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ABSTRACT
Pseudomonas aeruginosa, the main conditional pathogen causing nosocomial infection,
is a gram-negative bacterium with the largest genome among the known bacteria.
The main reasons why Pseudomonas aeruginosa is prone to drug-resistant strains
in clinic are: the drug-resistant genes in its genome and the drug resistance easily
induced by single antibiotic treatment. With the development of high-throughput
sequencing technology and bioinformatics, the functions of various small RNAs (sRNA)
inPseudomonas aeruginosa are being revealed.Different sRNAs regulate gene expression
by binding to protein or mRNA to play an important role in the complex regulatory
network. In this article, first, the importance and biological functions of different sRNAs
in Pseudomonas aeruginosa are explored, and then the evidence and possibilities that
sRNAs served as drug therapeutic targets are discussed, which may introduce new
directions to develop novel disease treatment strategies.

Subjects Microbiology, Molecular Biology
Keywords Pseudomonas aeruginosa, Small RNA, Post-transcriptional regulation, Drug targets,
Antimicrobial resistance

INTRODUCTION
In this review, we mainly focus on the biological functions and research progress of
Pseudomonas aeruginosa small RNAs. We hope that clarifying the function of sRNAs
will help to formulate new disease treatment strategies, and it may also lead to find new
antibiotics, or new targets of existing antibiotics.

Survey methodology
A large number of documents (including clinical trials and reviews) on PubMed through
the Internet were searched, which were then categorized and read meticulously. The key
words are: Pseudomonas aeruginosa, small RNA. The first aspect of the inclusion criteria
is that the article has complete structure and sufficient materials, and the other is that it
contains retrieval keywords.
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Background
Pseudomonas aeruginosa is a gram-negative conditional pathogen widely distributed in
nature. People with low immunity (such as post-operative people (Belusic-Gobic et al.,
2020; Nowikiewicz et al., 2020; Zhang et al., 2015) and HIV patients (Sonnleitner et al.,
2020)) are susceptible, resulting in blood flow infection, respiratory infection, etc. In
practice, there are not only single bacterial infections of Pseudomonas aeruginosa, but also
co-infection with other bacteria. Different kinds of bacteria promote each other’s survival
through nutritional cooperation to form chronic infection (Camus et al., 2020; Peng et
al., 2020). When the infection is caused by the coexistence of Pseudomonas aeruginosa
and Staphylococcus aureus, P. aeruginosa changes its own genotype and phenotype, which
reduces its antibacterial effect on Staphylococcus aureus (Limoli et al., 2017). The whole-
genome sequencing of P. aeruginosa further revealed its inherent resistance to antibiotics
and strong environmental adaptability (Erdmann et al., 2018; Stover et al., 2000). Another
study found a large number of gene mutations in the genome of P. aeruginosa in bacteria
isolated from patients with cystic fibrosis (CF). This bacteria’s adaptive strategy can
reduce the genome size and avoid the host immune response and the effect of antibiotics
(Gabrielaite et al., 2020).

Small regulation RNA (sRNA) is one of the important means for bacteria to adapt
to environmental changes and is involved in post-transcriptional regulation, such as
adaptation to stress, virulence, and biofilm formation (Jorgensen, Pettersen & Kallipolitis,
2020). Most sRNAs are between 70–140 nt in length, usually primary transcripts, and
sometimes may come from the 3′ terminal processing of longer mRNA precursors (Bossi
et al., 2020). sRNA interacts with different target RNAs or proteins to affect their activity
and function to regulate gene expression, which usually requires the participation of
RNA chaperones such as Hfq and ProQ (Dutta & Srivastava, 2018). The maturation
and degradation of sRNAs are related to the action of ribonuclease (Baek et al., 2019;
Saramago et al., 2014). In another research, using high-throughput cDNA sequencing
(RNA-seq), more than 500 new sRNAs were identified, significantly increasing the
number of sRNAs found in P. aeruginosa (Gomez-Lozano et al., 2012). The present study
only recognized the functions of some sRNAs, but little is known about the regulatory
networks of these sRNAs and the functions of other uninvestigated sRNAs. This review
will mainly shed light on the currently known sRNAs in P. aeruginosa with explanation
of their biological functions and the recent research progress, as well as the prospect of
selected sRNAs as direct or indirect targets for developing new drug therapies.

SRNA CLASSIFICATION IN BACTERIA
The sRNA can be divided into three classes according to their different functions. (1) The
sRNAs that are base pairing to mRNAs. sRNAs regulate mRNAs post-transcriptionally,
binding near ribosome binding sites (RBS) to inhibit its translation initiation or stimulate
mRNAs decay. Alternatively, sRNAs may stimulate translation initiation or prevent
mRNA degradation by base pairing to the 5′-UTR far upstream from the RBS, in which
sRNAs can be divided into cis encoded sRNAs and trans encoded sRNAs. Cis-encoded
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sRNAs are transcribed from the DNA strand and are complementary to target mRNAs.
Trans encoded sRNA is transcribed from a completely different genomic location from
the gene of its target mRNA. As sRNA is less complementary to the target mRNA, in most
cases, they require the assistance of chaperones to facilitate sRNA-mRNA stability inter-
actions. Limited complementarity allows trans encoded sRNAs to base-pair with multiple
targets (Dutta & Srivastava, 2018; Jorgensen, Pettersen & Kallipolitis, 2020). (2) Protein-
targeted sRNAs. sRNAs regulate the expression of many genes indirectly by sequestering
proteins, inhibiting these proteins regulatory functions (Dutta & Srivastava, 2018). (3)
sRNAs associated with CRISPRs (clustered regularly interspaced short palindromic
repeats). CRISPR-derive RNAs (crRNAs) are a short stretch of RNAs against foreign
nucleic acids, and their main role is to guide the nuclease Cas to bind exogenous nucleic
acids, thereby exerting the function of CRISPR-Cas system to clear exogenous nucleic
acids (Behler & Hess, 2020). CRISPR-Cas systems exist in many prokaryotes, for example,
in Listeria, the non-coding RNA RliB is an atypical member of the CRISPR family, which
can regulate phage interactions with host strains (Sesto et al., 2014; Tian et al., 2021).

BIOLOGICAL FUNCTIONS OF SRNAS IN PSEUDOMONAS
AERUGINOSA
Carbon, nitrogen, and iron metabolism
P. aeruginosa is an opportunistic pathogen with strong environmental adaptation (Jurado-
Martín, Sainz-Mejías & McClean, 2021), which developed a complex metabolic network
during a long period of evolution (Dolan et al., 2020; Rossi et al., 2021). Two specialized
two-component regulatory systems (TCS), CbrA/CbrB and NtrB/NtrC of P. aeruginosa,
are important parts of the sensing and response to nutrients in the environment by
discerning the same or interrelated signal types (Nishijyo, Haas & Itoh, 2001). The CbrA/B
system is involved in carbon source utilization and carbon catabolic repression (CCR)
through activation of the sRNA CrcZ in P. aeruginosa (Valentini et al., 2014). The NtrB/C
two-component system is an important regulator of nitrogen assimilation and cluster
motility in P. aeruginosa. Under nitrogen deficiency, which NtrB/C acts synergistically
with RpoN to induce sRNA NrsZ production (Wenner et al., 2014). A study showed
that prrF encoded sRNA is required to maintain iron homeostasis during infection
by P. aeruginosa (Reinhart et al., 2017), while iron regulatory pathways are altered in
P. aeruginosa under static growth conditions (Brewer et al., 2020). Moreover, the sRNA
PA2952.1 and PrrH also regulate iron metabolism (Coleman et al., 2021).

Biofilm formation
The biofilm of P. aeruginosa consists of bacteria, extracellular DNA (eDNA) (Seviour et
al., 2021), proteins, rhamnolipids (a biosurfactant with antibacterial activity involved
in surface motility and biofilm formation) (Abdel-Mawgoud, Lépine & Déziel, 2010; Ali
et al., 2021) and extracellular polysaccharides (PSL, PEL, alginate) (Moradali, Ghods &
Rehm, 2017). In the growth state of biofilm, P. aeruginosa can resist the action of multiple
adverse environments, significantly improving the ability of bacteria to resist antibiotics
(Thi, Wibowo & Rehm, 2020). The sRNA ErsA promotes biofilm development through
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Figure 1 Regulation mechanisms of various small RNAs in Pseudomonas aeruginosa on biofilm. The
irregular light green figure in the middle of this picture shows the biofilm of Pseudomonas aeruginosa. ¬
BswR requires GacA to upregulate rsmZ.  BswR may act by counteracting the repressor MvaT in upreg-
ulation of rsmZ. ® AmrZ binds to the algD promoter (Xu et al., 2016 and Xu et al., 2016). ¯ AmrZ mod-
ulates Pseudomonas aeruginosa biofilm by directly repressing transcription of the psl operon (Jones et al.,
2013). ° Crcz participates in biofilm formation by competing Hfq with other sRNAs.

Full-size DOI: 10.7717/peerj.13738/fig-1

AmrZ (alginate and motility regulator Z) post-transcriptional regulation (Falcone et
al., 2018). As a global transcription regulator, AmrZ participates in the regulation of
biofilm and virulence of P. aeruginosa (Xu et al., 2016). In P. aeruginosa biofilms the sRNA
SrbA is detected to be highly upregulated (Taylor et al., 2017). Similarly, many sRNAs
are involved in the regulation of biofilm formation, including RsmZ, RsmY, RsmW,
RsmV, PhrS, ReaL, PrrH, NrsZ, PhrD, and Pa2952.1 (Fig. 1). Their specific regulation
mechanisms are shown in section 3.

Quorum sensing
Quorum sensing (QS) is an intercellular signal communication system based on small
signal molecules. P. aeruginosa controls virulence and biofilm formation through quorum
sensing system (O’Loughlin et al., 2013) to regulate the transformation between bacterial
planktonic state and biofilm state. QS is regulated hierarchically, which consists of
interconnected las, rhl, pqs, and iqs systems (Malgaonkar & Nair, 2019). LasR and RhlR
control the key virulence factors (O’Loughlin et al., 2013).The las system is at the top of
QS hierarchical network. The complex of LasR (QS related regulator) combined with
signal molecule 3-oxo-C12HSL can regulate the other three systems which are RhlR,
PqsR and IqsR (QS related regulator). These three systems regulate other pathways when
combined with corresponding signal molecules (C4HSL, PQS and IQS) (Lee & Zhang,
2015; Passos da Silva et al. 2017; Soukarieh et al., 2018). It is worth noting that sRNAs also
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Figure 2 Small RNAs involved in quorum sensing regulation. ¬ CrcZ participates in the regulation of
antR by competing with PrrF1 / 2 for Hfq.

Full-size DOI: 10.7717/peerj.13738/fig-2

play an important role in QS regulation system (Fig. 2). The sRNA ReaL function is to
connect the las and pqs systems (Carloni et al., 2017). The rhl system is positively regulated
by sRNA PhrD and sRNA RhlS, while negatively regulated by sRNA p27 (Chen et al., 2019;
Malgaonkar & Nair, 2019; Thomason et al., 2019), and also RhlI (QS related regulator)
negatively regulates the level of PrrH (Lu et al., 2019). sRNA PrrF1/2 regulates PQS
synthesis by inhibiting antR (Djapgne et al., 2018). RsmZ/Y participates in the regulation
of QS by antagonizing RsmA protein. RsmA is a regulatory protein that negatively
regulates the production of extracellular product pyocyanin (a blue–green pigment that
can interfere with host cell redox reactions (Lau et al., 2004)) as well as quorum sensing
signaling molecules C4HSL and 3-oxo-C12HSL, and also RsmA positively regulates
swarming (a complex mode of motion that causes bacteria to form tendrils on semisolid
surfaces (Caiazza, Shanks & O’Toole, 2005)) and rhamnolipid synthesis (Heurlier et al.,
2004; Pessi et al., 2001).The sRNA PhrS acts as an activator of PqsR synthesis, which is
stimulated the oxygen response regulator Anr (a global anaerobic response regulator)
(Sonnleitner et al., 2011).

Drug resistance
P. aeruginosa can become drug-resistant strains by genetic mutations and horizontal
transmission of resistance genes within themselves (Botelho, Grosso & Peixe, 2019). For
example, outer membrane porin oprDmutations and overexpression of the native β-
lactamase ampC are responsible for carbapenem resistance, and overexpression of the
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efflux pumpsmexX andmexA is associated with resistance to aminoglycosides and
carbapenems, respectively (Aghazadeh et al., 2014; Feng et al., 2021). Current study
found that at least six sRNAs are involved in the regulation of drug resistance in P.
aeruginosa, and there are differences in the regulatory mechanisms of different sRNAs.
These mechanisms are as follows. The sRNA AS1974 is a major regulator to control
the expression of multiple resistance pathways, including membrane transporters and
biofilm-associated antibiotic resistance genes. The sRNA AS1974 can transform drug-
resistant strains into antibiotic sensitive ones (Law et al., 2019). TpiA (triose phosphate
isomerase) influences aminoglycoside antibiotic resistance via sRNA CrcZ (Xia et al.,
2020a). In another study, when overexpressing sRNA PA0805 1 and sRNA 2952.1, the
expression ofmexGHI-opmD, a drug efflux system, was up-regulated and as a result, the
bacterial resistance to aminoglycoside antibiotics increased (Coleman et al., 2021; Coleman
et al., 2020). ErsA and sRNA Sr0161 increase bacterial resistance to carbapenems by
inhibiting the translation of oprD (Zhang et al., 2017). Bacterial resistance to polymyxins
increases following base complementary pairing of sRNA Sr006 with pagL (an enzyme
responsible for deacylation of lipid A) mRNA (Zhang et al., 2017).

Virulence factors
P. aeruginosa has different virulence factors in acute infection and chronic infection.
There are several virulence factors for acute infection: flagella, type IV pili, lipopolysac-
charide, exotoxin A, ectoenzyme S, type III section system (T3SS), and so on (Ben
Haj Khalifa et al., 2011). The T3SS is a bacterial secretory channel capable of injecting
different effectors into host cells to influence host immune mechanisms and provide a
favorable environment for bacterial survival (Horna & Ruiz, 2021; Lombardi et al., 2019).
Expression of T3SS is associated with several proteins, including ExsA and Vfr, which
are two DNA binding proteins (Urbanowski, Lykken & Yahr, 2005). Vfr promotes T3SS
expression by activating the PexsA promoter (Marsden et al., 2016). The sRNA 179 is an
Hfq dependent repressor of T3SS gene expression while it also inhibits ExsA and Vfr
synthesis (Janssen et al., 2020). Experimental studies have found that overexpression of
the sRNA PA2952.1 leads to impaired P. aeruginosamotility (downregulation of pilus and
flagella gene expression), decreased cytotoxicity detected in PrrH deleted mutants, and
increased P. aeruginosa siderophore production (Coleman et al., 2021). ReaL bases pairing
the sequence of SD sequence of rpoSmRNA, making it silent without translation process.
RpoS (σ S) is involved in quorum sensing and the regulation of several virulence genes
(Thi Bach Nguyen et al., 2018). Whereas loss of ReaL impaired the virulence phenotype
of P. aeruginosa, overexpression of ReaL resulted in a hypervirulent phenotype (Carloni
et al., 2017). With the condition of anaerobic growth and 37 ◦C, production of sRNA
PesA (present only in P. aeruginosa PA14 strain) was induced, which strengthens bacterial
virulence while promoting pyocyanin S3 synthesis (Ferrara et al., 2017).

As there are a lot of investigations focused on sRNAs, we have found that the biological
functions of most sRNAs are not single, moreover, some sRNAs appear to function as
global regulators in post-transcriptional regulatory networks. For instance, by over-
expressing sRNA PA0805.1 in P. aeruginosa wild-type (WT) PAO1, many phenotypes
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Table 1 summary of the biological functions of eleven sRNAs.

sRNA Transcript
length

Gene location Whether Hfq
dependent

Target Function

RsmZ 116nt PAO1_4,057,543-4,057,658 Not describe RsmA/F Associated with biofilm formation, motility,
and expression of T3SS.

RsmY 124nt PAO1_586,867-586,990 Yes RsmA/F Associated with motility, and the expression
of T3SS.

RsmW 224nt PAO1_5,117,971-5,118,195 Not describe RsmA/F Associated with biofilm formation.
RsmV 192nt PAO1_1011621-1011812 Not describe RsmA/F Sequestration of RsmA/F from target mR-

NAs; activates translation of the T6SS com-
ponent tssA1; represses the expression of the
T3SS gene.

PrrF1/2 151/148nt PAO1_5,283,960-
5,284,110/PAO1_5,284,172-
5,284,319

Yes antRmRNA Expression of the sRNA PrrF1/2 is regu-
lated by Fur, which is associated with iron
homeostasis, heme balance, biofilm forma-
tion, expression of virulence genes, twitch-
ing motility, and synthesis of PQS.

PrrH 325nt PAO1_5283995-5284319 Yes nirL Involved in the regulation of heme, quorum
sensing and bacterial virulence.

PhrS 213nt PAO1_3,705,309-3,705,521 Yes pqsR Regulated by ANR, PhrS stimulates the
translation of pqsR and promotes the syn-
thesis of PQS and PYO, which are involved
in biofilm formation.

NrsZ 226nt PAO1_5775397-5775623 Not describe rhlA Regulated by the cooperation between Ntr-
B/C and RpoN; involved in the regulation of
swarming motility.

RgsA 197nt PAO1_3,318,663-3,318,859 Yes rpoSmRNA; fis
mRNA; acpP mRNA

Regulated by GacA and RpoS; involved in
oxidative stress response, affecting bacterial
virulence and motility.

ReaL 100nt PAO1_3958000-3958200/
PA14_1599900-1600100

Yes pqsC ; rpoSmRNA Negatively regulated by lasR; promotes the
synthesis of PQS; correlates with bacterial
virulence expression.

ErsA 130nt PAO1_6183500-6183700/
PA14_6456400-6456600

Yes algC mRNA; oprD
mRNA; amrZ mRNA

Regulated in response to envelope stress; af-
fects biofilm formation; involved in regulat-
ing the expression of bacterial AlgC enzyme,
drug resistance and motility.

(including motility, cytotoxicity, and drug resistance) were found to be altered, making
it probable that sRNA PA0805.1 is a global regulator (Coleman et al., 2020). Although the
depth and breadth of P. aeruginosa sRNAs research are currently increasing, knowledge
of the specific regulatory mechanisms of various sRNAs is lacking. Understanding the
current state of sRNA research is a prerequisite for further elucidation of the complex
post-transcriptional regulatory mechanisms. Next, the characteristics and functions of
various sRNAs will be described in detail (Table 1).
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PROPERTIES AND FUNCTIONS OF DIFFERENT SRNAS
sRNAs acting on RsmA/F proteins
In P. aeruginosa, Rsm (repressor of stationary-phase metabolites, Rsm) protein family has
been proved to play an important role in post-transcriptional regulation. Rsm protein
family are involved significantly role in the bacterial response to environmental changes
by binding to target mRNA to effectively inhibit or promote protein translation (Potts
et al., 2017). There are four different sRNAs that can bind to RsmA / F and then isolate
RSMA / F from target mRNAs (Janssen et al., 2018a).

sRNA RsmZ and sRNA RsmY
RsmZ sRNA is encoded by a prrB related gene which exists in the form of 127 nucleotide
RNA in cells, and has an affinity for RsmA protein (Heeb, Blumer & Haas, 2002). In
vitro, it is found that the integrated host factor (IHF) protein had a high affinity with
the rsmZ promoter region, suggesting that DNA bending was involved in regulating
rsmZ expression. The expression of rsmZ requires GacA protein which is a global
activator. GacA is closely related to the Pseudomonas quorum sensing system and biofilm
formation (Reimmann et al., 1997). The expression of rsmZ also needs promoter with
highly conserved UAS which is a conserved palindrome upstream activation sequence
TGTAAG. . .CTTACA (Humair, Wackwitz & Haas, 2010; Kay et al., 2006).

RsmY gene is located between dnr gene of P. aeruginosa PAO1 and open reading frame
of PA0528. The transcription of rsmY and rsmZ is positively regulated by RsmA while
negatively regulated by RsmY and RsmZ. However, when rsmY and rsmZ genes coexist,
the transcription of RsmY or RsmZ is inhibited (Kay et al., 2006). The rsmY transcription
is activated by the GacS/GacA two-component system. The secondary structure of RsmY
is similar to RsmZ (Fig. 3). The transcript of rsmY is about 120 nt., which has the highest
content in the stable phase and can interact with the translation regulator RsmA (Valverde
et al., 2003).

RsmA has two preferential binding sites on RsmY and RsmZ, while RsmF has one
preferential binding site on RsmY and two preferential binding sites on RsmZ. RsmF has
higher binding conditions both in vivo and in vitro (Janssen et al., 2018b).

GacS/GacA two-component system positively controls the expression of the quorum-
sensing system and extracellular products through two small regulatory RNAs RsmY
and RsmZ, which affect biofilm formation (Kay et al., 2006). Environmental changes can
upregulate the expression of RsmY and RsmZ to increase bacterial population density and
population defense (Zhao et al., 2014).

RsmY and RsmZ interact with other sRNAs during regulation, for example, expression
of sRNA 179 stimulate transcription of RsmY, and both RsmY and RsmZ are required
for sRNA 179 to regulate T3SS gene expression: sRNA 179 indirectly affects translation of
ExsA by modulating RsmY levels, thereby affecting RsmA utilization (Janssen et al., 2020).
The sRNA RsmY and RsmZ are in a complex regulatory network. In another study, SuhB
(a regulator of multiple virulence genes (Li et al., 2013)) negatively regulates motility and
biofilm formation through GacA-RsmY/Z-RsmA cascade. Mutations in GacA or two
sRNAs RsmY and RsmZ, or overproduction of RsmA protein, basically improved the
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Figure 3 RsmY has a secondary structure similar to RsmZ. (A) Predicted P. aeruginosa RsmZ secondary
structure determined by Mfold modeling. (B) SHAPE-MaP structure for P. aeruginosa RsmZ. (C)
Predicted Mfold structure for P. aeruginosa RsmY. (D) SHAPE-MaP structure for P. aeruginosa RsmY
(Janssen et al., 2018a; Janssen et al., 2018b). Copyright c© 2018 American Society for Microbiology.

Full-size DOI: 10.7717/peerj.13738/fig-3

motility defect of suhBmutant (Li et al., 2017). Micro-aerobic environment significantly
inhibited the expression of sRNA RsmY and RsmZ, which was mediated by NarL, an
anaerobic response regulator regulated by Anr (O’Callaghan et al., 2011). RsmZ is also
affected by transcription regulators. For instance, BswR (bacterial swarming regulator)
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can counteract the repressive activity of MvaT (H-NS-like DNA-binding protein), as
well as control the transcription of RsmZ. In addition, BswR can regulate the biogenesis
of bacterial flagella, and play an important role in regulating the movement and the
formation of biofilm in P. aeruginosa (Wang et al., 2014).

sRNA RsmW
RsmW is a RsmY/RsmZ type sRNA derived from PA4570 3′- UTR. The RNA-seq show
higher levels of RsmW and greater stability of RsmW compared to PA4570, but it is not
certain whether the RsmW sRNA is an independent transcriptional event. The secondary
structure of RsmW is highly similar to RsmZ and RsmY, and RsmW contains seven GGA
motifs (a special sequence consisting of three consecutive ribonucleotides on RNA), three
of which are exposed in a single-stranded outer stem-loop, suggesting that it is involved
in the regulation of RsmA and RsmA can regulate PA4570 and RsmW transcript levels.
The affinity of RsmW for RsmA (Kd= 11.5± 1.5 nm) is higher than that of RsmY for
RsmA (Kd= 55± 7 nm) (Sonnleitner et al., 2006). RsmW levels increased with increasing
temperature, and also its expression was up-regulated during biofilm growth. Compared
with wild type, RsmW expression was enhanced in the logarithmic growth phase and
late stationary phase in gacA or the rhlR transposon mutant. In mutants which both
RsmY and RsmZ are deleted, RsmW can compensate for the loss of RsmY and RsmZ and
promote biofilm formation (Miller et al., 2016).

sRNA RsmV
RsmV, a transcript of 192 nt, is highly conserved in the genome of P. aeruginosa with four
predicted RsmA/RsmF consensus binding sites-four CANGGAYG (GGA2, GGA3, GGA5,
GGA6) sequences in a stem-loop structure. Each CANGGAYG sequence contributes
to RsmV activity. RsmV can sequester RsmA and RsmF from target mRNAs in vivo to
activate translation of tssA1, which is a component of the type VI secretion system (T6SS,
can inject effector proteins into eukaryotic cells (Allsopp et al., 2017)). Followed by tssA
1 activation, T3SS gene expression was repressed. All of sRNAs RsmV, RsmW, RsmY,
and RsmZ have the ability to sequester RsmA and RsmF. Still, sRNAs may play different
roles in the sequestration of RsmA/RsmF depending on their expression timing (Janssen
et al., 2018a), which may be related to the mechanism that fine-tunes the Rsm system in
response to changes in the external environment.

sRNA PrrF1 and sRNA PrrF2
PrrF1 and PrrF2 sRNAs, functional homologs of RyhB sRNAs in E. coli, are part of the
regulatory network of iron metabolism in P. aeruginosa, which affect the expression of
at least 50 genes encoding iron-containing proteins (Reinhart et al., 2015). The tandemly
encoded sRNA PrrF1 and sRNA PrrF2 are more than 95% similar to each other, while
a functional Fur box precedes each sRNA. Fur is a transcriptional repressor to regulate
iron uptake by regulating the expression of sRNA PrrF1 and sRNA PrrF2, which was
induced under conditions of iron deficiency. PrrF1 and PrrF2 have overlapping effects on
regulating genes, including iron storage, antioxidant stress, and intermediate metabolism
(Wilderman et al., 2004).
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By constructing prrf deficient mutant strains, the researchers found that iron home-
ostasis, heme balance, biofilm formation, and virulence gene expression were affected,
among which the most significant change is the decrease of bacterial virulence (Reinhart
et al., 2015). During acute lung infection, sRNA PrrF is necessary to maintain iron
homeostasis and virulence during the growth of P. aeruginosa (Reinhart et al., 2017).
PhuS is mainly a heme-binding protein. In addition to playing a role in extracellular heme
metabolism, PhuS can also act as a transcriptional regulator to regulate the levels of PrrF
and PrrH in response to heme changes. This dual function of PhuS helps to integrate the
utilization of extracellular heme into the PrrF / PrrH sRNAs regulatory network, which
is very important for the adaptability and virulence of P. aeruginosa (Wilson, Mourino &
Wilks, 2021).

PrrF1/2 sRNAs are also involved in the regulation of quorum sensing. PrrF represses
the gene encoding the anthranilate degrading enzyme (i.e., antABC), a precursor of the
Pseudomonas quinolone signal (PQS). PrrF RNA inhibits the degradation of anthranilic
acid in an iron-deficient environment, allowing biosynthesis of PQS (Oglesby et al., 2008).
PrrF1/2 sRNAs promote the production of AQS (2-akyl-4 (1H) - quinolone metabolites)
by repressing the translation of antR, which encodes transcriptional activators of an-
thranilic acid degradation genes. AQS mediates a range of biological activities, including
quorum sensing and inter bacterial interactions. PrrF sRNA interacts with the antR
mRNA 5′-UTR (Djapgne et al., 2018) with Hfq stabilizing the structure of PrrF sRNAs and
stimulates base pairing between the sRNA PrrF and the antRmRNA (Sonnleitner, Prindl
& Blasi, 2017).

In a novel study, PrrF sRNAs were shown to be involved in regulating the twitching
motility, during iron limited-conditions, which is a motion pattern using type IV pili
moving on moist surfaces (Mattick, 2002; Nelson et al., 2019). The iron regulatory
pathway of P. aeruginosa is altered in a static growth state. The HSI-II T6SS site is a
novel PrrF responsive system, in which PrrF regulates T6SS gene expression under static
conditions by promoting AQ production (Brewer et al., 2020). These studies confirm that
PrrF1 and PrrF2 are essential in the physiology and pathogenesis of P. aeruginosa.

sRNA PrrH
The third full-length 325 nt transcripts, PrrH, encoded by the prrF locus, whose tran-
scription starts at the 5 ’end of prrF1 and proceeds through the prrF1 terminator and
the prrF1-prrF2 intergenic sequence (95 nt) while terminates at the 3′ end of the prrF2
gene. Expression of this transcript is repressed by heme and iron, with the most significant
change in the stationary phase. The outer membrane heme receptors of PhuR and HasR
play important roles in PrrH involved heme regulation. The nirL is a gene related to heme
biosynthesis. The activation of nirL by iron and heme depends on prrF site, however,
the regulation of nirL by heme is not due to the interaction between nirLmRNA and
PrrF sRNAs, but PrrH’s regulating gene expression through its unique sequence from
prrF1-prrF2 intervening region (Oglesby-Sherrouse & Vasil, 2010). PrrH was also shown
to play a regulatory role in the quorum-sensing system. RhlI in the rhl system represses
PrrH expression at the transcriptional level. PrrH directly inhibits LasI and PhzC / D,
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which is a part of a novel RhlI/R-PrrH-LasI/PhzC/PhzD signaling cascade that may be
relevant to P. aeruginosa pathogenicity (Lu et al., 2019). PrrH affects pyocyanin and
elastase production, which is the main component of the exocrine protein of P. aeruginosa
and an important virulence factor for the pathogen to infect the host (Li et al., 2019).
PrrH is also involved in rhamnolipid production, biofilm formation, swarming and
motility in swimming, which is a motion pattern that utilizes flagella to swim in liquid
(Yeung, Parayno & Hancock, 2012). All these functions indicate the importance of PrrH in
bacterial virulence formation (Coleman et al., 2021; Lu et al., 2019).

sRNA PhrS
The phrS gene has an open reading frame (ORF) capable of encoding a 37 aa polypeptide,
but whether the polypeptide has a recognizable physiological function remains to be
elucidated (Sonnleitner et al., 2011). The sRNA PhrS, when overexpressed, was shown to
be involved in nuclear transcriptional regulation. Thus PhrS appears to be a bifunctional
sRNA that can act both as a nuclear transcriptional regulator and an mRNA (Sonnleitner
et al., 2008). Synthesis of PhrS is highly up-regulated by the oxygen response regulator
Anr, which is activated under hypoxia. PhrS is the first sRNA to provide a regulatory
link between oxygen availability and quorum sensing, which may affect P. aeruginosa
biofilm growth under hypoxia. The sRNA PhrS is involved in the regulation of quorum
sensing. It is an activator of PqsR synthesis, while PqsR is one of the key regulators of
quorum sensing in P. aeruginosa. A highly conserved region of 12 nucleotides located at
the downstream of the internal open reading frame of phrS gene (169 to 182 nucleotides
within the downstream of PhrS transcription initiation) is called the creg element of
PhrS, which is necessary for uof (upstream open reading frame)—pqsR regulation. In this
mechanism, PhrS promotes PQS and pyocyanin synthesis by stimulating pqsR translation
(Sonnleitner et al., 2011). Moreover, PhrS is also an essential part of P. aeruginosa biofilm
(Fengqin et al., 2017).

CRISPR-Cas is a prokaryotic adaptive immune system that protects phages and other
parasites (Hoyland-Kroghsbo et al., 2017). The anti-termination effect mediated by PhrS
promotes the transcription of CRISPR site to produce crRNA and makes CRISPR-Cas
form acquired immunity to phage invasion. The regulation of the CRISPR system also
requires the participation of PhrS creg motif (Lin et al., 2019).

sRNA NrsZ
NrsZ is encoded in the ntrC-PA5126 spacer region of PAO1, which is processed into two
short transcripts of approximately 40 nt and 140 nt in response to nitrogen limitation.
Because the expression of this sRNA is dependent on nitrogen source, it was named NrsZ
(nitrogen regulated sRNA), which is produced as transcripts with at least 226 nt. NrsZ
is induced under nitrogen limiting conditions by the NtrB/C two-component system in
cooperation with RpoN. The transcriptional activity of the RpoN promoter was enhanced
in a limited nitrogen source environment. NrsZ can regulate the swarming motility of
P. aeruginosa. The first 60 nt of NrsZ containing SLI is a functional unit that regulates the
swarming motility. NrsZ with conserved motif ACAGGCAG activates the expression of
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rhlA at the post-transcriptional level, which is an essential gene for rhamnolipid synthesis
(Wenner et al., 2014).

sRNA RgsA
RgsA is a 120 nt sRNA controlled by GacA (Gonzalez et al., 2008). By constructing the
rgsA deficient mutant of P. aeruginosa, it was found that the peroxide resistance of the
bacteria diminished in both the planktonic and biofilm states, and the growth rate of
P. aeruginosa was reduced, underscoring the important role of rgsA in the defense of P.
aeruginosa against oxidative stress (Hou et al., 2021). Expression of RgsA requires the
participation of RpoS (Gonzalez et al., 2008). RpoS activates the transcription of RgsA
at each growth stage of bacteria. RgsA reduces the rpoSmRNA and RpoS protein levels
at the post-transcriptional level for bacteria in the exponential growth stage, and this
inhibition depends on Hfq (Lu et al., 2018). The mRNA encoding the global transcription
regulators of Fis and acyl carrier protein AcpP are two direct regulatory targets of RgsA
in P. aeruginosa. RgsA downregulates Fis and AcpP synthesis by base pairing with mRNA,
a regulatory process requiring the participation of the highly conserved 71–77 region of
RgsA and this regulation also needs the interaction site (141 to 175) at the downstream
of the region. RNA chaperone Hfq is also required for this regulation. RgsA also affects
motility and pyocyanin synthesis, suggesting an important role for RgsA in relevant
processes involved in regulating virulence (Lu et al., 2016). Linking Fis to RpoS through
RgsA has helped to reveal the complex interplay between sRNAs and transcriptional
regulators. A study found that RgsA was down-regulated nearly four-fold in biofilms of
mixed-species (S. aureus and P. aeruginosa) (Miller et al., 2017).

sRNA ReaL
ReaL is a transcript about 100 nt, and its level is affected by the temperature and available
oxygen in the host. In the quorum sensing system, the sRNA ReaL is negatively regulated
by the las regulator lasR (Carloni et al., 2017). Though, ReaL positively regulates the pqsC
gene post-transcriptionally, thereby promoting the synthesis of PQS, and stimulating the
connection between the las and pqs systems. ReaL also has a non-negligible function in P.
aeruginosa pathogenic mechanisms: loss of ReaL leads to attenuated bacterial virulence,
whereas ReaL overexpression results in a hypervirulent phenotype. ReaL affects pyocyanin
synthesis, biofilm formation, and swarming motility, while these processes are all affected
by PQS (Carloni et al., 2017).

YbeY is a highly conserved bacterial ribonuclease, and ReaL is the target of YbeY, which
reduces sRNA ReaL levels. Increased levels of sRNA ReaL were found by constructing a
YbeY deletion mutant (Xia et al., 2020b). In this study, overexpressed ReaL base pairs
(Hfq dependent) with the SD sequence of rpoSmRNA to directly inhibit the translation
of rpoS (Thi Bach Nguyen et al., 2018), thereby reducing the expression of oxidative stress-
responsive genes (Xia et al., 2020b).

sRNA ErsA
ErsA consists of approximately 130 nt, which is upregulated by the changes of temper-
ature (transition from ambient to host body temperature), and the changes in oxygen
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status (aerobic to anaerobic). ErsA is also transcriptionally regulated by the envelope
stress response, which is controlled by σ 22 activity, while σ 22 activity affects P. aeruginosa
pathogenicity (Ferrara et al., 2015). ErsA acts as a trans encoded sRNA that is currently
known to bind to three mRNAs (Falcone et al., 2018; Ferrara et al., 2015; Zhang et al.,
2017). One is through post-transcriptional negative regulation (Hfq dependent) of the
algC gene encoding the virulence-associated enzyme AlgC, affecting exopolysaccharide
production and biofilm formation (Ferrara et al., 2015). Like ErsA, activation of algC
expression is dependent on σ 22 (Xu et al., 2021), and thus ErsA and σ 22 finely co-regulate
AlgC enzyme expression in an incoherent feed-forward loop (Ferrara et al., 2015). Second,
the base complementary pairing of the sRNA ErsA to the 5′-UTR of OprD mRNA leads
to increased meropenem resistance in P. aeruginosa, in which OprD is responsible for
carbapenem uptake (Zhang et al., 2017). Third, it binds to and positively regulates
amrZ mRNA at the post-transcriptional level, to promote biofilm development, and
to regulate bacterial swarming motility and twitching motility (Falcone et al., 2018).
ErsA mediated regulation has been implicated in the pathogenicity of P. aeruginosa
during the progression of acute infections. The regulation mechanism contributes to
the stimulation of the host’s infected epithelial cells to initiate inflammatory responses.
During CF chronic infection, adaptive mutations occur, which lead to downregulation
of ErsA, enabling chronic colonization of the human lung by P. aeruginosa, possibly due
to the action of selective pressure. As an important regulatory element in the interaction
between host and pathogen, ErsA may contribute to the pathological adaptability of
P. aeruginosa in the process of CF chronic infection in some cases (Ferrara et al., 2020).
ErsA was upregulated approximately six-fold in biofilms of mixed species (S. aureus and
P. aeruginosa) (Miller et al., 2017).

other sRNAs (Table 2)

THE POSSIBILITY OF SRNAS AS DRUG TARGETS
Small RNAs are inseparable from bacterial resistance or sensitivity to antibiotics by
participating in the regulation of bacterial metabolism. sRNAs can be seen as a target of
direct or indirect drug action, modulating bacterial susceptibility to antibiotics. Some
sRNAs have been found to be closely related to the effectiveness of antibiotics. TpiA is
a key enzyme affecting P. aeruginosa virulence and antibiotic resistance. In one of the
studies of Yushan Xia et al. in 2020, it was found that TpiA is affecting P. aeruginosa
virulence and aminoglycoside antibiotic resistance through sRNA CrcZ (Xia et al.,
2020a). Using tobramycin to treat infections caused by Pseudomonas aeruginosa are prone
to adaptive phenomena, and formation of biofilms. Increased expression of PrrF was
detected, demonstrating that PrrF is implicated in an adaptive mechanism by which
tobramycin promotes biofilm formation (Tahrioui et al., 2019). The involvement of
sRNA PA0805.1 in the regulation of antibiotic fitness in P. aeruginosa was confirmed by
observing the sensitivity of a mutant strain lacking PA0805.1 versus the wild-type strain
to tobramycin under swarming conditions (Coleman et al., 2020). The sRNA Sr0161
and sRNA ErsA, interacting with oprDmRNA, lead to increased bacterial resistance to
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Table 2 Brief description of the biological functions of the other twelve different sRNAs.

sRNA Transcript
length

Gene location Whether Hfq
dependent

Target function

AS1974 127nt PA185388(R3)_471298-
471425

Yes Not describe Master regulator regulating multiple drug
resistance pathways, including membrane
transporters and biofilm associated drug re-
sistance genes, the expression of which is
regulated by gene 5′UTR methylation sites;
it was able to transform multi drug resis-
tant clinical strains into drug highly suscep-
tible strains when overexpressed (Law et al.,
2019).

CrcZ 407nt PAO1_5,308,587-
5,308,993

Yes Crc,Hfq RpoN and CbrA/CbrB are required for crcZ
expression. The CbrA-CbrB-CrcZ-Crc sys-
tem enables bacteria to adapt to different
carbon sources (Sonnleitner, Abdou & Haas,
2009). CrcZ binding to Hfq can sequester
Hfq and affect multiple Hfq involved physi-
ological activities: ¬ abolishes Hfq mediated
translational repression of amiE mRNA
(Sonnleitner & Blasi, 2014);  indirectly af-
fects biofilm formation by competing for
Hfq (Pusic et al., 2016); ® interferes with
PrrF1-2/Hfq mediated regulation of the
antR (Sonnleitner, Prindl & Blasi, 2017);
¯ correlation with bacterial susceptibility
to antibiotics (Pusic et al., 2018; Xia et al.,
2020a; Xia et al., 2020b).

P27 192nt PAO1_4781786-
4781978

Yes rhlI mRNA Fine tuning the activity of the rhl QS system
(Chen et al., 2019).

PA0805.1 276nt PAO1_883,307–
883,582

Not describe Not describe Associated with P. aeruginosamotility, ad-
hesion, cytotoxicity and tobramycin resis-
tance (Coleman et al., 2020; Gill et al., 2018).

PA2952.1 117nt PA14_3,312,577–
3,312,693

Not describe Not describe PA2952. 1 affects P. aeruginosa virulence,
motility, and antibiotic resistance, with links
to several proteins and genes (Coleman et
al., 2021; Gill et al., 2018).

PaiI 126nt PA14_13970-13990 Yes Not describe Induced in an anaerobic environment in the
presence of nitrate, and transcription of PaiI
is dependent on the two-component system
NarX/L; PaiI has an important role in adap-
tive anaerobic denitrification (Tata et al.,
2017).

PhrD 73nt PAO1_785,498-
785,570

Yes RhlRmRNA Overexpression of PhrD increases the level
of RhlR transcript, rhamnolipid and py-
ocyanin production; PhrD has a sequence
specific promoting effect on RhlR tran-
scripts without the involvement of any
Pseudomonas specific proteins (Malgaonkar
& Nair, 2019).

(continued on next page)
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Table 2 (continued)

sRNA Transcript
length

Gene location Whether Hfq
dependent

Target function

RhlS 70nt PAO1_3889700-
3899900

Yes fpvAmRNA Complementary pairing with fpvAmRNA
base to regulate its translation; when enter-
ing the stable phase, RhlS accumulates and
produces normal levels of C4-HSL by stim-
ulating RhlI mRNA translation (Thomason
et al., 2019).

Sr006 123nt PAO1_182,570-
182,693

Yes pagLmRNA Positively regulates the expression of PagL,
reduces its pro-inflammatory properties
and leads to polymyxin resistance (Zhang et
al., 2017).

Sr0161 247nt PAO1_184,211–
184,458

Yes oprDmRNA Base pairing with 5 ’UTR of OprD
results in increased bacterial resistance to
meropenem. Inhibits T3SS after interacting
with exsAmRNA (Zhang et al., 2017).

SrbA 239nt PA14_2,977,373–
2,977,611

Not describe With a large number
of different mRNA
targets

SrbA plays an important role in biofilm for-
mation and pathogenicity of P. aeruginosa
(Gill et al., 2018; Taylor et al., 2017).

sRNA52320 Not describe Not describe Not describe Host mRNAs sRNA52320 is rich in OMV (outer mem-
brane vesicle), which can inhibit the secre-
tion of IL-8 and KC cytokines induced by
LPS and OMV, and reduce the infiltration
of neutrophils in mouse lung. It partici-
pates in pathogen-host interaction and re-
duces host immune response (Koeppen et
al., 2016).

meropenem (Zhang et al., 2017). Pseudomonas aeruginosamagnesium transporter inhibits
ExsA mediated T3SS gene transcription via the RsmA/RsmY/RsmZ signaling pathway
(Chakravarty et al., 2017). The sRNA Sr006 is associated with polymyxin resistance
(Zhang et al., 2017). When using azithromycin to treat infection, azithromycin exerts
a bacteriostatic effect by indirectly inhibiting the transcription of rsmY and rsmZ by
decreasing the expression of positive regulators of rsmY and rsmZ genes (Perez-Martinez
& Haas, 2011). Ajoene, a sulfur rich molecule in garlic, exerts its QS inhibitory effect by
regulating sRNA expression of rsmY and rsmZ in P. aeruginosa (Jakobsen et al., 2017). In
conclusion, sRNAs exist in a variety of drug targets related investigations, therefore, some
sRNAs are the promising candidates to become new antibiotic targets.

CONCLUSIONS
The sRNA is an indispensable part of the regulatory network of P. aeruginosa. It controls
the expression of bacterial genes by regulating protein and target mRNA. The sRNA
is transcribed under the stimulation of different environmental signals which usually
does not need translate, so its response speed is faster than most proteins and mRNAs.
The role of sRNA in post-transcriptional regulation has been identified, indicating their
importance to the normal physiology and pathogenicity of P. aeruginosa. Current studies
have revealed that sRNAs can regulate carbon / nitrogen / iron metabolism, biofilm
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formation, quorum sensing, drug resistance formation, virulence factor expression, and
oxidative stress response of P. aeruginosa at the post-transcriptional level. To play their
corresponding functions, most sRNAs need to form RNA-protein complexes with RNA
chaperone Hfq. The newly discovered RNA chaperone ProQ increases the complexity
of RNA-protein complexes regulating the metabolic networks (Gerovac et al., 2021).
With the wide application of high-throughput sequencing technology, more and more
sRNAs have been detected, but the further and more specific functions remain to be
clarified. Bacterial sRNA is not only crucial to itself but also has an important impact on
the host. They can be transferred to host cells through different mechanisms, affecting cell
immune regulation, metabolism, and apoptosis, resulting in different consequences, such
as sRNA transmitted through OMV (Diallo & Provost, 2020). The inherent and rapidly
acquired resistance of P. aeruginosa to antibiotics is a challenging problem in clinical
treatment. Due to the emergence of multidrug-resistant bacteria, new methods such as
antibiotic-independent phage therapy and the use of antisense oligonucleotide peptide
nucleic acid (PNA) to regulate gene expression have gradually appeared in people’s vision
(Chevallereau et al., 2016; Perera, Carufe & Glazer, 2021). To find how sRNA plays an
important role in the regulatory network or the pathogen-host interaction, clarifying the
function of sRNA will be conducive to developing advance disease treatment strategies
and promoting the search for new antibiotics and their action targets.
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