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ABSTRACT: The relation of surface polarity and conformational
preferences is decisive for cell permeability and thus bioavailability
of macrocyclic drugs. Here, we employ grid inhomogeneous
solvation theory (GIST) to calculate solvation free energies for a
series of six macrocycles in water and chloroform as a measure of
passive membrane permeability. We perform accelerated molecular
dynamics simulations to capture a diverse structural ensemble in
water and chloroform, allowing for a direct profiling of solvent-
dependent conformational preferences. Subsequent GIST calcu-
lations facilitate a quantitative measure of solvent preference in the
form of a transfer free energy, calculated from the ensemble-
averaged solvation free energies in water and chloroform. Hence,
the proposed method considers how the conformational diversity of macrocycles in polar and apolar solvents translates into transfer
free energies. Following this strategy, we find a striking correlation of 0.92 between experimentally determined cell permeabilities
and calculated transfer free energies. For the studied model systems, we find that the transfer free energy exceeds the purely water-
based solvation free energies as a reliable estimate of cell permeability and that conformational sampling is imperative for a physically
meaningful model. We thus recommend this purely physics-based approach as a computational tool to assess cell permeabilities of
macrocyclic drug candidates.

■ INTRODUCTION

Macrocycles are a potent new class of molecules for drug
discovery.1,2 Approximately 75% of disease relevant proteins
still cannot be targeted, neither with small molecules nor with
biopharmaceuticals.3 A major portion of these yet undruggable
targets are intracellular protein−protein interfaces (PPIs),
including several notorious cancer-associated targets.4 Bio-
logics, such as antibodies, are the prime class of pharmaceut-
icals to target extracellular PPIs with uncontested specificities
and affinities.5,6 However, with a few exceptions, they are
generally not able to cross through the cell membrane.7 Small-
molecule drugs, on the other hand, are extremely well-studied,
and clear models and guidelines to achieve oral bioavailability
and membrane permeability are well-established.8 However,
they mostly require deep apolar binding pockets to achieve the
desired affinities and physiological effects, which are lacking in
typical PPIs with extensive flat surface areas.3 Macrocycles
bridge these two medication strategies in terms of
physicochemical and pharmacological features.9−12

Macrocyclic compounds have repeatedly been established as
drugs without fulfilling all or even any of Lipinski’s rule of 5 for
bioavailability of small-molecule drugs. Nevertheless, it has
been shown that they can be designed to achieve cell
permeability and even oral bioavailability.3,13−18 As they are

substantially larger than typical small molecules, macrocycles
are able to target the characteristic shallow and broad surfaces
of protein−protein interaction sites.16,19−21 Furthermore, their
proteolytic stability and thus bioavailability are increased due
to the cyclic scaffold.16,22,23 Compared to their non-cyclic
analogues, the cyclization additionally decreases the entropic
loss upon binding, which can enhance their binding affinity to
magnitudes that are usually only achievable by biopharma-
ceuticals.24−26 However, despite the continuous advancement
in experimental strategies, the synthesis of macrocyclic
compounds is still challenging.27−30 Reliable computational
tools to identify and optimize promising scaffolds are thus
paramount for the efficient design of macrocyclic drugs.31−36

Substantial scientific efforts in this field have led to a fast-
growing number of theoretical methodologies for characteriz-
ing physicochemical properties of macrocycles.9,37,38 A major
aspect of these approaches is concerned with the development

Received: March 19, 2020
Published: June 18, 2020

Articlepubs.acs.org/jcim

© 2020 American Chemical Society
3508

https://dx.doi.org/10.1021/acs.jcim.0c00280
J. Chem. Inf. Model. 2020, 60, 3508−3517

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anna+S.+Kamenik"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Johannes+Kraml"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Florian+Hofer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Franz+Waibl"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Patrick+K.+Quoika"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ursula+Kahler"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+Schauperl"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+Schauperl"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Klaus+R.+Liedl"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.0c00280&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00280?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00280?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00280?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00280?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00280?fig=abs1&ref=pdf
https://pubs.acs.org/toc/jcisd8/60/7?ref=pdf
https://pubs.acs.org/toc/jcisd8/60/7?ref=pdf
https://pubs.acs.org/toc/jcisd8/60/7?ref=pdf
https://pubs.acs.org/toc/jcisd8/60/7?ref=pdf
pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00280?ref=pdf
https://pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org/jcim?ref=pdf
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html


and testing of conformational sampling algorithms suitable for
macrocyclic molecules.35,36,39 The development of specialized
strategies for conformer generation is imperative as the
conformational restraints introduced by the ring closure entails
unique structural characteristics to this compound class, which
are generally not captured by conventional conformer
generators.34,40 Furthermore, cyclization can also induce a
strain energy within the ring leading to high energetic barriers
between relevant conformational states.41 Numerous of the
proposed sampling algorithms for macrocycles are force-field
based.36,38,42−44 While classical molecular dynamics (MD)
simulations have often failed to overcome the energetic
barriers between the diverse conformational states of macro-
cycles within a feasible simulation time, several enhanced
sampling strategies have been shown to capture structurally
accurate ensembles.31 These more sophisticated sampling
techniques, such as replica exchange MD,45 multicanonical
MD,43 metadynamics,46,47 and accelerated MD,31 allow
comprehensive and efficient profiling of the conformational
space of macrocycles.
As described above, a particularly intriguing feature of

macrocycles is their ability to cross the cell membrane.15,48

While high passive membrane permeability has been
demonstrated for a multitude of macrocycles, not all
macrocyclic scaffolds are inherently membrane-permeable.17,49

In order to achieve permeability, macrocyclic compounds have
to also balance an intricate interplay of physicochemical
properties to ensure solubility in the polar extra- and
intracellular environments as well as within the mostly apolar
membrane.50,51 The surprisingly high permeability of these
large molecules is commonly explained based on solvent-
dependent conformational rearrangements ( e.g., cyclosporin
A).38,43,52 The fundamental idea is that macrocycles with high
passive membrane permeabilities are able to adapt to different
solvent polarities via a population shift in their conformational
ensembles: In aqueous solution, the most favorable conforma-
tional state is “open” with polar groups turned outward to
interact with the polar solvent. Upon entering a less polar
environment, the conformational ensemble shifts toward a
“closed” conformational state. Here, polar groups are turned
inward increasing the number of intramolecular hydrogen
bonds, while apolar groups rearrange to maximize the apolar
surface area. Several comprehensive studies, including
extensive enhanced sampling and Markov state modeling,
have fostered this hypothesis and also extended it to more
generalized multistate models.53−55

To quantify conformational preferences in polar and apolar
environments, most of these studies perform simulations in
water and an apolar solvent, such as chloroform.18,38,43 In
previous studies, atomistic models for membranes led to
promising results in estimating permeability of small
molecules. However, this approach is still challenging and
computationally costly.56 Despite its striking simplicity, the
approximation of a membrane by organic solvents has
repeatedly demonstrated its suitability to estimate cell
permeability in a multitude of approaches.17,51,57,58

In this study, we use accelerated MD (aMD) simula-
tions59,60 to capture the diverse conformational ensembles of a
series of six macrocyclic compounds in water and chloroform
(Figure 1).61 We have previously shown the reliability of aMD
simulations in characterizing the structural ensemble and
thermodynamic quantities of macrocycles consistent with
experiments.31 Here, we perform aMD simulations to profile

and quantify solvent-induced shifts of ensemble populations.
Furthermore, we track how structural rearrangements translate
into changes in surface properties by calculating solvation free
energies with grid inhomogeneous solvation theory
(GIST).62,63 The fundamental idea of this approach is to
estimate thermodynamic solvation properties of the solvent in
the vicinity of the solute by tracing the solvent distribution in
MD simulations. We have demonstrated previously that GIST
solvation free energies can be used to describe surface
hydrophobicity.64,65 Furthermore, we have recently reimple-
mented this approach on the GPU achieving superior
computational performance. Although, compared to the
calculation of polar surface area values, GIST analysis is still
computationally noticeably more demanding and estimating
surface polarity via solvation free energies offers several
convincing advantages. First, GIST accounts for non-additive
effects, for example, polar atoms, which are solvent-exposed
but form intramolecular hydrogen bonds, show fewer
interactions with the solvent and thus contribute less to
surface polarity. Second, the latest reimplementation of the
GIST algorithm introduces the possibility to calculate solvation
free energies in chloroform. Hence, while previous GIST
studies estimate differences in hydration free energy referenced
to the solute in vacuum,62,64,66−69 we now are able to compare
differences between solvation in water and in chloroform.70 In
a preceding study, we demonstrated the accuracy of the
approach in estimating partition coefficients, i.e., differences in
solvation free energies, between water and chloroform for a set
of rigid small molecules.70

For the present study, we extend this approach by further
incorporating conformational aspects into the calculations of
solvation free energy differences. By combining information on
the state populations in chloroform and water with the
respective solvation free energies, we derive an estimate of the
transfer free energy of each compound. We evaluate the
reliability of this approach against the experimentally measured
cell permeabilities and analyze contributions of conformational
sampling and solvation free energies from both solvents.

Figure 1. Series of macrocyclic model systems.61 The model
compounds share a common ring scaffold but vary in their side
chains. These modifications were specifically designed to achieve
different conformational preferences and cell permeabilities. Re-
printed with permission from ref 61. Copyright 2018 American
Chemical Society.
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■ THEORY AND METHODS
Grid Inhomogeneous Solvation Theory. GIST calcu-

lates thermodynamic properties of a solvent around a solute.
Calculation of the free energy around the solute can be split
into an energetic and an entropic part. These two parts are
then calculated individually (eq 1). Here, we aim at a short
summary of the fundamental theory of GIST. For a
comprehensive overview of GIST62,63,71,72 as well as of the
underlying concepts from Lazaridis et al.,73,74 we want to refer
the reader to the original literature.

Δ = Δ − Δr rA E T Sr( ) ( ) ( )k k uv ktotal
six

(1)

For the calculation of the energetic contribution, the force
field of the simulation is used. At each grid voxel where a water
molecule is found, the total energy of this molecule is
calculated. This total energy consists of two parts (eq 2), the
solvent−solvent interaction energy and the solute−solvent
interaction energy (ΔEuv(rk)). To avoid double counting, the
total solvent−solvent energy is divided by two, and we denote
the result of this division as ΔEvv(rk).

62

Δ = Δ + Δr r rE E E( ) ( ) ( )k vv k uv ktotal (2)

Finally, the entropic contribution only considers the two-
body term. This two-body term is approximated via a nearest
neighbor method, which estimates the translational and the
orientational contributions to the entropy together (ΔSuvsix).
The nearest neighbor is calculated by an l2 norm of the
distance in translational and orientational space, resulting in eq
3. Finally, the translational distance is calculated as a simple
Euclidean distance and the orientational distance is calculated
as a quaternion distance.

ω= Δ +d d2
euclid
2

(3)

Transfer Free Energies from GIST Calculations in
Water and Chloroform. The transfer free energy between
two different solvents can be readily computed from GIST
using the thermodynamic cycle.70 The transition from
chloroform into water can be partitioned into the transition
from chloroform into vacuum and then from vacuum into
water. The first transition is the solvation free energy of the
compound in chloroform. The second transition is simply the
negative hydration free energy of the compound. Both values
can be calculated using GIST.
For the calculation of the solvation free energies, GIST

analyses were performed on simulation trajectories of the
various macrocycles. For this analysis, the reference density for
water was set according to the values in the AMBER manual
(0.0329 Å−3),75 and the reference density for chloroform was
set to the same value as found by Kraml et al. (0.00768 Å−3).70

The values for the solvation free energy were then derived
from the GIST calculations. In a first step, the reference
solvent−solvent energy was subtracted. For the TIP3P water
model, the value present in the AMBER manual was used, and
for chloroform, the value found by Kraml et al. was used.70 In
the second step, the two energy contributions were summed
up, following eq 2. Then, the entropic contribution was
subtracted, following eq 1, to yield the solvation free energy in
the respective solvent.
For the calculation of the transfer free energy (ΔAtransfer), the

two solvation free energies were subtracted from each other,
following eq 4.

Δ = Δ − ΔA A Atransfer H O CHCl2 3 (4)

Studied Series of Macrocyclic Compounds.We test the
reliability of our approach on six macrocyclic molecules
introduced by Tyagi et al., which were inspired by natural
products.61 This series was specifically designed to investigate
molecular determinants of passive membrane permeability, in
particular, the role of shielding NH−π interactions. Within
their comprehensive work, Tyagi et al. provide high-quality
experimental data including cell permeabilities, log POW values,
and a crystal structure. Despite their high similarities, the six
macrocycles in this series, 1a to 1f, show clear distinction in
their passive membrane permeability (Figure 1). Macrocycle
1e clearly exhibits the lowest permeability followed by the
macrocycles 1a, 1c, and 1d, which are nearly identical in their
permeabilities. The highest permeabilities are observed for the
macrocycles 1b and 1f. Hence, the permeability distribution
for these six is not spread evenly but rather represents three to
four clusters. Nevertheless, the high quality and consistency of
the available experimental data render these molecules an ideal
test set for the presented study.

Structure Preparation and Simulation Setup. We
performed our calculation using a set of macrocyclic
compounds published by Tyagi et al.61 The single available
crystal structure (compound f in the terminology of Tyagi et
al.; CCDC identifier 1853494) was used directly, while all
other studied compounds were modeled based on this
structure with the molecular operating environment
(MOE).76 All compounds were parameterized using the
AMBER ff14SB77 and GAFF78 force fields. Missing parameters
were derived with the antechamber module of AmberTools
18.79 We assigned partial charges using Gaussian1680 and the
RESP81 procedure using the HF/6-31G* basis set. Sub-
sequently, topology and coordinate files were generated with
the tLEaP module of AmberTools 18.75 All compounds were
solvated in a cubic box of TIP3P water82 and chloroform83

with a minimum wall distance of 12 Å for both solvents. Before
production simulations, all systems were equilibrated following
an extensive heating and cooling protocol.84 The conforma-
tional space was sampled with the accelerated molecular
dynamics (aMD) framework, as implemented in AMBER 18,
using the dual boost approach.59,85−87 Boosting parameters
were obtained from short cMD simulations following a
procedure adapted from Pierce et al.60 For each macrocycle,
10 aMD simulations with random starting velocities were
performed in both solvents to maximize conformational
sampling. The simulations were run for 100 ns each, resulting
in an aggregate simulation time of 1 μs/system. We used a
Langevin thermostat88 with a collision frequency of 2 ps−1 to
keep the system at 300 K, together with a Berendsen barostat89

with a relaxation time of 2 ps to keep the system at
atmospheric pressure. All bonds involving hydrogen were
constrained with the SHAKE algorithm, which enabled the use
of a 2 fs time step for the water simulations.90 Chloroform
simulations were run with a 1 fs time step. All simulations were
carried out with the GPU implementation of the PMEMD
module in AMBER.91,92

Clustering and GIST Calculations. To determine
representative structures and their population in each solvent,
we performed a hierarchical cluster analysis based on the polar
surface area (PSA) using cpptraj from AmberTools 18.93 We
estimate the PSA as the solvent-accessible surface area of polar
heavy atoms, oxygen and nitrogen, for the concatenated
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trajectories in water and chloroform for each model system.
We then applied the implemented average linkage clustering
algorithm with a cutoff distance of 12 Å2 on the resulting data.
This clustering strategy resulted in three to five representative
structures per macrocycle. To reweight the respective
population of each conformational cluster, we adapt a strategy
proposed by Miao et al. in which we approximate the
Boltzmann factor with a Maclaurin expansion up to the 20th
order.94,95

To perform subsequent GIST analysis, we solvated each
representative structure in a cubic box of TIP3P waters and
chloroform molecules, ensuring a minimum distance of 20 Å
for each solute atom to the box faces. We equilibrate the
solvent as described above. Subsequently, we performed
restrained simulations with a weight of 100 kcal/(mol·Å2) to
fix the solute heavy atoms. Furthermore, all bonds involving
hydrogen atoms were restrained following the SHAKE
algorithm.90 As described above, we employed the Langevin
thermostat with a collision frequency of 2 ps−1 to ensure a
temperature of 300 K and used the CUDA implementation of
the particle mesh Ewald MD (pmemd.cuda) module of
AMBER 18 to perform simulation in the NVT ensemble.91,92

For each macrocycle/solvent combination, we performed 100
ns of restrained MD simulations where frames were collected
every 2 ps, resulting in 50,000 frames per trajectory.
Conformational Space Characterization. To character-

ize the captured conformational space of each compound in
water and chloroform, we performed principal component
analysis (PCA) based on the dihedrals along the ring atoms
using cpptraj.93 To represent the common and deviating
structural preferences in each solvent, we calculated the
principal components based on the concatenated trajectories.
In order to compare the structural data in water and
chloroform, we project the respective data on the two first
eigenvectors (with the highest eigenvalues) of the matrix with
the combined features. To retrieve the unbiased population
from the aMD simulations, we applied a Boltzmann
reweighting scheme described above94 (Figure S1). For the
two macrocycles with the highest and lowest permeability, i.e.,
1f and 1e, we performed a density-based clustering of the PC
space to visualize structural differences corresponding to the
free energy minima (Figures S3 to S5). Furthermore, we
profiled the conformational space using a more global measure
based on ratios of the principal moments of inertia (Figure
S6).
As an additional measure of solvent-dependent structural

rearrangements, we calculated PSAs, i.e., solvent-accessible
surface areas of oxygen and nitrogen atoms. In order to remove
the bias introduced by the aMD approach, we again reweighted
the individual distributions as described above (Figure S7).

■ RESULTS
We characterize the captured conformational space of six
macrocyclic compounds using PCA (Figure S2). Projecting the
structural data captured in each solvent onto the combined
PCA space allows a direct comparison of structural
preferences. In Figure 2, we depict the conformational
ensembles of the macrocycles 1e and 1f, which show the
largest difference in cell permeability. For both systems, we
clearly observe a solvent-dependent shift of ensemble
populations. While the covered conformational space is similar
in chloroform and water, the maxima in population are clearly
shifted. These maxima in the probability density directly

translate into minima in free energy to which we will further
refer as favorable conformational states. For macrocycle 1e, we
find four highly populated areas in chloroform of which the
most favorable conformational state is located around [2,
−0.5] in the PCA space shown in Figure 2A. On the other
hand, in water, the same macrocycle populates seven to eight
distinguishable areas and the most favorable conformational
states are found in areas around [−1.8, −1] and [−1, −0.5]
(Figure 2B). The conformational space of macrocycle 1f in
chloroform is clearly less restricted than that of 1e, showing a
large number of highly populated areas in the space spanned
by PC1 and PC2 (Figure 2C). The ensemble of the same
macrocycle in water shows significantly fewer favorable
conformational states and is overall shifted toward areas with
more positive PC2 values (Figure 2D).
Furthermore, we profile distinctions between the ensembles

captured in the polar and apolar environments in terms of
intramolecular hydrogen bonds (IMHBs) and surface proper-
ties. It has been shown before that the structural differences of
several peptidic macrocycles in varying solvents relate to
changes in the pattern of IMHBs and in the polar surface area
(PSA).43 In Figure 3, we show the ensemble distributions of
both descriptors for the most permeable macrocycle in our
series, 1f, compared to the least permeable compound 1e. We
clearly find that, for both systems, the number of IMHBs is
higher in chloroform, while the polar surface area shifts toward
smaller values in the apolar environment. However, for the
least permeable macrocycle 1e, the average number of IMHBs
observed during the simulation is significantly smaller than for
1f. Furthermore, we find that the distribution of PSA in
chloroform is clearly skewed toward higher values for 1e,
which is not observed for 1f. This observation suggests that 1e
is not able to bury or shield its polar moieties as well as 1f.
To achieve a more detailed analysis of the surface properties,

we calculate solvation free energies using GIST. To do so, we
determine representative structures using the PSA-based
clustering strategy described in the Theory and Methods
section. From the GIST solvation free energies in chloroform
and water, we can then calculate transfer free energies ΔAtransfer

Figure 2. Solvent-dependent ensemble shift of macrocycles 1e and 1f.
The structural ensembles of macrocycles 1e (A, B; top) and 1f (C, D;
bottom) in chloroform (green) and water (blue) are projected onto
the first two PC eigenvectors and color-coded according to their
reweighted populations.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c00280
J. Chem. Inf. Model. 2020, 60, 3508−3517

3511

http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c00280/suppl_file/ci0c00280_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c00280/suppl_file/ci0c00280_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c00280/suppl_file/ci0c00280_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c00280/suppl_file/ci0c00280_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c00280/suppl_file/ci0c00280_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c00280/suppl_file/ci0c00280_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00280?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00280?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00280?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00280?fig=fig2&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00280?ref=pdf


for each representative structure. In Figure 4, we show the
cluster populations and representative structures for the
macrocycles with the highest and lowest membrane perme-
ability, 1f and 1e, respectively. As described above, we find a
more widespread PSA distribution in both solvents for
macrocycle 1e than for 1f (Figure 3B,D). This trend translates
into a higher number of clusters and a slightly broader
distribution in terms of cluster populations for macrocycle 1e
(Figure 4A). Furthermore, the cluster with the highest
probability in water and chloroform is the same one for 1e.

This is an additional result of the substantial overlap of 1e’s
PSA distributions in water and chloroform. For macrocycle 1f,
on the other hand, the ensemble probabilities shift from cluster
1, being most favorable in chloroform, toward cluster 2 when
simulated in water (Figure 4C). Comparing representatives for
the highest populated clusters of 1f in water and chloroform,
we find that the conformation favored in chloroform shows a
higher number of intramolecular hydrogen bonds (cyan dotted
lines) (Figure 4D).
To obtain a quantitative measure of the transfer free energy

for each compound, we use the solvent-dependent populations
of all representative structures and weight the transfer free
energies accordingly, resulting in an ensemble average. In
Figure 5A, we compare the resulting transfer free energies with
the experimentally determined cell permeabilities and report a
striking value of 0.92 for the Pearson correlation coefficient r.
We find that the predicted ordering is perfectly in line with the
experiment, as indicated by the Spearman correlation
coefficient ρ of 1.0. If we follow the exact same sampling
strategy but solely consider the solvation free energy in water,
we obtain r = 0.71 and ρ = 0.49 (Figure 5B). Comparing the
solvation free energy of chloroform alone with experimental
cell permeabilities, we find similar agreement as quantified by r
= −0.71 and ρ = −0.77 (Figure S10).
Furthermore, we obtain substantially lower agreement with

the experiment if we do not consider the conformational
variability of each macrocycle but only use the single starting
structure of each compound for the GIST calculations (Figure
5C,D). By calculating transfer free energies from a single
structure of each compound, we find r = 0.50 and ρ = 0.49
(Figure 5C). Calculating water solvation free energies of the
single conformations lowers the correlation further, resulting in
r = 0.29 and ρ = 0.43 (Figure 5D). Considering only
contributions from chloroform solvation free energies of the
single conformations also results in moderate agreement with
the experiment with r = −0.58 and ρ = −0.43.

Figure 3. Ensemble distributions of conformational descriptors in
water and chloroform. (A, C) Histograms of the number of
intramolecular hydrogen bonds (IMHB), and (B, D) the polar
surface areas (PSAs) of macrocycles 1e and 1f are depicted in blue for
simulations in water and in green for simulations in chloroform.

Figure 4. Conformational preferences in water and chloroform. (A, C) Cluster populations of macrocycles 1e (top row) and 1f (bottom row) are
depicted in blue for simulations in water and in green for simulations in chloroform. (B, D) Representative structures from the respective clustering
of macrocycles 1e and 1f.
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■ DISCUSSION
Macrocyclic drugs could become a powerful alternative to
biopharmaceutical drugs since they show superior membrane
permeability while offering similar binding affinities.25

However, their membrane permeability strongly depends on
the interplay between surface polarity and conformational
preferences.51,96 In this study, we incorporate both of these
aspects in our calculation of transfer free energies using
ensemble-averaged solvation free energies.
We perform accelerated molecular dynamics simulations to

capture the conformational diversity of six macrocycles in
water and chloroform (Figure S1). We find that, for all model
systems, the conformational space in water and chloroform
overlaps to a varying extent. However, the change in solvent
polarity consistently alters the population of the captured
conformational states. Hence, we find a solvent-dependent
shift of ensemble probabilities. This observation is consistent
with current literature describing similar behavior for a broad
range of peptidic and non-peptidic macrocycles.38,43,57

Comparing the conformational landscapes for the two
macrocycles 1e and 1f, which vary most in their cell
permeabilities, implies that the core scaffold of 1e has to
undergo major structural rearrangements upon membrane
penetration, which could translate into a significant cost in
terms of free energy. The ring atoms in 1f (highest
permeability) on the other hand are likely to pre-organize in
conformations favorable in both solvents, which facilitates
membrane crossing. This finding is perfectly in line with a
model proposed by Witek et al. on the mechanism of cell
permeability of macrocycles.38,97 The authors propose that the
traditional hypothesis of a macrocycle switching from one
(open) conformation that is favorable in water to another
(closed) conformation favorable in chloroform is too
simplistic. Based on exhaustive sampling, they suggest a
more generalized model, which includes one or more

congruent conformational states. These congruent conforma-
tional states are significantly populated in both solvents and
allow the compound to pass through the membrane.
However, the cost of conformational rearrangements is only

one contribution to the transfer free energy, which determines
the water membrane partition coefficient. While the PCA
projections capture differences based on dihedral conforma-
tions, these analyses are not designed to reflect distinctions of
surface properties. Since surface polarity is decisive for the
solvation free energies involved in the membrane crossing, we
calculate the PSA for the ensemble of each compound in both
solvents (Figure S7). We find that, for all compounds, the PSA
distribution is shifted toward smaller values in chloroform.
This observation is consistent with several studies from
Kihlberg and co-workers on the conformational ensembles of
macrocycles in different environments.96 Based on results from
NMR, X-ray crystallography, and computational sampling,
these studies report an increase of intramolecular hydrogen
bonds and a decrease of the polar surface area for macrocyclic
systems in an apolar environment compared to water.51,57

To assess structural aspects associated with the observed
variations in surface polarity, we retrieve representative
conformations using a PSA-based clustering (Figure 4A,C).
For macrocycle 1f, we find the expected trend. In the PSA-
based clustering of macrocycle 1e, however, the predominant
conformational state of the 1e ensemble in chloroform does
not show the typical features promoting cell permeability. This
qualitative observation could be another contribution to the
lower cell permeability of macrocycle 1e compared to 1f.
The results from the PSA-based clustering might appear

counterintuitive compared to the trend captured with PCA.
Hence, we emphasize that these two analyses focus on different
aspects of conformational dynamics. The dihedral PCA
depicted in Figure 2 captures the structural preferences at
the core of the macrocycles, i.e., the ring atoms. However, this
representation does not consider motions of the macrocycles’
side chains. In Figures S2 to S5, we highlight that distinctly
separated minima in the dihedral PCA space can be very
similar in terms of heavy-atom RMSD and surface polarity. In
contrast, the PSA-based clustering shown in Figure 2 identifies
structures based on their difference in surface polarity. Hence,
by definition, we retrieve representative structures with clearly
distinct surface polarity (Figures S8 and S9), which is dictated
by the flexible side chains. Thus, the analyses presented in
Figures 2 and 4 elucidate complementary aspects of the
underlying mechanism and molecular determinants of
membrane permeability.
For a thorough quantification of the properties on the

surface, we then compute the transfer free energies for each
conformation using GIST. By calculating the respective
ensemble averages, we find a striking agreement of GIST
transfer free energies with cell permeability, resulting in a
Pearson correlation coefficient of r of 0.92 and a Spearman
correlation coefficient ρ of 1.0 (Figure 5A). This result
becomes even more intriguing considering that the exper-
imental log POW, i.e., the octanol−water partition coefficient,
for the same compounds shows an r of 0.89 and ρ of 0.77 with
cell permeabilities (Figure S11). The proposed workflow hence
is comparable with experimental log POW values in accuracy
and could thus tremendously reduce the costs at the stage of
macrocycle design and optimization.
Furthermore, we profile the impact of individual aspects of

the applied methodology. As described in the Introduction, we

Figure 5. Impact of conformational sampling and contributions from
both solvents on prediction accuracy. The top row depicts the cell
permeabilities compared to (A) transfer free energies and (B) water
solvation free energies considering the conformational ensemble of
each macrocycle. The bottom row shows the results of the same
calculations when only a single conformation is included (C - transfer
free energy, D - water solvation free energy).
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have previously shown that water solvation free energy relates
to a molecule’s hydrophobicity. Therefore, we tested for the
benefits of incorporating contributions from chloroform
solvation. In Figure 5B, we use the captured conformational
ensembles and the respective populations in both solvents to
calculate the ensemble average of the water solvation free
energy of each macrocycle. Thus, we apply the same workflow
for Figure 5A but only consider solvation free energies from
water (Figure 5B) or chloroform (Figure S10). The results are
clearly inferior to the transfer free energies that consider the
contributions from both water and chloroform solvation.
This finding is in line with our latest work, in which we

introduce transfer free energies to estimate partition
coefficients between water and chloroform. In this preceding
study, we deliberately only considered rigid small molecules to
avoid inaccuracies resulting from insufficient sampling. Here,
we describe transfer free energies as an ensemble property.
Consequently, we also benchmark whether conformational
sampling has a beneficial impact. In Figure 5C,D, we again
calculate transfer free energies and water solvation free
energies, yet we only consider a single conformation of each
macrocycle. We consistently find that ensemble averages lead
to substantially higher agreement with the experiment than
single conformations.
We want to note that, in recent years, several workflows have

been established that achieve exhaustive and reliable sampling
of macrocycle conformational ensembles.32,35,36,38−40 Here, we
perform aMD simulations as their computational demand is
comparable to classic MD simulations while the conforma-
tional sampling is significantly enhanced.98,99 Furthermore, we
have previously benchmarked the high reliability of this
technique in providing conformational state populations.31

However, the presented GIST calculations are independent of
the aMD approach and can be applied to ensembles from any
sampling technique. We thus deem the proposed workflow as a
highly generalizable and reliable tool to estimate cell
permeabilities of macrocyclic drug candidates.

■ CONCLUSIONS
We present an approach to estimate cell permeabilities of
macrocycles where we use aMD simulations and GIST to
derive ensemble-averaged transfer free energies. We profile the
conformational space in water and chloroform of a set of six
macrocycles, which were designed to exhibit varying cell
permeabilities and structural preferences.61

By applying our proposed approach, we find a remarkable
correlation to the experimental membrane permeability with
an r of 0.92 and ρ of 1.0, which is comparable with
experimental log POW values. Furthermore, we find that
exhaustive conformational sampling is an indispensable step
to retrieve physically meaningful predictions for the
physicochemical properties of macrocycles. Additionally, we
show that incorporation of the contributions from chloroform
considerably increases the reliability of our descriptor
compared to the solely water-based approach.
Thus, we highlight the significance of reliable conforma-

tional sampling in macrocycle design. Additionally, we
demonstrate the benefits of our recent re-implementation of
the GIST algorithm, which now also allows us to employ
chloroform as a solvent. We thus demonstrate a powerful
workflow that provides extremely reliable estimates of
macrocycle membrane permeabilities to enhance their design
and optimization process.

The latest GPU implementation of GIST (GIGIST) is
available free of charge from the github page of the Liedl Lab
(https://github.com/liedllab/gigist.git).
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(92) Salomon-Ferrer, R.; Götz, A. W.; Poole, D.; Le Grand, S.;
Walker, R. C. Routine Microsecond Molecular Dynamics Simulations
with Amber on Gpus. 2. Explicit Solvent Particle Mesh Ewald. J.
Chem. Theory Comput. 2013, 9, 3878−3888.
(93) Roe, D. R.; Cheatham, T. E., III 3rd, Ptraj and Cpptraj:
Software for Processing and Analysis of Molecular Dynamics
Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084−3095.
(94) Miao, Y.; Sinko, W.; Pierce, L.; Bucher, D.; Walker, R. C.;
McCammon, J. A. Improved Reweighting of Accelerated Molecular
Dynamics Simulations for Free Energy Calculation. J. Chem. Theory
Comput. 2014, 10, 2677−2689.
(95) Kamenik, A. S.; Kahler, U.; Fuchs, J. E.; Liedl, K. R.
Localization of Millisecond Dynamics: Dihedral Entropy from
Accelerated Md. J. Chem. Theory Comput. 2016, 12, 3449−3455.
(96) Poongavanam, V.; Danelius, E.; Peintner, S.; Alcaraz, L.; Caron,
G.; Cummings, M. D.; Wlodek, S.; Erdelyi, M.; Hawkins, P. C. D.;
Ermondi, G.; Kihlberg, J. Conformational Sampling of Macrocyclic
Drugs in Different Environments: Can We Find the Relevant
Conformations? ACS Omega 2018, 3, 11742−11757.
(97) Witek, J.; Wang, S.; Schroeder, B.; Lingwood, R.; Dounas, A.;
Roth, H. J.; Fouche,́ M.; Blatter, M.; Lemke, O.; Keller, B.; Riniker, S.
Rationalization of the Membrane Permeability Differences in a Series
of Analogue Cyclic Decapeptides. J. Chem. Inf. Model. 2019, 59, 294−
308.
(98) Miao, Y.; Nichols, S. E.; McCammon, J. A. Free Energy
Landscape of G-Protein Coupled Receptors, Explored by Accelerated
Molecular Dynamics. Phys. Chem. Chem. Phys. 2014, 16, 6398−6406.
(99) Markwick, P. R. L.; Cervantes, C. F.; Abel, B. L.; Komives, E.
A.; Blackledge, M.; McCammon, J. A. Enhanced Conformational
Space Sampling Improves the Prediction of Chemical Shifts in
Proteins. J. Am. Chem. Soc. 2010, 132, 1220−1221.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c00280
J. Chem. Inf. Model. 2020, 60, 3508−3517

3517

https://dx.doi.org/10.1021/acs.jcim.9b01109
https://dx.doi.org/10.1021/acs.jcim.9b01109
https://dx.doi.org/10.1021/acs.jcim.9b01109
https://dx.doi.org/10.1021/ct401110x
https://dx.doi.org/10.1021/ct401110x
https://dx.doi.org/10.1002/jcc.24417
https://dx.doi.org/10.1002/jcc.24417
https://dx.doi.org/10.1021/jp9723574
https://dx.doi.org/10.1021/jp9723574
https://dx.doi.org/10.1021/jp972358w
https://dx.doi.org/10.1021/jp972358w
https://dx.doi.org/10.1021/acs.jctc.5b00255
https://dx.doi.org/10.1021/acs.jctc.5b00255
https://dx.doi.org/10.1002/jcc.20035
https://dx.doi.org/10.1016/j.jmgm.2005.12.005
https://dx.doi.org/10.1016/j.jmgm.2005.12.005
https://dx.doi.org/10.1016/j.jmgm.2005.12.005
https://dx.doi.org/10.1021/j100142a004
https://dx.doi.org/10.1021/j100142a004
https://dx.doi.org/10.1021/j100142a004
https://dx.doi.org/10.1063/1.445869
https://dx.doi.org/10.1063/1.445869
https://dx.doi.org/10.1021/jp9717655
https://dx.doi.org/10.1021/jp9717655
https://dx.doi.org/10.1002/jcc.21758
https://dx.doi.org/10.1002/jcc.21758
https://dx.doi.org/10.1021/jp062845o
https://dx.doi.org/10.1021/jp062845o
https://dx.doi.org/10.1021/jp062845o
https://dx.doi.org/10.1021/ct3004194
https://dx.doi.org/10.1021/ct3004194
https://dx.doi.org/10.1021/ct3004194
https://dx.doi.org/10.1063/1.2789432
https://dx.doi.org/10.1063/1.2789432
https://dx.doi.org/10.1063/1.432526
https://dx.doi.org/10.1063/1.432526
https://dx.doi.org/10.1063/1.432526
https://dx.doi.org/10.1063/1.448118
https://dx.doi.org/10.1063/1.448118
https://dx.doi.org/10.1016/0167-7977(86)90022-5
https://dx.doi.org/10.1016/0167-7977(86)90022-5
https://dx.doi.org/10.1021/ct200909j
https://dx.doi.org/10.1021/ct200909j
https://dx.doi.org/10.1021/ct400314y
https://dx.doi.org/10.1021/ct400314y
https://dx.doi.org/10.1021/ct400341p
https://dx.doi.org/10.1021/ct400341p
https://dx.doi.org/10.1021/ct400341p
https://dx.doi.org/10.1021/ct500090q
https://dx.doi.org/10.1021/ct500090q
https://dx.doi.org/10.1021/acs.jctc.6b00231
https://dx.doi.org/10.1021/acs.jctc.6b00231
https://dx.doi.org/10.1021/acsomega.8b01379
https://dx.doi.org/10.1021/acsomega.8b01379
https://dx.doi.org/10.1021/acsomega.8b01379
https://dx.doi.org/10.1021/acs.jcim.8b00485
https://dx.doi.org/10.1021/acs.jcim.8b00485
https://dx.doi.org/10.1039/c3cp53962h
https://dx.doi.org/10.1039/c3cp53962h
https://dx.doi.org/10.1039/c3cp53962h
https://dx.doi.org/10.1021/ja9093692
https://dx.doi.org/10.1021/ja9093692
https://dx.doi.org/10.1021/ja9093692
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00280?ref=pdf

