including almost all the animal studies cited above). Second, the

subcortical pathway is chosen to pass through the X-type retinal ganglion cell because of its rel-

atively high acuity. Last, the model is restricted to monochromatic, monocular stimuli, and the

input layers of primary visual cortex. The model builds on a previous one [18] by adding a reti-

nal ganglion cell array, a development process and dynamic intracortical inhibition. Earlier

accounts of this work have appeared in abstract form [19], [20].

Results

Model structure

A flow diagram of the model is shown in Fig 1A. There are multiple subcortical channels, each

of which passes through either on-centre or off-centre neurons. Each channel consists of four

neurons–photoreceptor, bipolar cell, retinal ganglion cell and relay cell in the dorsal lateral

geniculate nucleus–in series. The input to each channel is a dot product of the stimulus with a

Gaussian weighting function representing subcortical spatial spread. Apart from shared input,

signals in each channel are assumed to be independent. Thus, the membrane potential p in

neurons 1, 2, 3 and 4 for channel j is given by:

t
dpj1ðtÞ
dt

¼ � gjsðx; yÞ � sðt; x; yÞ � pj1ðtÞ

tj
dpj2ðtÞ
dt

¼ � njpj1ðtÞ � pj2ðtÞ

tj
dpj3ðtÞ
dt

¼ pj2ðtÞ þ ps � pj3ðtÞ

tj
dpj4ðtÞ
dt

¼ hðpj3ðtÞÞ � pj4ðtÞ

The derivation of these equations is provided in the Methods, along with definitions and values

of the variables.

Subcortical channels converge onto layer 4 and 6 neurons in primary visual cortex via a

Gaussian convergence function. Cortical neurons are of two types, excitatory and inhibitory.

They receive the same subcortical input, and inhibitory neurons therefore have receptive fields

similar to those of excitatory neurons [8, 21]. Inhibitory neurons differ from excitatory neu-

rons in that they are split into two compartments. The first compartment, consisting of den-

drites and soma, has fast dynamics corresponding to fast-spiking neurons [21]. Simple cells

stimulated with flashed stimuli, however, have long-lasting inhibitory tails [22], so we have

included a second compartment–axon and terminals–with much slower dynamics. The axons
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converge on excitatory neurons with another Gaussian convergence function. The effect of

this slower component is to provide a widespread, slow-acting inhibition to excitatory neurons

[14, 22]. Defining inhibitory somas, inhibitory axon terminals and excitatory neurons as stages

5, 6 and 7, the membrane potential in neuron k for each of these stages is given by:

t
dpk5ðtÞ
dt

¼
X

j
gkcðxj; yjÞwjk hðpj4ðtÞÞ � pk5ðtÞ

tinh
dpk6ðtÞ
dt

¼ hðpk5ðtÞÞ � pk6ðtÞ

t
dpk7ðtÞ
dt

¼
X

j
gkcðxj; yjÞwjk h pj4ðtÞ

� �
�
X

l
gkeðxl; ylÞpl6ðtÞ � pk7ðtÞ

Fig 1B illustrates signal processing in a typical neuron. The sum of the weighted synaptic

inputs is integrated over time to produce a generator potential. This potential is rectified to

produce action potential rate; the exceptions are the photoreceptors and bipolar cells, which

do not produce action potentials. Fig 1C shows the signal processing in an inhibitory neuron.

Subcortical inputs undergo temporal integration as they pass through the dendrites and soma.

The rectification function is then applied to the sum. The resulting action potential is once

again integrated within the axon and inhibitory network to produce the inhibitory input to

excitatory cortical cells.

Segregation of on- and off-channels

Our aim in this paper is to describe a physiologically plausible model that reproduces key

aspects of orientation selectivity. It has become increasingly clear over recent years that cortical

properties depend heavily on the response characteristics of subcortical channels [10, 11] and

the way in which the cortex combines its subcortical inputs [12]. We therefore start by describ-

ing the spatial distribution of subcortical channels in the model and the process by which

visual development weights the cortical inputs.

Fig 2A shows all subcortical channels in a 6˚×6˚ patch of visual field. Each channel is repre-

sented by a circle at the centre of its receptive field, red for on-centre channels and blue for off-

centre. The calculation of the locations ensured that closest neighbours were almost always of

opposite polarity, as required by anatomical measurements [9]. The weighting of each chan-

nel’s synapse with a cortical neuron is represented by circle diameter, and all weights are

assumed equal at the start of the development process.

Response-dependent development of the visual system is driven by intrinsic connections

[23] and at least two stimulus sources: waves of activity traversing the retina [24], and moving

visual stimuli encountered after eye opening [25]. Neuronal responses in the model were

therefore stimulated with a drifting sinusoidal grating over the full range of orientations. Each

cycle in the development process then consisted of increasing the weight of all geniculocortical

synapses for one randomly chosen subcortical channel. If the action potential rate of a cortical

Fig 1. A. Schematic representation of the model. Each subcortical channel consists of four neurons in series: photoreceptor, bipolar cell, ganglion cell,

and geniculate relay cell. The subcortical inputs converge onto both excitatory and inhibitory neurons. Inhibitory responses then converge onto

excitatory neurons to produce the final cortical output. B. Signal processing within a typical model neuron. Inputs are weighted, summed, and

undergo temporal integration to produce a generator potential. The generator potential is then rectified to obtain impulse rate. C. Signal processing

within an inhibitory neuron. Subcortical inputs are weighted, summed, and integrated over time. Rectification is then applied to produce impulse

rate, which is again integrated over time in the axon and the inhibitory network to which it connects.

https://doi.org/10.1371/journal.pcbi.1007254.g001
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neuron increased as a result, the synapse between the channel and the cortical target remained

strengthened. Otherwise, the synaptic weight was weakened to less than its original value.

Fig 2B and 2C show the weights at intermediate steps of visual development for the excit-

atory cortical neuron at the middle of the visual field patch, and Fig 2D shows the final result.

On-centre channels dominate off-centre channels in oval areas of visual field and off-centre

channels dominate in other areas. The source of the on/off segregation is easy to understand.

Neighbouring channels tend to have opposite sign so that their signals typically cancel each

other when they sum at a cortical neuron. A strengthening of one channel and weakening of

its opposite-sign neighbour will increase the cortical response, and the Hebbian development

process preserves this bias. The channel sign that dominates a visual area will depend on the

randomised process by which channel locations were assigned.

Fig 3A and 3B show the start and end of development for the neuron in Fig 2. Fig 3C shows

synapse strength for a cortical neuron located at the position marked by the yellow dot. The

on-off segregation is in much the same direction as that in part B of the figure, but the pattern

is more odd- than even-symmetric. Part D of the figure shows synaptic strengths for a cortical

neuron in a third location. In this case the orientation of on-off segregation differs from the

other two locations, indicating that each cortical neuron has its own spatial pattern of inputs.

Fig 2. A. Strengths of subcortical inputs to a cortical neuron before visual development. Red and blue circles show on-

and off-centre inputs, respectively, and the diameter of the circle gives the strength of the geniculocortical synapse. All

synapses have the same strength initially. B–D. Strengths of inputs to the cortical neuron at the middle of the visual

field patch, shown by the yellow circle. Three steps in development are shown: the number of development cycles is

shown above each map.

https://doi.org/10.1371/journal.pcbi.1007254.g002
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All of these on-off segregations are suggestive of the receptive field patterns to which they

could contribute: we will show receptive fields at the end of the results.

Intracortical inhibition

Hebbian changes could potentially increase a synapse’s strength beyond the physiological

limit. But the model includes intracortical inhibition which is driven by the same geniculocor-

tical input as are the excitatory neurons. As synapses increase in strength so does inhibition:

this limits excitatory responses in the cortex, preventing further synaptic strengthening. We

now demonstrate this growth in inhibition during development and its effect on response

time courses.

Fig 4A shows the time course of two representative cortical neurons at the start of visual

development. Responses to a 2 Hz drifting grating are shown. The blue curve indicates the

somal generator potential of a geniculorecipient inhibitory neuron, the orange curve shows

potential in the axonal terminal in the same neuron, and the red curve gives potential in an

excitatory neuron with which the axon makes an inhibitory synapse. All response amplitudes

Fig 3. A. Strengths of subcortical inputs to a cortical neuron before visual development. On-centre channels are

represented by red circles and off-channels by blue, and the dimensions of the map are given in degrees of visual angle.

The strength of a synapse is given by the diameter of the circle. At the start of the development process all strengths are

assumed equal. B. Strengths at the end of visual development for the excitatory cortical neuron whose location is

marked by the yellow dot. There is segregation of on-and off-centre channels: on-centre channels dominate the off-

centre channels in elliptical areas of the visual field and off-centre channels dominate in other areas. C, D. Synaptic

strength for cortical neurons at the locations shown by the yellow dots. The on-off segregation in C is nearly odd-

symmetric, unlike that in B. The segregation in D differs in orientation from that of the other two neurons.

https://doi.org/10.1371/journal.pcbi.1007254.g003
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Fig 4. A, B. The generator potential time course is shown for two cortical neurons–inhibitory and excitatory–responding to a drifting grating. Both neurons are located

at the centre of the visual field patch, and both compartments of the inhibitory neuron are represented. The near-cancellation of activity in neighbouring on- and off-

channels results in low-amplitude responses in both neurons at the start of development (A), and the functional segregation of on- and off-channels produce larger

response amplitudes post-development (B). C. Action potential rate in the excitatory neuron is shown for four steps in the development process, demonstrating the

iceberg effect. D. Comparison of the shape of the time course with that recorded in real cortex by Dean and Tolhurst [26]. The horizontal axis shows the fundamental

Fourier amplitude of impulse rate divided by mean rate, and the vertical axis gives the fraction of excitatory cells in the model (blue) and for simple cells (red).

https://doi.org/10.1371/journal.pcbi.1007254.g004
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are low due to the near-cancellation of neighbouring on- and off-channels. Fig 4B, obtained at

the end of development, shows much larger amplitudes due to the functional segregation of

on- and off-channels. The figure also shows that the mean potential of the inhibitory terminal

has risen due to rectification at the axon initial segment, and that the excitatory cell’s mean

potential has fallen as a consequence.

The result is the iceberg effect [17] illustrated in Fig 4C. This shows action potential rate in

the excitatory neuron for four steps in the development process. As the excitatory drive to this

neuron rises so does inhibition, and only the peak of the underlying response is seen. We used

Fourier analysis to compare the shape of this time course with that found in the published lit-

erature. The horizontal axis in Fig 4D shows relative modulation, defined as the ratio of the

Fourier fundamental component of the impulse rate divided by mean rate. Dean and Tolhurst

[26] showed that as the response becomes more peaked, and the peristimulus time histogram

is reduced to a single bin, this ratio approaches 2. A frequency histogram of the ratio is shown

in Fig 4D for both Dean et al.’s result and for the model. The mode of the histogram is close to

2 in both cases, indicating that the time course in the model is similar to that recorded in real

cortex.

Orientation tuning

To measure orientation tuning in the model we drifted a sinusoidal grating across the visual

field at a variety of orientations. Fig 5A gives the result for the cortical neuron whose geniculo-

cortical strengths are shown in Fig 3B. Early in the development process, response amplitudes

are low and orientation tuning is weak. Later in development two tuning peaks appear, one for

motion in one direction and the other for motion in the opposite direction. The preferred ori-

entation matches that expected from the synaptic strengths. To check tuning precision, we fit-

ted a curve to the response at each cortical location: Fig 5B shows the result of fitting the curve

to the post-development data in part A of the figure. Tuning bandwidth was measured as the

half width at half height of the fitted curve, as shown.

Fig 5C shows tuning bandwidths as a function of peak response amplitude at four steps of

development, where each circle represents one excitatory cortical neuron. Not surprisingly,

bandwidths are large and scattered at the start of development. Bandwidths at the end of devel-

opment, however, are tightly clustered and as low as 15˚. To compare this result with real cor-

tex we calculated the frequency histogram of bandwidth, as shown in Fig 5D. The histogram

falls between two recent empirical estimates [27, 28], indicating that bandwidth estimates in

the model are realistic.

Orientation map

Previous work, particularly optical imaging, has shown that preferred orientation forms char-

acteristic patterns across the cortical surface [29]. We next wished to determine whether our

model reproduces such patterns. Preferred orientation, taken from the maximum of the

motion direction tuning curve, is shown as a function of visual field location in Fig 6. Part A of

the figure shows that an orientation map exists even before development starts. This is as

expected from the orientation tuning curve in Fig 5A, development cycle 0, which shows a

mature preferred orientation even though tuning is poor. Like the empirical work, the map at

the end of development (Fig 6B) displays regions in which orientation changes little and other

regions containing pinwheels, around which orientation varies across its whole range. The

consistency of the map during development matches findings in ferret primary visual cortex

[16].
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Fig 5. A. Orientation tuning curves for the excitatory neuron whose weights are shown in Fig 3B. Four cycles in the development process are given. At the beginning of

development, orientation tuning is poor. Later in development two tuning peaks arise, one due to grating motion in one direction and the other for the opposite

direction. B. A tuning curve was fitted to the post-development data in part A. The model comprised the sum of two von Mises functions separated by 180˚. C. Tuning

bandwidth, measured as half width at half height, was obtained from the fitted curve in part B. Bandwidth is shown as a function of maximum response amplitude for

each neuron in the central 2˚×2˚ of the visual field patch; each circle represents one neuron. Bandwidths range from small to large at the start of development but are

uniformly low post-development. D. Frequency histogram of bandwidths comparing values in the model with those found in the cortex by Koch et al. [27] and Nauhaus

et al. [28]. Bandwidth estimates in the model fall within these empirical findings.

https://doi.org/10.1371/journal.pcbi.1007254.g005
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Fig 6. A, B. Maps of preferred orientation as a function of visual field location at the beginning (A), and end (B) of development. The conversion between degrees of

visual angle and cortical distance is shown on the right side of part A. Preferred orientation changes little during development. C. Map obtained by subtracting spatial
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The model provides us with a unique opportunity for exploring the source of these patterns.

The first clue comes from comparing the pattern at the start and end of development (Fig 6A

and 6B). The patterns are very similar (correlation coefficient = 0.97, n = 6559, p<round-off

error, null hypothesis: maps are uncorrelated), indicating that the basic pattern is set prior to

any developmental changes in the cortex. This suggests that the orientation maps are deter-

mined by the spatial layout of subcortical channels. We tested this idea by subtracting the map

of off-centre channels from that for the on-channels. The result, in Fig 6C, shows areas clearly

dominated by one or the other contrast polarity. To see whether this inhomogeneity could

produce the orientation map we took the dot product of the map in C with Gabor functions

varying in both spatial phase and orientation. The details of this calculation are provided in the

Methods section. The result, in part D of the figure, shows clear similarities with the orienta-

tion map (correlation coefficient = 0.88, n = 6559, p<round-off error). In a further six simula-

tions, obtained by varying the randomisation seed (and therefore the retinal ganglion cell

array), the correlation coefficient was never less than 0.87. It seems, therefore, that clumping of

on-centre channels in one region and of off-channels in a nearby region can produce orienta-

tion preference maps that look much like those recorded in the laboratory.

Orientation map periodicity

We compared the statistics of the map with published work by calculating its periodicity. Each

orientation in Fig 6B was converted to a unit vector and a Fourier transform was calculated for

the real and imaginary parts of the vector map, as shown in Fig 7. The peak magnitudes of

both transforms were at 0.63 cycles/deg from the origin, yielding a periodicity of 1.6 degrees of

visual angle. Converting to distance, using the cortical magnification factor calculated in the

Methods section, yielded a periodicity of 1.1 mm. This compares well with the estimates of

Löwel et al. [30] and Diao et al. [31] who found values of 1–1.1 and 1.1 mm, respectively. We

also counted pinwheels, as defined in the Methods. The result was 2.8 pinwheels per orienta-

tion hypercolumn, close to the mean value (3.1) found in three species by Kaschube et al. [32]

and in four species, including the cat, by Schottdorf et al. [33]. We are therefore confident that

the orientation preference map obtained from the model faithfully reproduces empirical data.

What is the source of the periodicity in the orientation map? Given that the map can be pre-

dicted from subcortical arrays, we looked at subcortical sources. Fig 8A shows an analysis like

that in the previous figure except that here the analysed map is subcortical. Pulses representing

off-centre ganglion cell locations were subtracted from on-centre pulses, the map was

smoothed with the spatial profile of the geniculate centre mechanism, and the result was Fou-

rier transformed. The maximum magnitude in this map is found at 0.60±0.05 cycles/deg from

the origin (mean±standard error, obtained from the standard and six other maps), represent-

ing a periodicity of 1.7˚. This value is close to that found for the orientation map (1.6˚), indi-

cating that we should look subcortically for the source of the periodicity.

One possibility is aliasing [34]: the on- and off-centre ganglion cells in our model have a

density of 24.4 and 26.6 cells/deg2, respectively. As described in the Methods, this results in a

periodicity of 6.5˚ which is about four times the required value. Another possibility is shown

in Fig 8B, the upper part of which shows the one-dimensional centre mechanism profiles of

neighbouring on- and off-centre cells. The lower part of Fig 8B shows the difference between

impulses representing off-centre subcortical channels from those representing on-centre channels. The map has been smoothed with a Gaussian profile with standard

deviation 0.1˚. There are areas that are clearly dominated by one or the other sign of response. D. Orientation map produced from taking the dot product of the map

in part C with Gabor functions varying in both spatial phase and orientation. The Gabor functions had a standard deviation of 0.7˚. There are strong similarities with

the map in part B, indicating that the orientation preference map can be largely predicted by the spatial layout of subcortical channels.

https://doi.org/10.1371/journal.pcbi.1007254.g006
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these two profiles to mimic the results of cortical convergence. The Fourier transform of this

difference curve, shown in Fig 8C, has a peak 0.56 cycles/deg from the origin, which translates

to a periodicity of 1.8˚. This value is close to the periodicity of 1.6˚ found in the orientation

map, strongly suggesting that the latter value is set by the differencing of on- and off-centre

receptive field profiles.

Receptive fields

The geniculocortical weight maps in Fig 3 are reminiscent of simple cell receptive fields. We

calculated receptive fields in the model with a sparse noise stimulus: squares of light or dark, as

shown in Fig 9A, were briefly presented at a variety of visual field locations. Responses in excit-

atory cortical neurons were calculated and the peak impulse rate was recorded at each location.

Contour plots of the responses to light and dark are shown in red and blue, respectively. Fig

9B, 9C and 9D show the resulting receptive fields for the neurons whose synaptic weights are

given in Fig 3B, 3C and 3D, respectively.

Stimulus locations far from the neuron produce a generator potential that fails to reach

spike threshold, and the receptive fields are therefore smaller than the corresponding weight

maps. In particular, the weight map in Fig 3B is nearly even-symmetric so that only the central

subfield survives in the receptive field. Otherwise the synaptic weight patterns are faithfully

represented in their receptive fields. Another feature of interest is the peak impulse rate shown

next to each subfield. Responses to dark stimuli are clearly greater than to light stimuli with

the same contrast magnitude, reflecting the dark dominance seen in real cortex [35, 36]. Dark

dominance in the model arises from two sources: off-centre ganglion cells outnumber on-

Fig 7. A. To calculate the periodicity of the orientation preference map, each orientation was replaced by a unit vector and a Fourier transform taken

of the real part of this vector. The graph shows the magnitude of the transform, with the value at zero frequency suppressed. B. This shows the result of

transforming the imaginary part of the unit vector. Both transforms peak at 0.63 cycles/deg which converts to a periodicity of 1.6˚.

https://doi.org/10.1371/journal.pcbi.1007254.g007
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Fig 8. A. The periodicity of the subcortical channel map was calculated by subtracting pulses representing off-centre cell locations from those representing on-

cells, smoothing with the geniculate centre mechanism spatial profile, and Fourier transforming the result. B. The periodicity was also calculated by comparing

on- and off-centre pairs. The upper panel shows the centre mechanism profile for neighbouring on- and off-centre geniculate cells, and the lower panel shows
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centre cells, and off-centre geniculate responses are faster than their on-centre counterparts.

Both of these asymmetries reflect empirical findings [9, 37].

Discussion

In this paper we have described a visual system model supporting the following conclusions.

• A Hebbian process is sufficient to functionally segregate on-centre and off-centre inputs to

primary visual cortex.

• This segregation can produce orientation-selective neurons.

• The resulting selectivity has a precision mirroring that of real cortical neurons.

• The cortical map of orientation preference arises not from cortical sources but from local

clustering of on-centre and off-centre neurons in the retina.

This last conclusion leads to two predictions for future experiments. First, measurement of

the locations of on- and off-centre β ganglion cells in the cat retina will allow the calculation of

the preferred orientations in the corresponding region of primary visual cortex. An experi-

ment testing this prediction would be difficult to perform because it would require simulta-

neous measurement of retinal arrays and preferred orientation in the cortex. We therefore

offer a second prediction, which should be rather more straightforward to test: that the period-

icity of the orientation map depends on the spatial profile of the geniculate relay cell’s centre

mechanism. This result follows from the analysis illustrated in Fig 8. We now discuss some of

the issues arising from our results.

Previous models

A number of previous models have addressed issues such as orientation selectivity and cortical

mapping. How do our results fit in with this previous work? One of the earliest studies was by

von der Malsburg [38], whose model consisted of a retinal layer connected directly to a cortical

layer. Retinocortical connections varied in strength through Hebbian plasticity, producing a

cortical map of preferred orientation. The retina, however, consisted entirely of on-cells, limit-

ing the orientation selectivity of cortical cells. Miller [39] described a model for the develop-

ment of orientation selectivity, and showed that it could produce both receptive fields like

those in simple cells, and cortical maps of orientation preference resembling laboratory obser-

vations. To do this Miller assumed that nearby like-sign subcortical neurons have positively

correlated activity but that the correlation between more distant neurons is between those of

opposite sign. We have not made any assumption about the statistics of subcortical activity.

Instead, we have used the known statistics of subcortical receptive field locations [9] to calcu-

late orientation selectivity: simple cell-like receptive fields result from spatial clustering of

same-sign subcortical channels rather than from response correlations.

Somers, Nelson and Sur [40] described a model in which subcortical inputs provide a mild

orientation bias to cortical neurons, but the authors do not provide a mechanism by which

such a bias might develop. Instead, they showed that the orientation tuning can be sharpened

by connections between excitatory cortical cells, leading to positive feedback. These connec-

tions correspond to the prolific excitatory-to-excitatory synapses found in anatomical studies

[41]. A more recent study [27] has also shown that mutual excitation can improve tuning

their difference. Profile maxima are normalised. C. The on-off difference was Fourier transformed: the normalised magnitude of the transform is shown. The

peak of the transform is at 0.56 cycles/deg which converts to a periodicity of 1.8˚ in the subcortical map.

https://doi.org/10.1371/journal.pcbi.1007254.g008
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Fig 9. A. Receptive fields were calculated using a sparse noise stimulus. The stimulus was a 1˚×1˚ square, shown to scale, presented at the nodes of a

square grid with node spacings of 0.25˚. The patch had a duration of 50 ms and a contrast of ±1. B, C, D. The maximum impulse rate at each stimulus

location was compiled into contours. Responses to lights and darks are shown in red and blue, respectively. Peak impulse rate is shown next to each

subfield and the contours give 0.05, 0.5 and 0.95 of this peak rate. The cortical cells represented in B, C and D are the same as those whose synaptic

weights are shown in Fig 3B, 3C and 3D, respectively.

https://doi.org/10.1371/journal.pcbi.1007254.g009
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sharpness. We have chosen to avoid recurrent connections from excitatory cells for simplicity

and ease of interpretation.

One of the advantages of the Somers et al. [40] model is that the units it uses, such as micro-

metres of cortical surface, correspond with those used in empirical studies. We have taken

their approach even further by specifying spatiotemporal and response parameters with units

of degrees of visual angle, seconds, millivolts and impulses/s. This aids comparison of the

model with experimental observations. Another advantage of our model is that its stimulus

can be any spatiotemporal pattern, provided that it is monocular and monochromatic. The

model can therefore be tested with stimuli not described here.

Development

Previous work has shown that orientation preference maps are firmly established early in

visual life, even though orientation tuning is weak. Chapman et al. [16] used optical imaging to

measure maps in ferret cortex around the time of eye opening. They found that maps in each

animal were geometrically stable over many weeks even though responses were weak in the

earliest recordings. Our model provides a basis for this finding by proposing that the stability

originates in the retinal ganglion cell array. Crair et al. [42] recorded orientation preference

maps in both normal and binocularly deprived cats and found that the maps were present in

animals without visual experience. This suggests that the stimuli we have used to drive Heb-

bian development are due to moving waves of subcortical activity rather than motion in the

visual world.

Later work, however, has introduced a new factor into this parsimonious picture. Smith

et al. [23] used calcium imaging of spontaneous activity in ferret visual cortex to show corre-

lated activity between widespread cortical patches. They found that correlated patches had

similar orientation preferences when stimulated. The patchy correlations were evident before

eye opening, at a time when orientation preference maps were still forming. How the subcorti-

cally driven maps that we have simulated fit in with the long-range cortical networks found by

Smith et al. remains to be determined.

Orientation selectivity

Previous models have assumed that orientation selectivity depends on discrete lines of on- and

off-centre cortical inputs [5, 13] or on small numbers of nearest-neighbour retinal ganglion

cells of opposite sign [10, 11]. Both of these models now look impractical. Consider, for exam-

ple, a visual field point that is 11˚ from the cat’s central area, as in the model we have described.

According to the estimates in the Methods section, the density of X-type retinal ganglion cells

at the corresponding retinal location is about 51 neurons/deg2 [43]. Given that each X-cell

drives one or very few relay neurons in the lateral geniculate nucleus [44, 45], the densities of

geniculocortical inputs will be similar. Those inputs produce a simple cell receptive field with a

median area of 2.7 deg2 [46]. We can therefore expect that about 51×2.7 = 140 subcortical

inputs converge on a simple cell. Reid and Alonso [7] estimated that a third of those inputs are

functionally effective, while our estimate (Fig 3B, which shows that one or other input sign

dominates at each point) is closer to one half. We therefore estimate that a simple cell is driven

by 47 to 70 subcortical neurons, substantially higher than in the earlier models.

A recent paper [47] modelled the contribution of retinal on/off pairs to cortical orientation

preference maps. The authors concluded that paired interactions do not lead to realistic orien-

tation preference maps. Our results provide an alternative model, namely that orientation pref-

erence arises from localised high densities of same-sign retinal neurons. In particular,

orientation preference at a specific visual field location is determined by a retinal area in which
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on-centre neurons are more densely packed than are off-centre neurons, and a nearby area in

which off-centre neurons are more densely packed (Fig 6C). Whether our model reflects the

seeding of real orientation preference maps remains to be tested in the laboratory.

Random variation

There are two sources of randomness in the model, both structural. The first is the random

variation of a channel location about its node on a rectangular grid. This variation seeds the

orientation map. The second source of random variation is the sequence in which channels

are tested with an increase in geniculocortical strength. Changing this sequence has little effect

on the results. We have chosen not to add noise to the membrane potential: all of the differen-

tial equations defining the model are deterministic. This choice comes with two disadvantages.

First, two studies [48, 49] have shown that membrane potential noise helps to preserve the pre-

cision of orientation tuning as contrast increases. Contrast invariance in our model may suffer

from the lack of membrane potential noise. Second, the frequency histograms generated by

the model are substantially narrower than those recorded in the laboratory (Figs 4D and 5D).

Membrane potential noise would broaden the model histograms. We have chosen, however,

to exclude such noise from the model in order to make it simpler to interpret.

We calculated impulse rate by thresholding membrane potential without considering ran-

dom fluctuations in potential. There is strong empirical support for this approach. Carandini

and Ferster [50] recorded membrane potential in primary visual cortical cells, low-pass filtered

the potential and then applied a half-wave rectifier to predict impulse rate. The prediction

worked well over a wide variety of conditions, including adaptation and a range of contrasts.

Our model uses the relationship they measured between membrane potential and impulse

rate, as shown in Eq 2.

Resting activity

Resting activity is a key component in our model. In keeping with subcortical measurements

[51] we assume that X-cells have a substantial resting impulse rate, which helps to linearise

their responses to stimuli of moderate contrast. This resting activity translates to an even

higher impulse rate in the cortical inhibitory neurons, which corresponds with empirical find-

ings [21]. In turn, the high firing rate in inhibitory neurons produces a resting hyperpolarisa-

tion in the cortical excitatory neurons. This matches the absolute contrast threshold found in

simple cells [52] and the hyperpolarisation in intracellularly recorded simple cells [53]. All of

these resting activities in the model result from a single parameter, the constant depolarisation

added to the ganglion cell generator potential (Eq 8). While resting activity in the real visual

system may derive from multiple sources, it is interesting that we have been able to construct

an internally consistent model in which resting activities result from a single subcortical

source.

Methods

Model equations in the time domain

Here we derive the equations describing the model. Each neuron is represented by a single

nonlinear differential equation, and time courses are obtained by simultaneous numerical inte-

gration of the equations for all neurons. The difference between membrane potential at the ini-

tial segment of a neuron’s axon and action potential threshold determines the action potential

rate. This difference is therefore called the generator potential, denoted by p(t) where t is time.

The input to the neuron is a set of synaptic potentials, vi(t), each of which is weighted by a
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gain, gi. The model assumes that the neuron is a low-pass filter that integrates the difference

between the driving potential and generator potential:

t
dpðtÞ
dt
¼
X

i

giviðtÞ � pðtÞ ð1Þ

where τ is the time constant. The neuron’s action potential rate, a(t), is obtained by rectifying

the generator potential:

aðtÞ ¼ grecthðpðtÞÞ where hðpÞ ¼
p; p � 0

0; p < 0
ð2Þ

(

To complete Eq 1 we need to know how the activity in one processing stage, z, depends on

that in the previous stage, z−1. We assume that the postsynaptic potential, vi, is proportional to

presynaptic impulse rate. The general equation for a model neuron is then:

t
dpzðtÞ
dt
¼
X

i

gihðpi;z� 1ðtÞÞ � pzðtÞ ð3Þ

where proportionality constants have been absorbed into gain gi.
The general equation requires modification for each stage of the model. The stage numbers

are 1 to 7 representing, in order, photoreceptors, bipolar cells, ganglion cells, geniculate neu-

rons, inhibitory neuron somas, inhibitory neuron axons, and excitatory cells. Fig 1 shows the

signal-processing sequence. The photoreceptors receive their input from the visual stimulus

rather than a presynaptic neuron, and do not produce action potentials:

t
dpj1ðtÞ
dt

¼ � gjsðx; yÞ � sðt; x; yÞ � pj1ðtÞ ð4Þ

where p represents the difference between membrane potential and resting potential rather

than generator potential, j is channel number, the subscript s indicates subcortex, x and y give

visual field location and s(t,x,y) is the stimulus. We use the (�) symbol to represent both vector

and integral dot products. The gain is a Gaussian function of location representing subcortical

spatial spread due to optical blurring and neural convergence:

gjsðx; yÞ ¼
gs
prs2

expð�
ðx � xjÞ

2
þ ðy � yjÞ

2

rs2
Þ ð5Þ

where gs and rs are the contrast sensitivity and radius of the centre mechanism (the model

does not include a surround mechanism) and (xj, yj) is the spatial location of channel j. The

dot symbol in Eq 4 represents the dot product:

gjsðx; yÞ � sðt; x; yÞ ¼
Z 1

y¼� 1

Z 1

x¼� 1
gjsðx; yÞsðt; x; yÞdxdy ð6Þ

The minus sign preceding the dot product in Eq 4 corresponds to photoreceptor hyperpolari-

sation by light.

Bipolar cells do not produce action potentials and can be on- or off-centre:

tj
dpj2ðtÞ
dt

¼ � njpj1ðtÞ � pj2ðtÞ ð7Þ

where τj and nj are the time constant and sign for channel j. Ganglion cells produce action

potentials so p represents generator potential for these and subsequent neurons. Ganglion cells
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also have a resting impulse rate, which is implemented in the model by adding a constant

depolarisation, ps, to the driving potential:

tj
dpj3ðtÞ
dt

¼ pj2ðtÞ þ ps � pj3ðtÞ ð8Þ

Relay cells in the dorsal lateral geniculate nucleus inherit the constant depolarisation from,

and rectify, their input:

tj
dpj4ðtÞ
dt

¼ hðpj3ðtÞÞ � pj4ðtÞ ð9Þ

The input to inhibitory cortical neuron k is obtained by taking the dot product of the sub-

cortical input with a Gaussian convergence function:

t
dpk5ðtÞ
dt

¼
X

j
gkcðxj; yjÞwjk hðpj4ðtÞÞ � pk5ðtÞ ð10Þ

where the convergence function gkc is obtained by subscript substitution into Eq 5, c stands for

cortex, and wjk is the strength of the synapse from subcortical input j. The generator potential

in the inhibitory neuron initial segment is rectified and integrated by its axon and connection

into the inhibitory network:

tinh
dpk6ðtÞ
dt

¼ hðpk5ðtÞÞ � pk6ðtÞ ð11Þ

Finally, excitatory cortical neuron k is driven by the sum of its subcortical and inhibitory

inputs:

t
dpk7ðtÞ
dt

¼
X

j
gkcðxj; yjÞwjk h pj4ðtÞ

� �
�
X

l
gkeðxl; ylÞpl6ðtÞ � pk7ðtÞ ð12Þ

where e stands for excitatory neuron. Eqs 4–12 together define the model.

Model equations in the frequency domain

We transformed the model into the frequency domain for two reasons. First, we reduced the

possibility of mathematical and computational errors by ensuring that the solutions in the

temporal and frequency domains agreed to within round-off error. Second, we reduced com-

putation time by performing most of the calculations in the frequency domain. The Fourier

transform of Eq 4 is:

itoPj1ðoÞ ¼ � gjsðx; yÞ � Sðo; x; yÞ � Pj1ðoÞ ð13Þ

where i ¼
ffiffiffiffiffiffiffi
� 1
p

, ω is temporal frequency, and Fourier transforms are shown in upper case.

Thus:

Pj1ðoÞ ¼
� gjsðx; yÞ � Sðo; x; yÞ

1þ ito
ð14Þ
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Similarly, the transforms for the following subcortical stages are:

Pj2ðoÞ ¼
� njPj1ðoÞ
1þ itjo

Pj3ðoÞ ¼ ps2pdðoÞ þ
Pj2ðoÞ

1þ itjo

Pj4ðoÞ ¼
Fðhðpj3ðtÞÞ
1þ itjo

ð15Þ

where δ is the Dirac delta function and F is the Fourier transform. At the cortical level:

Pk5ðoÞ ¼
P

jgkcðxj; yjÞwjk Fðhðpj4ðtÞÞÞ
1þ ito

Pk6ðoÞ ¼
Fðhðpk5ðtÞÞÞ
1þ itinho

Pk7ðoÞ ¼
P

jgkcðxj; yjÞwjk Fðhðpj4ðtÞÞÞ �
P

lgkeðxl; ylÞPl6ðoÞ
1þ ito

ð16Þ

Solution for drifting grating

Most of the simulations in the paper use a drifting grating as stimulus. We made these simula-

tions faster by using the analytical solution for the dot product, Eq 6; the solution follows.

There is no surround antagonism in the basic model. To compensate, stimuli are defined in

terms of contrast rather than luminance. Contrast is obtained by finding the difference

between local and background luminance, and dividing the difference by background lumi-

nance. The equation for a drifting grating is:

sjðt; uÞ ¼ ccosðcstimðuþ ujÞ � ostimtÞ ð17Þ

where c is the contrast, ψstim is the spatial frequency, ωstim is the temporal frequency, and u =

cos(θ)x+sin(θ)y is the distance in the grating’s direction of motion, θ, with uj being the location

of the jth channel. The dot product is then:

gjsðx; yÞ � sðt; x; yÞ ¼
RR1
� 1

gsc
pr2

s

exp �
u2 þ v2

r2
s

� �

cosðcstimðuþ ujÞ � ostimtÞdudv

¼ gsc exp �
r2
scstim

2

4

� �

cosðcstimuj � ostimtÞ
ð18Þ

(where v is distance perpendicular to u) which has transform

gjsðx; yÞ � Sðo; x; yÞ ¼ pgsc exp �
r2
scstim

2

4

� �

expð� iujcstimÞðdðo � ostimÞ þ dðoþ ostimÞÞ ð19Þ

Neuronal location

A neuron’s location is defined in the model by the centre of the convergence function that

weights its inputs. Off-centre subcortical channels were located at the nodes of a square grid

aligned with the visual field patch, with a node at the centre of the patch. Each location was

then perturbed with a Gaussian deviate in both the horizontal and vertical directions. Jang and

Paik [54] provided evidence for developmental repulsion between on- and off-centre ganglion
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cells. Accordingly, on-centre channels were distributed similarly to off-centre channels except

that the grid was offset: the four nodes closest to the centre of the visual field patch were equi-

distant from the centre. Cortical neurons were located on an unperturbed grid aligned with

the patch, with the central node at the centre of the patch. Both an inhibitory and excitatory

neuron were located at each grid node.

The model used a retinal ganglion cell map based on the work of Wässle et al. [9]. Fig 10

illustrates two analyses designed to test whether the map we used accurately reproduces the

statistics of measured maps. Part A shows the frequency histogram for the distance between

nearest on- and off-centre neighbours on the left and right, respectively. Wässle et al.’s data are

shown in red and the model in blue. The widths of the measured and modelled histograms are

similar, as required. Part B provides a test for whether the modelled on- and off-centre maps

are statistically independent, as defined by Rodieck [55]. Each histogram shows the density of

on-centre cells in annuli of the stated distance from reference off-centre cells. Histograms are

provided for two random seeds used to generate the maps. For each seed, a linear regression

performed on the data showed that there was no linear trend (seed 1: F(1,18) = 1.12,p = .30;

seed 2: F(1,18) = 0.23,p = .64). Our modelled maps are therefore consistent with the conclusion

of Eglen et al. [56] that on- and off-centre maps are independent outside a small inner area.

Development

The development process adjusted the strength of the synapse of each geniculate neuron onto

each of its cortical targets. At the start of development all of these synapses were assigned a

weight of 1. For each development cycle a geniculate neuron was selected, with all neurons

equally likely to be chosen. All synaptic weights for this neuron were increased by 0.2 and the

model was stimulated with gratings drifting in 16 directions evenly distributed across the

whole range. Each excitatory cortical neuron’s impulse rate was calculated, and if the maxi-

mum response increased relative to the previous cycle, the weight increase was retained for

that neuron. Otherwise, the weight was reduced by 0.2 relative to its value on the previous

cycle. Weights were restricted to lie between 0 and 2.

The number of development cycles was determined as follows. Each geniculocortical syn-

apse needed five cycles to change from its starting value to its minimum or maximum. The

number of cycles was therefore set at five times the number of geniculate neurons,

5×3281 = 16405, and rounded to the nearest thousand, 16000. Figs 2 and 4C show that synap-

tic strength and response amplitude, respectively, change very little between cycles 10666 and

16000. Indeed, response amplitude changed by at most 2% between these two cycles. We there-

fore refer to cycle 16000 as “After development”. Previous work has shown that inhibitory con-

nections mature during visual development [57]. We therefore increased the strength of the

synapse of inhibitory neurons onto excitatory neurons during development. All of these syn-

apses had equal strength, which increased linearly with development cycle from 1 to ge.

Parameter settings

Table 1 provides a glossary of model parameters and their values. The following text describes

these parameters and explains how they were set.

Spatial parameters

Location and size of visual field patch. We simulated a visual field patch centred on the

horizontal meridian, and 11˚ from the central area. The size, 8˚×8˚, is substantially larger than

a typical cortical receptive field.
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Fig 10. A. The statistics of the retinal ganglion cell map. Frequency histograms for the distance between nearest neighbours are shown for on-centre (left) and

off-centre (right) cells in Fig 6 of Wässle et al. [9] (red lines) and the model (blue lines). Distances are normalised by dividing by the mean of the population

represented. Frequencies are normalised to a maximum of unity. B. Density recovery profiles [55] for modelled retinal ganglion cell maps. Each point shows

the density of on-centre cells in an annulus of the stated diameter from reference off-centre cells. The analysis was performed for two maps (left and right)

generated by differing random seeds in the model. The p-value shown is the probability under the null hypothesis that a straight line fitted to the data has zero

slope.

https://doi.org/10.1371/journal.pcbi.1007254.g010
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Retinal magnification factor. Hughes [58] calculated a factor of 0.20 mm/deg. The retinal

patch therefore had an eccentricity of 11×0.20 = 2.2 mm.

Concentration of retinal ganglion cells. The mean density of β ganglion cells at 11˚

eccentricity is 1275 cells/mm2 [43]. Given that β cells are the morphological correlates of X-

type ganglion cells, the mean concentration of X-cells is then 1275×(0.2)2 = 51 cells/deg2. Wäs-

sle et al. [9] counted 65 on- and 71 off-centre cells in their analysed sample (their Fig 6). The

concentration of X-type on-centre cells is therefore (65/(65+71))×51 = 24.4 cells/deg2 and,

similarly, 26.6 for off-centre cells.

Subcortical channel location. Wässle et al. found that the packing of same-sign β cells

ranged between square and hexagonal arrays; we used a square grid for simplicity. They mea-

sured the distance between same-sign nearest neighbours and found that the standard devia-

tion divided by distance was 0.189. We therefore placed on-channels on a square grid with

1=
ffiffiffiffiffiffiffiffiffi
24:4
p

¼ 0:20� spacing and then perturbed the locations with a 0.20×0.189 = 0.038˚ Gauss-

ian deviate. Similarly, off-channels were placed on a 0.19˚±0.037˚ grid.

Table 1. Glossary of symbols. Glossary of model parameters and their values to two significant figures.

Symbol Parameter Value Unit

c Contrast 0.3, unless otherwise stated None

gs Contrast sensitivity of centre mechanism 62 mV / contrast-unit

gc Gain of geniculocortical convergence 3.5 None

ge Gain of inhibitory-excitatory convergence 2.2 None

grect Rectifier gain 7.2 Hz/mV

j Index of subcortical channel 1,2,. . .,3281 None

k Index of cortical neuron 1,2,. . .,6561 None

nj Sign of subcortical channel j 1 on� channel

� 1 off � channel

(
None

ω Temporal frequency Variable radians/s

ωstim Stimulus temporal frequency 2π × 2 radians/s

p Generator potential, or difference between membrane and resting potential Variable mV

ps Static subcortical depolarisation 1.9 mV

rs Radius of centre mechanism 0.4 deg

rc Radius of geniculocortical convergence 0.95 deg

re Radius of inhibitory-excitatory convergence 0.95 deg

ψ Spatial frequency Variable radians/deg

ψstim Stimulus spatial frequency 2π×0.5 radians/deg

t Time Variable s

τ Time constant, stages 1, 5, 7 0.01 s

τinh Time constant, stage 6 0.2 s

τj Time constant of channel j, stages 2, 3, 4 0:011 on� channel

0:009 off � channel

(
s

θ Motion direction of stimulus Variable radians

wjk Weight of synapse from subcortical channel j to cortical neuron k 0–2 None

x Horizontal position in visual field Variable deg

xj Horizontal position of subcortical channel j Variable deg

xk Horizontal position of cortical neuron k Variable deg

y Vertical position in visual field Variable deg

yj Vertical position of subcortical channel j Variable deg

yk Vertical position of cortical neuron k Variable deg

z Index of processing stage 1, 2, . . ., 7 None

https://doi.org/10.1371/journal.pcbi.1007254.t001
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Centre mechanism size. Saul and Humphrey [59] measured the centre size of X-type

geniculate cells at a mean eccentricity of 11˚, which is the reason we chose this eccentricity for

the visual field patch. From their mean radius of the centre mechanism of (non-lagged) X-

cells, rs = 0.40˚.

Cortical magnification factor. We use the value measured by Tusa et al. [60] at 11˚

eccentricity along the horizontal meridian to obtain the cortical magnification factor: 0.45

mm2/deg2.

Radius of geniculocortical convergence. This radius is derived from the work of Jones

and Palmer [46], who modelled simple cell receptive fields as Gabor functions. Their Table 1

provides the width of the Gaussian functions they used to compute the Gabors. Converting

from standard deviation to radius and taking the median across their sample yields the value

1.03˚. This value represents the dot product of the subcortical centre mechanism with genicu-

locortical convergence. Deconvolution gives rc = 0.95˚.

Location of cortical neurons. The critical issue in choosing cortical cell density is that it

be substantially less than the radius of the geniculocortical convergence. We chose to situate

both excitatory and inhibitory neurons on a square grid with 0.1˚ spacing.

Radius of inhibitory-excitatory convergence. We have not found a measurement of

inhibitory receptive field radius as rigorous as the Jones and Palmer analysis of simple cells.

We have therefore set the radius equal to rc.

Temporal parameters

Time constants. Each subcortical channel consists of a cascade of four first-order low-

pass filters. The impulse response of a series of z low-pass filters with time constant τ peaks at

(z−1)τ. A cortical cell receiving this input is the fifth cell in the cascade and therefore has a

peak time of 4τ. Since simple cell impulse responses peak at values as low as 40 ms [22], τ = 40/

4 = 10 ms.

Subcortical time constants. It has recently been shown that off-centre X-type geniculate

cells lead their on-centre counterparts. The leading edge of the impulse response in off-cells

precedes that in on-cells by a mean of 3 ms when measured at 40% of maximum response [37].

We replicated this result by setting time constants in stages 2, 3 and 4 of the subcortical chan-

nels as follows: τj = 11 ms, on-channel, τj = 9 ms, off-channel.

Inhibitory time constant. Inhibitory strength is an important variable in our model, but

setting this strength involves a trade-off between the inhibitory time constant and the inhibi-

tory-to-excitatory gain. We have chosen to set the inhibitory time constant to a relatively large

value and use empirical evidence to set inhibitory-excitatory gain as described below. The time

constant, 200 ms, is large enough to match the long-lasting inhibitory tail seen in simple cells

responding to flashed stimuli [22].

Intensive parameters

Generator gain. The form of the generator function and its gradient, grect = 7.2 Hz/mV,

are taken directly from the work of Carandini and Ferster [50].

Geniculate contrast sensitivity. This parameter is calculated by integrating the centre

mechanism’s spatial profile over both dimensions:

Z Z
gs
pr2

s

exp �
x2 þ y2

r2
s

� �

dxdy ¼ gs ð20Þ

We set this equal to the contrast sensitivity of the X-type ganglion cell centre mechanism,

620 Hz/contrast-unit (from the 2 Hz data in Fig 12 of Frishman et al. [61]), multiplied by the
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attenuation between retina and geniculate, 0.73 (from Fig 5A of Kaplan et al. [51]). Finally,

converting from Hz to mV, gs is given by:

gsgrect ¼ 620� 0:73 ¼ 450 Hz=contrast� unit

Subcortical resting depolarisation. The resting impulse rate of geniculate cells averages

14 Hz [51]. Thus:

ps ¼ 14 Hz=grect ¼ 1:9 mV

Cortical contrast sensitivity. The contrast sensitivity of cortical neurons is best calculated

from empirical measurements of cortical membrane potential, which avoid the complications

of action potential thresholding. Carandini and Ferster [50] measured the membrane potential

of simple cells stimulated with gratings of optimal orientation and spatial frequency. For the

three cells in their Fig 13, response amplitude divided by contrast has a maximum gradient

that averaged 70 mV/contrast-unit. The geniculocortical gain gc was set so that model contrast

sensitivity was close to this value.

Inhibitory-excitatory gain. This gain sets the resting hyperpolarisation in excitatory cells.

Anderson et al. [53] measured this hyperpolarisation in nine simple cells and found a median

difference of 9 mV between the threshold and resting potential. Gain ge was set so that the rest-

ing hyperpolarisation in excitatory cells approximated this value.

Predicting the orientation map

Fig 6D shows the orientation preference map calculated from the spatial map of subcortical

channels. The calculation used the following steps.

1. The subcortical map was represented by a grid with elements fine enough (0.005˚×0.005˚)

that on- and off-channels did not coincide.

2. On- and off-channels locations were assigned the grid values 1 and –1, respectively, and all

other locations zero. Fig 6C shows a smoothed version of this location map.

3. Gabor functions were constructed with a standard deviation of 0.7˚, the standard spatial

frequency (0.5 cycles/deg), 8 orientations uniformly distributed across the range 0 to 180˚,

and 8 phases uniformly distributed across the range 0 to 360˚.

4. The dot product of the channel grid and each of the (stationary) Gabors was calculated.

5. For each grid location the maximum value of the product across orientations and phases

was determined.

6. The orientation that yielded the maximum value at each grid point was used as the pre-

ferred orientation.

Analysing the orientation map

Periodicity. The periodicity of the orientation preference map shown in Fig 6B was calcu-

lated in several steps. First, the orientation preference at each location was converted to a vec-

tor with unit length. Second, each vector was replaced by its real part and the resulting map

was cropped to 5˚×5˚ to avoid edge effects. Third, a two-dimensional Fourier transform was

computed; its magnitude is shown in Fig 7A, with the component at zero spatial frequency set

to zero. In the same way, a transform was also calculated for the vector imaginary part and is
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shown in part B of the figure. In each case the maximum magnitude of the transform was 0.63

cycles/deg from the origin, leading to a periodicity of 1.6˚.

Pinwheels. We defined a pinwheel as a location in the orientation preference map for

which at least three orientations were contiguous. Counting pinwheels in the central 5˚×5˚ of

Fig 6B yielded 1.1 pinwheels/deg2. From the preceding paragraph, the area of an orientation

hypercolumn is 1.62 deg2. Multiplying these two values gives 2.8 pinwheels/hypercolumn.

Aliasing. Off-centre ganglion cells in the model lie on a square grid perturbed by Gauss-

ian deviates. On-cells lie on a perturbed grid offset diagonally from the off-centre grid. Given

that on- and off-cells have differing densities, aliasing can occur along the diagonal axis. The

density of off-cells is 26. 6 cells/deg2 so that the distance between neighbouring cells on the

diagonal axis averages doff ¼
ffiffiffi
2
p

=
ffiffiffiffiffiffiffiffiffi
26:6
p

deg. Similarly, the distance between on-cells averages

don ¼
ffiffiffi
2
p

=
ffiffiffiffiffiffiffiffiffi
24:4
p

deg. Assuming that the aliasing period contains n on-cells, then ndon =

(n+1)doff. Thus the aliasing period is ndon = dondoff/(don−doff) = 6.5˚.

Periodicity due to on-off difference. The receptive field profile shown in Fig 8B was cal-

culated by integrating Eq 5 over dimension y and normalising both location and amplitude: g
(x) = exp(−x2/rs2). Given the densities of the retinal ganglion cells, the distance between neigh-

bouring on- and off-cells will typically be less than 0.1˚. This is small relative to the radius of

the profile, rs = 0.4˚. The difference between the on- and off-centre receptive field profiles can

therefore be well approximated by the derivative of g(x). Indeed, the difference and derivative

are indistinguishable on the scale of Fig 8B. The Fourier transform in Fig 8C is given by

FðdgðxÞ=dxÞ ¼ i
ffiffiffi
p
p

rscexpð� rs2c
2
=4Þ, where F is the Fourier transform and ψ is spatial fre-

quency. The maximum magnitude of this function is at 1=ð
ffiffiffi
2
p

prsÞ ¼ 0:56 cycles=deg which

translates to a periodicity of
ffiffiffi
2
p

prs ¼ 1:8 deg.

Computation

All simulations were performed in Matlab 2017b (The MathWorks, Inc): the computer code is

provided in the Supporting information. Computational errors were reduced by running the

model in both the temporal and frequency domains and ensuring that the solutions matched

to within round-off error. The model was simulated using an 8˚×8˚ visual field patch but only

6˚×6˚ is displayed, to reduce edge effects. There were 3281 subcortical channels and 6561

excitatory cortical neurons, and therefore 2.2×107 geniculocortical weights. The weights were

calculated over 16,000 development cycles. This calculation, which took 176 machine hours,

was performed on the University of Sydney’s high-performance computing cluster, Artemis.
We thank the Sydney Informatics Hub for the use of this facility.

Supporting information

S1 Code. Computer code for running the model.
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32. Kaschube M, Schnabel M, Löwel S, Coppola DM, White LE, Wolf F. Universality in the evolution of ori-

entation columns in the visual cortex. Science. 2010; 330: 1113–6. https://doi.org/10.1126/science.

1194869 PMID: 21051599

33. Schottdorf M, Keil W, Coppola D, White LE, Wolf F. Random Wiring, Ganglion Cell Mosaics, and the

Functional Architecture of the Visual Cortex. PLoS Comput Biol. 2015; 11: e1004602. https://doi.org/

10.1371/journal.pcbi.1004602 PMID: 26575467

34. Paik SB, Ringach DL. Retinal origin of orientation maps in visual cortex. Nat Neurosci. 2011; 14: 919–

25. https://doi.org/10.1038/nn.2824 PMID: 21623365

35. Jin JZ, Weng C, Yeh C-I, Gordon JA, Ruthazer ES, Stryker MP, et al. On and off domains of geniculate

afferents in cat primary visual cortex. Nat Neurosci. 2008; 11: 88–94. https://doi.org/10.1038/nn2029

PMID: 18084287

Origin and development of orientation selectivity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007254 July 29, 2019 29 / 31

https://doi.org/10.1523/JNEUROSCI.2099-17.2017
https://doi.org/10.1523/JNEUROSCI.2099-17.2017
http://www.ncbi.nlm.nih.gov/pubmed/29196320
http://www.ncbi.nlm.nih.gov/pubmed/1464764
https://doi.org/10.1523/JNEUROSCI.16-20-06443.1996
http://www.ncbi.nlm.nih.gov/pubmed/8815923
https://doi.org/10.1038/249375a0
http://www.ncbi.nlm.nih.gov/pubmed/4842746
https://doi.org/10.1371/journal.pone.0034466
http://www.ncbi.nlm.nih.gov/pubmed/22496811
https://doi.org/10.1093/cercor/7.6.534
http://www.ncbi.nlm.nih.gov/pubmed/9276178
https://doi.org/10.1152/jn.1993.69.4.1091
http://www.ncbi.nlm.nih.gov/pubmed/8492151
https://doi.org/10.1038/s41593-018-0247-5
https://doi.org/10.1038/s41593-018-0247-5
http://www.ncbi.nlm.nih.gov/pubmed/30349107
https://doi.org/10.1126/science.274.5290.1133
http://www.ncbi.nlm.nih.gov/pubmed/8895456
https://doi.org/10.1152/jn.1963.26.6.1003
http://www.ncbi.nlm.nih.gov/pubmed/14084161
https://doi.org/10.1113/jphysiol.1983.sp014941
http://www.ncbi.nlm.nih.gov/pubmed/6655583
https://doi.org/10.1038/ncomms13529
http://www.ncbi.nlm.nih.gov/pubmed/27876796
https://doi.org/10.1016/j.neuron.2008.01.020
http://www.ncbi.nlm.nih.gov/pubmed/18341988
https://doi.org/10.1038/353429a0
http://www.ncbi.nlm.nih.gov/pubmed/1896085
https://doi.org/10.1002/cne.902550307
https://doi.org/10.1002/cne.902550307
http://www.ncbi.nlm.nih.gov/pubmed/3819021
https://doi.org/10.1007/bf00608236
http://www.ncbi.nlm.nih.gov/pubmed/2323374
https://doi.org/10.1126/science.1194869
https://doi.org/10.1126/science.1194869
http://www.ncbi.nlm.nih.gov/pubmed/21051599
https://doi.org/10.1371/journal.pcbi.1004602
https://doi.org/10.1371/journal.pcbi.1004602
http://www.ncbi.nlm.nih.gov/pubmed/26575467
https://doi.org/10.1038/nn.2824
http://www.ncbi.nlm.nih.gov/pubmed/21623365
https://doi.org/10.1038/nn2029
http://www.ncbi.nlm.nih.gov/pubmed/18084287
https://doi.org/10.1371/journal.pcbi.1007254


36. Yeh CI, Xing D, Shapley RM. "Black" responses dominate macaque primary visual cortex V1. Journal

of Neuroscience. 2009; 29: 11753–60. https://doi.org/10.1523/JNEUROSCI.1991-09.2009 PMID:

19776262

37. Jin J, Wang Y, Lashgari R, Swadlow HA, Alonso J-M. Faster thalamocortical processing for dark than

light visual targets. Journal of Neuroscience. 2011; 31: 17471–9. https://doi.org/10.1523/JNEUROSCI.

2456-11.2011 PMID: 22131408

38. von der Malsburg C. Self-organization of orientation sensitive cells in the striate cortex. Kybernetik.

1973; 14: 85–100. PMID: 4786750

39. Miller KD. A model for the development of simple cell receptive fields and the ordered arrangement of

orientation columns through activity-dependent competition between ON- and OFF-center inputs. J

Neurosci. 1994; 14: 409–41. PMID: 8283248

40. Somers DC, Nelson SB, Sur M. An emergent model of orientation selectivity in cat visual cortical simple

cells. Journal of Neuroscience. 1995; 15: 5448–65. PMID: 7643194

41. Martin KA. From single cells to simple circuits in the cerebral cortex. Q J Exp Physiol. 1988; 73: 637–

702. PMID: 3068702

42. Crair MC, Gillespie DC, Stryker MP. The role of visual experience in the development of columns in cat

visual cortex. Science. 1998; 279: 566–70. https://doi.org/10.1126/science.279.5350.566 PMID:

9438851

43. Stein JJ, Johnson SA, Berson DM. Distribution and coverage of beta cells in the cat retina. Journal of

Comparative Neurology. 1996; 372: 597–617. https://doi.org/10.1002/(SICI)1096-9861(19960902)

372:4<597::AID-CNE8>3.0.CO;2-# PMID: 8876456

44. Cleland BG, Dubin MW, Levick WR. Simultaneous recording of input and output of lateral geniculate

neurones. Nature New Biol. 1971; 231: 191–2. PMID: 4325715

45. Martinez LM, Molano-Mazon M, Wang X, Sommer FT, Hirsch JA. Statistical wiring of thalamic receptive

fields optimizes spatial sampling of the retinal image. Neuron. 2014; 81: 943–56. https://doi.org/10.

1016/j.neuron.2013.12.014 PMID: 24559681

46. Jones JP, Palmer LA. An evaluation of the two-dimensional Gabor filter model of simple receptive fields

in cat striate cortex. J Neurophysiol. 1987; 58: 1233–58. https://doi.org/10.1152/jn.1987.58.6.1233

PMID: 3437332

47. Schottdorf M, Eglen SJ, Wolf F, Keil W. Can retinal ganglion cell dipoles seed iso-orientation domains in

the visual cortex? PLoS One. 2014; 9: e86139. https://doi.org/10.1371/journal.pone.0086139 PMID:

24475081

48. Anderson JS, Lampl I, Gillespie DC, Ferster D. The contribution of noise to contrast invariance of orien-

tation tuning in cat visual cortex. Science. 2000; 290: 1968–72. https://doi.org/10.1126/science.290.

5498.1968 PMID: 11110664

49. Hansel D, van Vreeswijk C. How noise contributes to contrast invariance of orientation tuning in cat

visual cortex. Journal of Neuroscience. 2002; 22: 5118–28. PMID: 12077207

50. Carandini M, Ferster D. Membrane potential and firing rate in cat primary visual cortex. Journal of Neu-

roscience. 2000; 20: 470–84. PMID: 10627623

51. Kaplan E, Purpura K, Shapley RM. Contrast affects the transmission of visual information through the

mammalian lateral geniculate nucleus. J Physiol. 1987; 391: 267–88. https://doi.org/10.1113/jphysiol.

1987.sp016737 PMID: 2832591

52. Dean AF. The relationship between response amplitude and contrast for cat striate cortical neurones. J

Physiol. 1981; 318: 413–27. https://doi.org/10.1113/jphysiol.1981.sp013875 PMID: 7320898

53. Anderson JS, Carandini M, Ferster D. Orientation tuning of input conductance, excitation, and inhibition

in cat primary visual cortex. Journal of Neurophysiology. 2000; 84: 909–26. https://doi.org/10.1152/jn.

2000.84.2.909 PMID: 10938316

54. Jang J, Paik SB. Interlayer repulsion of retinal ganglion cell mosaics regulates spatial organization of

functional maps in the visual cortex. J Neurosci. 2017; 37: 12141–52. https://doi.org/10.1523/

JNEUROSCI.1873-17.2017 PMID: 29114075

55. Rodieck RW. The density recovery profile: a method for the analysis of points in the plane applicable to

retinal studies. Vis Neurosci. 1991; 6: 95–111. PMID: 2049333

56. Eglen SJ, Diggle PJ, Troy JB. Homotypic constraints dominate positioning of on- and off-center beta ret-

inal ganglion cells. Vis Neurosci. 2005; 22: 859–71. https://doi.org/10.1017/S0952523805226147

PMID: 16469193

57. Huang ZJ. Activity-dependent development of inhibitory synapses and innervation pattern: role of

GABA signalling and beyond. J Physiol. 2009; 587: 1881–8. https://doi.org/10.1113/jphysiol.2008.

168211 PMID: 19188247

Origin and development of orientation selectivity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007254 July 29, 2019 30 / 31

https://doi.org/10.1523/JNEUROSCI.1991-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19776262
https://doi.org/10.1523/JNEUROSCI.2456-11.2011
https://doi.org/10.1523/JNEUROSCI.2456-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/22131408
http://www.ncbi.nlm.nih.gov/pubmed/4786750
http://www.ncbi.nlm.nih.gov/pubmed/8283248
http://www.ncbi.nlm.nih.gov/pubmed/7643194
http://www.ncbi.nlm.nih.gov/pubmed/3068702
https://doi.org/10.1126/science.279.5350.566
http://www.ncbi.nlm.nih.gov/pubmed/9438851
https://doi.org/10.1002/(SICI)1096-9861(19960902)372:4<597::AID-CNE8>3.0.CO;2-#
https://doi.org/10.1002/(SICI)1096-9861(19960902)372:4<597::AID-CNE8>3.0.CO;2-#
http://www.ncbi.nlm.nih.gov/pubmed/8876456
http://www.ncbi.nlm.nih.gov/pubmed/4325715
https://doi.org/10.1016/j.neuron.2013.12.014
https://doi.org/10.1016/j.neuron.2013.12.014
http://www.ncbi.nlm.nih.gov/pubmed/24559681
https://doi.org/10.1152/jn.1987.58.6.1233
http://www.ncbi.nlm.nih.gov/pubmed/3437332
https://doi.org/10.1371/journal.pone.0086139
http://www.ncbi.nlm.nih.gov/pubmed/24475081
https://doi.org/10.1126/science.290.5498.1968
https://doi.org/10.1126/science.290.5498.1968
http://www.ncbi.nlm.nih.gov/pubmed/11110664
http://www.ncbi.nlm.nih.gov/pubmed/12077207
http://www.ncbi.nlm.nih.gov/pubmed/10627623
https://doi.org/10.1113/jphysiol.1987.sp016737
https://doi.org/10.1113/jphysiol.1987.sp016737
http://www.ncbi.nlm.nih.gov/pubmed/2832591
https://doi.org/10.1113/jphysiol.1981.sp013875
http://www.ncbi.nlm.nih.gov/pubmed/7320898
https://doi.org/10.1152/jn.2000.84.2.909
https://doi.org/10.1152/jn.2000.84.2.909
http://www.ncbi.nlm.nih.gov/pubmed/10938316
https://doi.org/10.1523/JNEUROSCI.1873-17.2017
https://doi.org/10.1523/JNEUROSCI.1873-17.2017
http://www.ncbi.nlm.nih.gov/pubmed/29114075
http://www.ncbi.nlm.nih.gov/pubmed/2049333
https://doi.org/10.1017/S0952523805226147
http://www.ncbi.nlm.nih.gov/pubmed/16469193
https://doi.org/10.1113/jphysiol.2008.168211
https://doi.org/10.1113/jphysiol.2008.168211
http://www.ncbi.nlm.nih.gov/pubmed/19188247
https://doi.org/10.1371/journal.pcbi.1007254


58. Hughes A. A supplement to the cat schematic eye. Vision Research. 1976; 16: 149–54. PMID:

1266054

59. Saul AB, Humphrey AL. Spatial and temporal response properties of lagged and nonlagged cells in cat

lateral geniculate nucleus. Journal of Neurophysiology. 1990; 64: 206–24. https://doi.org/10.1152/jn.

1990.64.1.206 PMID: 2388066

60. Tusa RJ, Palmer LA, Rosenquist AC. The retinotopic organization of area 17 (striate cortex) in the cat.

Journal of Comparative Neurology. 1978; 177: 213–35. https://doi.org/10.1002/cne.901770204 PMID:

413845

61. Frishman LJ, Freeman AW, Troy JB, Schweitzer-Tong DE, Enroth-Cugell C. Spatiotemporal frequency

responses of cat retinal ganglion cells. Journal of General Physiology. 1987; 89: 599–628. https://doi.

org/10.1085/jgp.89.4.599 PMID: 3585279

Origin and development of orientation selectivity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007254 July 29, 2019 31 / 31

http://www.ncbi.nlm.nih.gov/pubmed/1266054
https://doi.org/10.1152/jn.1990.64.1.206
https://doi.org/10.1152/jn.1990.64.1.206
http://www.ncbi.nlm.nih.gov/pubmed/2388066
https://doi.org/10.1002/cne.901770204
http://www.ncbi.nlm.nih.gov/pubmed/413845
https://doi.org/10.1085/jgp.89.4.599
https://doi.org/10.1085/jgp.89.4.599
http://www.ncbi.nlm.nih.gov/pubmed/3585279
https://doi.org/10.1371/journal.pcbi.1007254

