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Abstract

Background: The open lung approach (OLA) reportedly has lung-protective effects against acute respiratory
distress syndrome (ARDS). Recently, lowering of the driving pressure (AP), rather than improvement in lung aeration
per se, has come to be considered as the primary lung-protective mechanism of OLA. However, the driving
pressure-independent protective effects of OLA have never been evaluated in experimental studies. We here
evaluated whether OLA shows protective effects against experimental ARDS even when the AP is not lowered.

Methods: Lipopolysaccharide was intratracheally administered to rats to establish experimental ARDS. After 24 h,
rats were mechanically ventilated and randomly allocated to the OLA or control group. In the OLA group, 5 cmH,0
positive end-expiratory pressure (PEEP) and recruitment maneuver (RM) were applied. Neither PEEP nor RM was
applied to the rats in the control group. Dynamic AP was kept at 15 cmH,0 in both groups. After 6 h of
mechanical ventilation, rats in both groups received RM to inflate reversible atelectasis of the lungs. Arterial blood
gas analysis, lung computed tomography, histological evaluation, and comprehensive biochemical analysis were
performed.

Results: OLA significantly improved lung aeration, arterial oxygenation, and gas exchange. Even after RM in both
groups, the differences in these parameters between the two groups persisted, indicating that the atelectasis-induced
respiratory dysfunction observed in the control group is not an easily reversible functional problem. Lung histological
damage was severe in the dorsal dependent area in both groups, but was attenuated by OLA. White blood cell counts,
protein concentrations, and tissue injury markers in the broncho-alveolar lavage fluid (BALF) were higher in the control
than in the OLA group. Furthermore, levels of CXCL-7, a platelet-derived chemokine, were higher in the BALF from the
control group, indicating that OLA protects the lungs by suppressing platelet activation.

Conclusions: OLA shows protective effects against experimental ARDS, even when the AP is not decreased. In
addition to reducing AP, maintaining lung aeration seems to be important for lung protection in ARDS.
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Background

Acute respiratory distress syndrome (ARDS) is a form of
severe respiratory failure [1] caused by marked lung
inflammatory responses during critical illness, such as
severe infection, trauma, and burn [2]. The pathological
features of ARDS are alveolar barrier disruption and lea-
kage of protein-rich fluid into the alveolar spaces, causing
pulmonary edema [2] and atelectasis [3, 4]. Atelectasis in
ARDS not only causes respiratory failure, but also enhances
lung injury through several mechanisms. First, in the
atelectatic lung region, alveolar hypoxia induces inflam-
mation [5, 6], pulmonary hypertension, and right cardiac
failure [7]. Second, atelectasis exposes peri-atelectatic al-
veoli to repetitive alveolar collapse and reopening [8], and
exacerbates the peri-atelectatic mechanical ventilation-
induced stress [9, 10]. Third, development of atelectasis
during mechanical ventilation increases the relative tidal
volume and the (driving pressure) [11, 12], which induces
overdistension of aerated lung regions. Therefore, redu-
cing atelectasis is an important aspect in the lung-
protective management of ARDS.

To reduce atelectasis, the open lung approach (OLA),
including application of positive end-expiratory pres-
sure (PEEP) and the lung recruitment maneuver (RM),
has been introduced and has shown some clinical bene-
fits [13—16]. Although several mechanisms have been
speculated to underlie atelectasis-induced exacerbation
of lung injury as described above, the reduction in AP
has recently come to be considered as the primary
lung-protective mechanism of OLA [17]. For example,
some studies have indicated that the protective effects
of OLA are mediated almost solely through decreases
in AP [18, 19], suggesting that the primary goal in
mechanically ventilated patients is lowering the AP, ra-
ther than improving lung aeration. However, it is un-
clear whether OLA has protective effects independent
of lowered AP, because, in the previous experimental
studies demonstrating the lung protective effects of
OLA [8, 20-26], the same tidal volume was maintained
in OLA-managed subjects as in control subjects. Con-
sequently, AP in the OLA group was lower than that in
the controls in these studies, because the relative tidal
volume to aerated lung volume was lowered by OLA.
We hypothesized that lowering AP alone would not be
sufficient for lung-protective management and that
aeration improvement would have protective effects
when the AP is not lowered. Elucidating whether
OLA has effects independent of AP can clarify the
importance of lung aeration per se in the manage-
ment of ARDS.

The aim of the present study was thus to elucidate
whether OLA has protective effects against experimental
ARDS in a rat model, compared to management without
OLA, even when a similar AP was applied in both groups.
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Methods

Animal experiments

All animal experimental protocols were reviewed and ap-
proved by the Animal Research Committee of Yokohama
City University. Male Sprague—Dawley rats, aged 8-9
weeks, were used for all the experiments. The animals
were housed under a 12-h light/dark cycle with food and
water available ad libitum.

Rats were anesthetized with intraperitoneal injection of
ketamine (50 mg/kg/body weight) and xylazine (5 mg/kg/
body weight). Under general anesthesia, the trachea was
exposed through a small incision at the anterior neck and
300 upL of lipopolysaccharide (LPS, Escherichia coli
0O111:B4, Sigma—Aldrich. St Louis, MO, USA) solution in
phosphate-buffered saline (PBS) (5 mg/mL) was intratra-
cheally administered through a 30-gauge needle. Rats were
held in a 45° head-up position for 1 min after this instilla-
tion; thereafter, oxygen was administered for 30 min at a
flow rate of 0.5 L/min. After recovery from anesthesia, rats
were returned to their cages.

At 24 h after LPS administration, rats were again
anesthetized with intraperitoneal ketamine and xylazine
injection. The left femoral vein was cannulated and a 1:1
mixture of 1% propofol and acetate Ringer solution was
injected at a rate of 1 mL/h. The right carotid artery was
cannulated, and arterial blood pressure was monitored.
From the arterial line, heparinized normal saline was
injected at 3 mL/h. Thereafter, the trachea was cannu-
lated and connected to a mechanical ventilator (SN-
480-7, Shinano Seisakusho, Tokyo, Japan), which is
designed for small animals. Rats were ventilated using
the following parameters: fraction of inspired oxygen
(F10,), 0.4; tidal volume, 10 mL/kg; frequency, 65/min;
and PEEP, 5 c¢cmH,0. After starting mechanical ven-
tilation, 0.4 mg of pancuronium bromide, followed by
another 0.2 mg every 30 min, was administered to stop
spontaneous breathing. Thereafter, the recruitment man-
euver (RM) was performed, with 30 cmH,O for 10 s,
three times. The Y-piece of the breathing circuit was
connected to the pressure transducer (Becton Dickinson,
Franklin Lankes, NJ, USA) by an air-filled pressure-
resistant tube, and the airway pressure was recorded
using a medical bedside monitor (BSM-8500, Nihon
Kohden, Tokyo, Japan).

First, we recorded the inspiratory flow pattern of the
small animal mechanical ventilator. Because the inspira-
tory flow from the ventilator is proportional to piston
speed, we obtained videos of the piston movement with
a digital video camera and analyzed the piston speed
using Image] software. We confirmed that the inspira-
tory flow of the ventilator at end-inspiration was near
zero (Fig. 1a). We therefore assumed that the peak in-
spiratory pressure was almost equal to the peak alveolar
pressure (plateau pressure) and calculated the “dynamic”
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Fig. 1 Inspiratory flow pattern, dynamic driving pressures during positive end-expiratory pressure (PEEP) titration, and the experimental scheme.
a Inspiratory flow pattern of the small animal ventilator (SN-480-7, Shinano Seisakusho). b Changes in the dynamic driving pressures when
decreasing PEEP from 10 to 0 cm H,O at intervals of 2 cm H,0O. Data represent the means + SD. ¢ Schematic diagram of the experimental design.
BGA, blood gas analysis; OLA, open lung approach; RM, recruitment maneuver

AP as the difference between the peak inspiratory pres-
sure and PEEP.

Subsequently, we evaluated the association between
dynamic AP and PEEP levels in rats administered with
LPS (n = 3). After the RM, the dynamic AP was recorded
while decreasing PEEP from 10 to 0 cmH,O at an inter-
val of 2 cmH,0O (Fig. 1b). Based on this observation, we
set the PEEP levels in the animals managed with OLA at
5 cmH,0, which was derived by adding 2 cmH,O to the
PEEP level that achieved the minimal dynamic AP.

In the main experiment (Fig. 1c), baseline physiological
parameters were measured and arterial blood gas was
analyzed 5 min after the RM. Thereafter, rats were ran-
domly allocated to two experimental groups: the OLA
and control groups. Twenty-two rats were used in the
main experiment. One rat died before the experimental
allocation. After the allocation, a rat in the control group
died due to airway obstruction, and thus data from 20
animals were included in the final analysis (n =10 per
group). In the OLA group, 5 cmH,O PEEP was applied
and the RM was performed every 30 min. Neither PEEP
nor RM was applied to rats in the control group. The
tidal volume was adjusted to maintain a dynamic AP of
15 c¢cmH,0. In parallel, ventilation frequency was ad-
justed to maintain a constant minute volume.

After 6 h of mechanical ventilation, the RM was
performed three times in both groups to inflate the

reversible atelectatic lung region, because formation of
atelectasis can often be misinterpreted as ventilator-
induced-lung injury in rats [27]. After the final RM, the
setting of the mechanical ventilation for both groups
was changed to the initial setting as follows: tidal vol-
ume, 10 mL/kg; frequency, 65/min; and PEEP 5 cmH,O.
At 5 min after the final RM, rats were euthanized by
blood removal from the right carotid artery.

Arterial blood gas analysis was performed at the 3-h
time point, and pre RM and 5 min post final RM.
Broncho-alveolar lavage flood (BALF) was collected by
lavaging the right lung with two separate 0.5-ml aliquots
of PBS containing 0.6 mM EDTA. The left lung was
fixed in paraformaldehyde and embedded in paraffin, as
described previously [5], for histological analysis.

In another series of experiments, we measured esopha-
geal pressures during mechanical ventilation. At the cer-
vical incision for tracheostomy, the esophagus was
identified and cannulated with a 20-gauge catheter filled
with normal saline [28]. Then, the cannula was con-
nected to a pressure transducer and esophageal pressures
were recorded every hour. We performed an occlusion test
to confirm that the cannula was located in the appropriate
position [29]. In this experiment, 10 rats were randomly al-
located to the OLA and control groups (7 =5 per group).
Transpulmonary pressures (airway pressure — esophageal
pressure) at end-expiration and end-inspiration and
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transpulmonary driving pressures (end-inspiratory trans-
pulmonary pressure — end-expiratory transpulmonary pres-
sure) were calculated.

Analysis of BALF

Collected BALF was stained with Samson’s reagent solu-
tion (Nacalai Tesque, Kyoto, Japan). White blood cells in
the BALF were counted using a cell counter plate. There-
after, BALF was centrifuged at 1000 g for 10 min at 4 °C
and aliquots of the supernatant were stored at — 80 °C for
quantification of total protein and cytokines. Total protein
concentration in the BALF was quantified by a bicin-
choninic acid (BCA) method (Thermo Fisher Scientific,
Waltham, MA, USA). Multiple cytokines and tissue injury
markers in the BALF were analyzed using cytokine array
assays (RayBiotech, Atlanta, GA, USA) following the man-
ufacturer’s instruction. Then, proteins with significantly
different levels between the two groups were quantified
using the following ELISA kits according to the manu-
facturer’s instruction: ICAM-1: DY583 (R&D Systems,
Minneapolis, MN, USA); RAGE: DY1616 (R&D Systems);
CXCL-7: ERPPBP (Thermo Fisher Scientific).

Histological examinations

The paraffin-embedded left lung sections were stained
with hematoxylin and eosin as described previously [5].
Twelve fields were randomly selected from each of the
dorsal or ventral lung areas (a total of 24 fields per ani-
mal), and were histopathologically evaluated in a blinded
manner, following previously described methods [30].

Computed tomography (CT)

A separate group of rats (n=4 per group and time
course) was used for CT evaluations. Either at the 3-h
time point or 5 min after the final RM, rats were eutha-
nized, and their tracheas were ligated at end-expiration.
Immediately after euthanasia, a pulmonary CT image
was obtained using a micro-CT imager (RIGAKU,
Tokyo, Japan). The aerated lung volume was analyzed
and calculated using Image] software.

Statistical analysis

Data are presented as means + standard deviations (SD).
GraphPad Prism 6 (GraphPad Software, La Jolla, CA,
USA) was used for all statistical analyses. Statistical sig-
nificance was set at p <0.05. Physiological parameters
and lung histology scores were analyzed by two-way
repeated-measures analysis of variance. Aerated lung
volumes were analyzed by two-way analysis of variance.
Post-hoc Sidak’s multiple comparison test was per-
formed when there was a significant interaction effect.
Cytokine array assay data were analyzed by multiple ¢
test, using the false discovery rate approach with the

Page 4 of 11

two-stage step-up method of Benjamini, Krieger, and
Yekutieli [31]. The false discovery rate was set at 5%.
Protein concentrations, white blood cell counts, and
ELISA data were analyzed by Welch’s ¢ test.

Results

Physiological and mechanical ventilation parameters

The mean arterial pressure (Fig. 2a) was lower in the OLA
group at the 1-h and 2-h time-points of the experimental
protocol than in the control group. However, mean arter-
ial pressure was kept at over 70 mmHg in all the animals.
There was no significant difference in mean arterial pres-
sure between the two groups at time points after 3 h.

In both groups, the dynamic AP (Fig. 2b) was main-
tained at 15 cmH,O throughout the experimental proto-
col until the final RM. Both end-expiratory and
end-inspiratory transpulmonary pressures were higher in
the OLA group than in the control group, and trans-
pulmonary driving pressures were kept at almost the
same level between the two groups until the final RM
(Additional file 1: Figure S1). Tidal volume (Fig. 2c) was
significantly lower in the control group than in the OLA
group, to maintain a constant dynamic AP. In parallel,
the respiratory rate (Fig. 2d) was higher in the control
group, to maintain the same minute ventilation volume.
After the final RM, the tidal volume was set to the same
value in both groups; dynamic AP was higher in the con-
trol group (20.9+1.7 vs. 11.8 + 1.1 cmH,0, p <0.0001).
Moreover, the end-inspiratory transpulmonary pressure
(Additional file 1: Figure S1A) and transpulmonary AP
(Additional file 1: Figure S1B) were significantly higher
in the control group after the final RM (transpulmonary
AP: 17.3+ 3.3 vs. 9.7 £ 1.8 cmH,0, p <0.0001). These re-
sults indicated that the lung compliance was lower in
the control group, even after inflating the reversible
atelectatic region.

The initial partial arterial pressure of oxygen (P,O)
(Fig. 2e) and partial arterial pressure of carbon dioxide
(P,CO,) (Fig. 2f) values were not significantly different
between the two groups. During the ventilation protocol,
P,O, was higher and P,CO, was lower in the OLA
group than in the control group, and the difference
remained significant even after the final RM (P,0O,, 92.8
+19.9 vs. 147.5 + 34.9 mmHg, p = 0.0001, P,CO,, 60.6 +
7.6 vs. 35.3 + 3.8 mmHg, p < 0.0001).

Lung CT

At the 3-h time point of the experimental protocol and
5 min after the final RM, lung CT images were obtained
at end-expiration. At the 3-h time point, atelectasis was
observed particularly in the dorsal lung regions of the
control group (Fig. 3a). At the same time, the measured
volume of the aerated lung regions at end-expiration
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Analysis of alveolar barrier injury and inflammatory
mediators

In the OLA group, the number of white blood cells
in the BALF was significantly lower than in the con-
trol group (354.9 +124.4 vs. 207.1 + 84.3 x 10* cells/
mL, p=0.0068) (Fig. 5a). Moreover, management with
OLA significantly decreased the protein concentra-
tions in BALF, which is an indicator of alveolar bar-
rier disruption (1292.1 +438.0 vs. 796.7 + 165.3 ug/mL,
p =0.0061) (Fig. 5b).

Next, we performed comprehensive analysis of inflam-
matory and tissue injury markers in BALF using cyto-
kine array analysis (Fig. 5c). The concentration of
CXCL7, a platelet-derived chemokine, was significantly
lower in the OLA group than in the control group.
Moreover, OLA decreased levels of RAGE and ICAM-1,
indicators of alveolar epithelial and endothelial injury
[32, 33], in BALF. We also confirmed that OLA

was significantly larger in the OLA group than in the
control group (1.63+1.08 vs. 6.83+0.75 cm’, p<
0.0001) (Fig. 3c). After the final RM, atelectasis was re-
duced in the control group (Fig. 3b); however, the differ-
ence in the aerated lung volume between the OLA and
control groups remained statistically significant (3.52 £
0.80 vs. 5.40 + 1.34 cm®, p = 0.0451) (Fig. 3c).

Histological lung damage

We next evaluated the histological lung damage in the
ventral (independent) and dorsal (dependent) lung areas
(Fig. 4). Lung histology scores were significantly higher
in the dorsal dependent area than in the ventral area,
and OLA attenuated the histological damage (effect of
lung area, F=85.63, p <0.0001; effect of OLA manage-
ment, F=5.362, p=0.0326; interaction effect, F = 3.908,
p =0.0636).
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decreased CXCL-7 (13,809 £9322 vs. 1969 + 2682 pg/
mL, p=0.0029), RAGE (113,156 + 28,580 vs. 44,048 +
15,904 pg/mL, p < 0.0001), and ICAM-1 (83,995 + 30,062
vs. 33,912 + 11,796 pg/mL, p =0.0004) levels in BALF,
using ELISA (Fig. 5d-f). These results indicated that
OLA protects the alveolar barrier by suppressing platelet
activation and neutrophil infiltration into the alveoli.

Discussion

In the present study, we demonstrated that OLA during
mechanical ventilation has lung-protective effects
against LPS-induced experimental ARDS, even when the
dynamic AP was not decreased. In the previous experi-
mental studies demonstrating the benefits of OLA, such
as those using PEEP, a similar tidal volume was used ir-
respective of whether the animals received OLA [8, 20—
26]. Therefore, it has remained unclear whether the
protective effects are mediated by decreases in AP or by
improvement in lung aeration per se. In the present
study, to maintain a similar AP in both groups, the tidal
volume was adjusted, and a significantly lower tidal

volume was applied in the control group. Our results
clearly demonstrated the driving pressure-independent
benefits of OLA, which, to our knowledge, have not
been reported previously.

Recently, Amato et al. have reported that AP is the
ventilation variable that is most strongly associated with
mortality in patients with ARDS [18]. Using mediation
analysis, their report demonstrated that the application
of PEEP seems to be beneficial only when the AP is low-
ered by the application of PEEP. Additionally, an experi-
mental study utilizing a ventilator-induced lung injury
model demonstrated that PEEP is protective only if asso-
ciated with a reduced AP [19]. The results of these re-
ports suggest that lung protection can be achieved by
lowering AP, even without improvement of lung
aeration. However, it is known that development of atel-
ectasis per se enhances alveolar stress in the peri-
atelectatic region [9, 10], and causes hypoxia-induced
inflammation [5, 6] and pulmonary circulatory failure
[7]. Our present results indicate that, in addition to low-
ering AP, maintaining lung aeration is important for lung
protective management in ARDS.
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In the present study, we applied both PEEP and RM as
OLA. There are several methods to determine optimal
PEEP during mechanical ventilation [34, 35]. We deter-
mined the PEEP level in the OLA group based on the lung
mechanics required to maximize lung dynamic compliance
[36]. Although there is no clear consensus as to the best ap-
proach for determining PEED, the approach used in the
present study is reported to exert lung protection with min-
imal adverse effects [37]. On the other hand, there are sev-
eral conflicting experimental studies on RM [26, 38—41];
however, meta-analysis of clinical studies has indicated that
RM in patients with ARDS may reduce intensive care unit
mortality [14, 15]. Therefore, we believe there is some ra-
tionale for utilizing RMs as a part of OLA. Future studies
should investigate the individual effects of RM and PEEP.

As expected, lung aeration, arterial oxygenation, and
gas exchange were significantly better in the rats

receiving OLA than in rats managed without OLA dur-
ing the mechanical ventilation protocol. We finally per-
formed the RM to ensure that we did not misinterpret
the formation of atelectasis as lung damage [27]. In fact,
in the control group, RM after 6 h of mechanical ventila-
tion increased the aerated lung volume and improved ar-
terial oxygenation, and decreased carbon dioxide levels;
however, there were significant differences in these pa-
rameters between the OLA and control groups even
after the RM. These results indicate that atelectasis not
only causes oxygenation impairment, but also induces
respiratory dysfunction that could not be easily reversed
by RM.

Lung histologic analysis and analysis of BALF revealed
that OLA attenuated neutrophil infiltration and alveolar
barrier protein leakage. Moreover, levels of the alveolar
epithelial and endothelial injury markers, RAGE and
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ICAM-1 [32, 33], in the BALF were significantly lower
in the OLA group than in the control group. These find-
ings also indicate that the atelectasis-induced respiratory
dysfunction observed in the control group is not only an
easily reversible functional problem, but is also accom-
panied by tissue injury. Although the observation period
in the present study was only 6 h, our results show the
suppression of alveolar tissue injury by OLA. Therefore,
it is plausible that OLA would yield long-term clinical
benefits, such as prolongation of ventilator-free days or
improvement of mortality.

The comprehensive analysis of inflammatory cytokines
revealed that OLA decreased the level of CXCL-7, a
platelet-derived chemokine in the BALF. Hypoxia is a
known cause of platelet activation [42]. Therefore, OLA

might attenuate platelet activation by decreasing hypoxic
atelectatic lung regions. Recently, the potential contribu-
tion of CXCL-7 to acute lung injury has been reported
in a study using knock-out mice [43]. It is possible that
suppression of CXCL-7 by OLA leads to decreased neu-
trophil infiltration into the alveolar space. Moreover,
platelet activation might enhance pulmonary vascular
thrombosis, which may in turn increase the dead space
fraction, with CO, retention, in the control group. As
platelet activation and the increase in the
platelet-derived CXCL-7 may be a potential therapeutic
target for atelectasis-induced lung injury, further studies
are warranted.

The arterial carbon dioxide level was significantly
higher in the control group throughout the ventilation
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protocol. One of the possible reasons for CO, retention
was the increase in the relative dead space fraction due
to the smaller tidal volume in the control group than in
the OLA group. Another explanation is that alveolar
hypoxia in the control group might have disturbed pul-
monary blood flow and gas exchange through
hypoxia-induced pulmonary vasoconstriction. Moreover,
as mentioned above, hypoxia-induced platelet activation
might also have disturbed the pulmonary circulation
through thrombosis formation. Hypercapnia is known to
exert anti-inflammatory effects [44—46] by suppressing
NE-«kB [47, 48]. Therefore, it is unlikely that the hyper-
capnia observed in the control group worsened the in-
flammation and tissue injury. On the other hand,
hypercapnia has been reported as an unfavorable prog-
nostic factor in pneumonia [49, 50] and in mechanically
ventilated patients [51], possibly due to immunosuppres-
sion [52-55]. Thus, the improvement of gas exchange
achieved by OLA may have advantages in terms of ap-
propriate immunological responses against infection,
which is the leading cause of ARDS.

The clinical efficacy of OLA has been evaluated in sev-
eral studies. A recent meta-analysis has revealed that the
high-PEEP strategy is not associated with mortality re-
duction, as compared with low-PEEP management [16].
Moreover, a recent randomized controlled trial, named
Alveolar Recruitment for Acute Respiratory Distress
Syndrome Trial (ART) [56], demonstrated that the man-
agement of ARDS patients with lung recruitment and ti-
trated PEEP increased all-cause mortality, as compared
to the low-PEEP strategy proposed by ARDSNet [57].
One of the potential explanations for this finding is that
lung recruitability was low in the patients in the ART
trial and that the harmful effects of OLA, such as cir-
culatory failure, overdistension, or barotrauma, over-
came its beneficial effects. In the present study,
although the mean arterial pressure was significantly
lower in the OLA group for the first 2 h of the venti-
lation protocol, lung aeration was significantly im-
proved in the OLA group and no barotrauma was
observed. The high lung-recruitability in the present
study might have favorably influenced the effects of
OLA. Additionally, the control group in the ART trial
received substantial PEEP, whereas the control group
in the present study was managed with zero PEEP.
Although the present study suggests that lung aer-
ation should be maintained to protect lungs against
ARDS-related damage, it is also necessary to balance
the beneficial and harmful effects of OLA. How to
optimize OLA is a very important future focus for re-
search in the mechanical ventilation of patients with
ARDS.

The present study had some limitations. First, we ap-
plied only one level of AP to animals. We chose 15
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cmH,O as the level of AP, because it seemed to be the
upper limit of the safe AP level in patients with ARDS
[17, 58], while a AP of less than 15 cmH,O could cause
severe hypoxia and hypercapnia in the control group.
However, it is unclear whether the protective effects of
OLA would be observed when using a different level of
AP. Second, we used only one animal model of ARDS,
intratracheal LPS-induced ARDS, in the present study.
In an ARDS model with a different etiology, such as sys-
temic sepsis, the effects of OLA might be different.
Third, management with zero PEEP in the control group
is far from standard clinical practice. We used zero PEEP
management as the control to recapitulate development
of the marked atelectasis observed in patients with
ARDS. However, this may limit the generalization of our
results to clinical settings.

Conclusions

In conclusion, OLA improved lung aeration and had
protective effects against experimental ARDS, independ-
ent of AP. In addition to lowering AP, maintaining lung
aeration is an important aspect of lung protective man-
agement in ARDS.

Additional file

Additional file 1: Figure S1. Transpulmonary pressures. The data were
obtained from a separate group of animals, different to those used in the
main experiment. (A) End-inspiratory transpulmonary pressure. (B) End-
expiratory transpulmonary pressure. (C) Transpulmonary AP. Transpul-
monary pressures were calculated by subtracting esophageal pressures
from airway pressures: *p < 0.05 vs. control group. Data represent the
means + SD. (TIFF 850 kb)
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