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Simple Summary: We previously showed that breast tumor tissues from women display an imbal-
ance in abundance and composition of microbiota compared to normal healthy breast tissues. It is
unknown whether these differences in breast tumor microbiota may be driven by alterations in micro-
bial metabolites, leading to potentially protective or pathogenic consequences. The aim of our study
was to conduct global metabolic profiling on normal and breast tumor tissues to identify differences
in metabolite profiles and to determine whether breast microbial dysbiosis may be associated with
enrichment of microbial metabolites in triple-negative breast cancer (TNBC) which disproportion-
ately affects women of African ancestry. We observed significant correlations between elevated lipid
metabolism pathways and microbial dysbiosis in TNBC tissues from both non-Hispanic black and
white women. This is the first study to report an association between breast microbial dysbiosis and
alterations in host metabolic pathways in breast tumors, including TNBC, of non-Hispanic black and
non-Hispanic white women.

Abstract: Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer that is non-
responsive to hormonal therapies and disproportionately impact women of African ancestry. We
previously showed that TN breast tumors have a distinct microbial signature that differs from less
aggressive breast tumor subtypes and normal breast tissues. However, it is unknown whether these
differences in breast tumor microbiota may be driven by alterations in microbial metabolites, leading
to potentially protective or pathogenic consequences. The goal of this global metabolomic profiling
study was to investigate alterations in microbial metabolism pathways in normal and breast tumor
tissues, including TNBC, of non-Hispanic black (NHB) and non-Hispanic white (NHW) women.
In this study, we profiled the microbiome (16S rRNA) from breast tumor tissues and analyzed
984 metabolites from a total of 51 NHB and NHW women. Breast tumor tissues were collected from
15 patients with TNBC, 12 patients with less aggressive luminal A-type (Luminal) breast cancer, and
24 healthy controls for comparison using UHPLC-tandem mass spectrometry. Principal component
analysis and hierarchical clustering of the global metabolomic profiling data revealed separation
between metabolic signatures of normal and breast tumor tissues. Random forest analysis revealed a
unique biochemical signature associated with elevated lipid metabolites and lower levels of microbial-
derived metabolites important in controlling inflammation and immune responses in breast tumor
tissues. Significant relationships between the breast microbiome and the metabolome, particularly
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lipid metabolism, were observed in TNBC tissues. Further investigations to determine whether
alterations in sphingolipid, phospholipid, ceramide, amino acid, and energy metabolism pathways
modulate Fusobacterium and Tenericutes abundance and composition to alter host metabolism in TNBC
are necessary to help us understand the risk and underlying mechanisms and to identify potential
microbial-based targets.

Keywords: metabolome; microbiome; triple-negative breast cancer; lipids; breast cancer

1. Introduction

Triple negative breast cancer (TNBC) is the deadliest form of breast cancer among
women in the US [1,2]. TN breast tumors are negative for estrogen receptor (ER), proges-
terone receptor (PR), and amplification of the human epidermal growth factor receptor
2 (HER2) [3]. TNBC is associated with poor overall survival and there are no targeted
therapies to treat TNBC [4–7]. Non-Hispanic black (NHB) women are approximately three
times more likely than non-Hispanic white (NHW) women to develop TNBC [8] or die
from the disease [9]. Therefore, studies to investigate mechanisms that contribute to TNBC
risk and that are inclusive of underserved populations most impacted by TNBC is an unmet
need that would be transformative in further understanding the biology of TNBC.

Considering that the breast exhibits the presence of a mucosal immune system that
protects against pathogens [10], an imbalance in the breast tissue microbiota due to in-
flammation and alterations in microbial metabolism pathways may give rise to breast
cancer development. We previously showed that an imbalance in the composition and
abundance of microbiota exists in the breast tissues of women with breast cancer and
differs by breast tumor stage and subtype, including triple-negative breast cancer (TNBC),
which disproportionately impacts women of African ancestry [11]. Similar studies have
also reported differences in microbial composition in breast cancer [12–16]. However, most
of these studies were conducted in populations of European ancestry. While the etiology
of microbiome-mediated breast cancer remains to be fully understood, it is plausible that
alterations in microbial metabolites may influence host metabolic processes, leading to
potentially protective or pathogenic consequences.

Therefore, in the current study, our objective was to conduct global metabolic profiling
on normal and breast tumor tissues to identify differences in metabolite profiles and to
determine whether breast microbial dysbiosis may be associated with a metabolic signature
in triple-negative breast cancer (TNBC), which disproportionately affects women of African
ancestry. To our knowledge, this is the first study to show an association between microbial
dysbiosis and alterations in microbial metabolites in breast tumor tissues, including TNBC
tissues, from both NHB and NHW women.

2. Materials and Methods
2.1. Tissue Collection and Processing

We obtained fresh, snap frozen surgical breast tissue specimens from NHB (n = 22)
and NHW (n = 29) women, aged 18 years and over. Breast disease status, pathology reports,
and other clinical information was obtained following written informed consent from the
patient from the Cooperative Human Tissue Network (Birmingham, AL). Breast tissue
samples (n = 51) were immediately stored upon receipt and maintained at -80 ◦C until
further processing. TNBC tissues were obtained from 6 NHB and 9 NHW women. An equal
number of Luminal breast tumor tissues were obtained from NHB (n = 6) and NHW (n = 6)
women. Women without evidence of breast disease, as confirmed by a pathologist, who
underwent reduction mammoplasty for macromastia were considered normal (controls).
Normal breast tissue specimens were obtained from NHB (n = 11) and NHW (n = 13)
women. This study was conducted in accordance with the Declaration of Helsinki, and the
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protocol was approved by the Institutional Review Board of the University of Tennessee
Health Science Center (IRB #16-04717-NHSR).

2.2. DNA Extraction and 16s rRNA Gene Sequencing

DNA extraction and 16S (V4) rRNA gene sequencing was previously performed
on breast tissues as we previously described [11]. All analyses were conducted in the
R environment.

2.3. Metabolite Analysis and Liquid Chromatography/Mass Spectrometry (LC/MS, LC/MS2)

Ultra-high-performance liquid chromatography (UHPLC)-tandem mass spectrom-
etry and metabolomic profiling analysis was performed using Metabolon as previously
described in detail [13].

2.4. Metabolite Analysis

The bioinformatic analyses of the microbiome data were completed by utilizing the
software and platforms including principal component analysis (PCA) as we previously
described [11].

The metabolite profiling was log transformed and imputed for missing values. Metabo-
lites without variation or greater than 30% duplicated values were excluded from further
analyses. To attenuate the high influential data points, a robust linear model was used to as-
sess the differential metabolite levels for each factor. We further used a robust linear model
to evaluate the two independent predictors with or without interaction terms. For each
test, the Benjamini–Hochberg 95 method was used to control the false discovery rate (FDR).
At each q-value cutoff, the list contains q fraction of false positives. The metabolic pathway
analysis was conducted on the MetaboAnalyst website (http://www.metaboanalyst.ca,
(accessed on 18 July 2022)).

2.5. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 9.4 (GraphPad Software, USA)
software or the program “R” version 4.1.2 (2021-11-01)—"Bird Hippie". The R Foundation
for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit), http://cran.r-project.
org/, (accessed on 15 November 2021). Two types of statistical analyses were usually
performed: (1) significance tests and (2) classification analyses. (1) For pair-wise compar-
isons we typically performed Welch’s t-tests and/or Wilcoxon’s rank sum tests. Wilcoxon’s
sum rank test was used to detect differentially expressed metabolites or phylum in breast
cancer. For differential phylum between two groups, we used a p-value cutoff of 0.1. For
differential metabolites in TNBC vs normal, or Luminal vs normal, we used a q-value cutoff
of 0.05, while we used a p-value cutoff of 0.05 for TNBC vs. Luminal. For each selected
phylum and metabolite, we calculated the Spearman correlation coefficient (28 samples
with both data) and plotted as heatmaps. For classification, we used random forest analyses.
For other statistical designs, we performed one-way ANOVA analyses for comparisons of
the indicated groups. Only when p < 0.05 was it considered statistically significant. NS, not
significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.

3. Results
3.1. Patient Demographics and Tissue Characteristics

A total of 51 breast tissue samples were analyzed in this study. Table 1 presents the
selected patient demographic and breast tissue characteristics. Breast tissue specimens
were collected from a total of 24 women free of cancer who underwent breast reduction
mammoplasty (normal). A total of 27 breast tumor tissues were collected from women with
TNBC (n = 15) or Luminal A (Luminal) breast tumors (n = 12), a less aggressive form of
breast cancer that is responsive to hormonal therapy, for comparison. Information on race,
menopausal status, and stage of the breast tumors was also collected in this study. Stages
III and IV breast tumors were combined due to the low number of stage IV breast tumors.

http://www.metaboanalyst.ca
http://cran.r-project.org/
http://cran.r-project.org/
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Approximately 57% of patients were premenopausal and 53% of breast tissue specimens
were collected from NHW women while 43% were obtained from NHB women. The
mean age between women with and without breast cancer was not significantly different
(51 ± 1.24 versus 49 ± 3.86 years, respectively; p > 0.05).

Table 1. Patient breast tissue characteristics.

Variable Total Patients (n = 51) Normal (n = 24) Tumor (n = 27)

Mean age, years
Average (range) 50 (21–80) 49 (21–75) 51 (25–80)

Ethnicity
NHB 22 11 11
NHW 29 13 16

Menopausal status
Premenopausal 29 14 15
Postmenopausal 22 10 12

Stage
1 10 NA 10
2 10 NA 10
3/4 7 NA 7

Tumor subtype
Luminal 12 NA 12
TNBC 15 NA 15

Abbreviations: NHB: non-Hispanic blacks; NHW: non-Hispanic whites; TNBC: triple-negative breast cancer; NA:
not applicable; SD: standard deviation.

3.2. Metabolic Profiling of Normal and Breast Tumor Tissues

To identify metabolic differences between normal and breast tumor tissues, metabolic
profiling of breast tissues was acquired by LC-MS. Principal component analysis (PCA)
was conducted to observe the differences between normal, Luminal, and TNBC tissues.
The PCA score scatter plots are displayed in Figure 1A. We observed a separation tendency
between the three groups which suggests differences in metabolite levels between the
groups. Specifically, we observed that normal samples clustered significantly differently
than Luminal and TNBC samples PC1 (44%) compared with breast tumor tissues (p < 0.05)
(Figure 1A). Random forests (RF) analysis assessing the differences in all tissue samples
stratified by tumor status yielded a predictive accuracy of 82% (data not shown). The
biochemical importance plot in Figure 1B highlights the top 30 metabolites in breast tumors
(both Luminal and TNBC combined) versus normal tissue, ranked in order of their impor-
tance to the classification scheme. The plot features metabolites involved in lipid, amino
acid, and energy metabolism pathways. The top metabolites for separation of breast tumor
and normal tissue include kynurenine, a tyrosine metabolite linked to inflammation. Other
metabolites differentially detected among tissue types included metabolites of the Krebs
cycle and oxidative phosphorylation, including alpha-ketoglutarate, various lipid species
such as 1-stearoyl-2-oleoyl-GPI, sphingosine, and energy metabolites such as fumarate
and N6-succinyladenosine (Figure 1B). To further explore the metabolic changes between
normal and breast tumor tissues, candidate metabolites were imported into MetaboAn-
alyst 3.0 for enrichment pathway analysis. The corresponding metabolic pathways are
displayed in Figure 1C, including those for arginine metabolism, alanine, aspartate and glu-
tamate metabolism, the citric acid cycle, butanoate metabolism, sphingolipid metabolism,
glutamine and glutamate metabolism, and tryptophan (Trp) metabolism.

We observed significantly elevated levels in the Trp metabolism pathway in breast
tumor tissues compared to normal tissue (Figure 2). The Trp metabolite kynurenine
(Kyn) is regarded as an inflammatory marker as inflammatory cytokines, indoleamine
2,3-dioxygenase (IDO) and TDO, catalyze the formation of KYN and anthranilate from Trp
in breast tissue. As shown in Figure 2, many metabolites in the Trp metabolism pathway
were elevated in breast tumor tissues including Trp, N-formylkynurenine, and Kyn. The
byproducts of Trp with microbiome metabolic origin or contribution, indoleproprionate
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(IPA) and indoxyl sulfate, are significantly decreased in breast tumor tissues compared
to normal breast tissues. These findings suggest that IPA and indoxyl sulfate levels may
serve a protective function in the breast tissue via modulating the levels of microbiota that
metabolize Trp metabolites.

Figure 1. Metabolome analysis of normal and breast tumor tissues. (A) Principal component analysis
of the metabolome analysis for normal (green), Luminal (blue), and TNBC (purple) tissues. (B)
Random forest analysis illustrates the top 30 metabolites with the highest discriminatory power
between normal, Luminal and TNBC groups. (C) Metabolism pathways significantly enriched in
breast tumors compared to normal breast tissues.

3.3. Breast Tumor Tissues Manifested Distinguishable Profiles of Metabolites Compared to Normal
Breast Tissues

Because we initially wanted to determine whether differences in metabolomic profiles
differed by disease state, we conducted metabolomics analyses on normal and breast tumor
tissues using univariate analysis. Table 2 shows the top 10 metabolites that were differen-
tially expressed between normal and breast tumor tissues. The leading metabolites that
significantly differed among breast tumors compared to normal breast tissues, included
primarily lipids, but also included cofactors and vitamins, peptides, amino acids, and
carbohydrates. Specifically, pathways involved in phospholipid metabolism, phosphatidyl-
glycerol and glycerolipid metabolism, plasmalogen and pentose metabolism, alanine and
aspartate metabolism, riboflavin, carnitine metabolism, and methionine metabolism were
significantly different among breast tumor tissues compared to normal breast tissues
(p < 0.0001) (Table 2). By contrast, levels of the metabolites glycerophosphoserine, glyc-
erophosphoglycerol, 1-(1-enyl-palmitoyl)-GPE, lyxonate, aspartate, 1-palmitoyl-2-oleoyl-
GPG, N,N-dimethyl-pro-pro, FAD, deoxycarnitine, and taurine were significantly lower in
normal tissues compared to breast tumor tissues (Table 2). Scatter plots further illustrating
these significant differences in metabolite levels between normal, Luminal, and TNBC
tissues is shown in Figure 3A.
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Figure 2. Tryptophan metabolism pathway alterations in breast tumor tissues compared to nor-
mal breast tissues. Log-scale differences in the major Trp metabolites in normal and breast tumor
tissues are shown in the scatter plot graphs. The Trp metabolism pathway begins with the rate-
limiting inflammatory cytokines, IDO and TDO, which involves cleaving Trp by indoleamine 2,3-
dioxygenase (IDO1/IDO2) or tryptophan 2,3-dioxygenase 2 (TDO2) to form N-formylkynurenine.
N-formylkynurenine is further metabolized by enzymes to kynurenine. The byproducts of Trp with
microbiome metabolic origin or contribution, indoleproprionate (IPA) and indoxyl sulfate, are indi-
cated by the dotted line. * p < 0.05, *** p < 0.0005, **** p < 0.0001 is considered statistically significant.

Table 2. Significantly different metabolites between normal and breast tumor tissues.

Biochemical Super
Pathway

SUB
Pathway Mean ± SD p-Value

Glycerophosphoserine Lipid Phospholipid metabolism 3.284 ± 0.278 0
Glycerophosphoglycerol Lipid Glycerolipid metabolism 11.851 ± 1.061 0

1-(1-enyl-palmitoyl)-GPE (P-16:0) Lipid Lysoplasmalogen 2.885 ± 0.260 0
Lyxonate Carbohydrate Pentose metabolism 6.394 ± 0.559 0
Aspartate Amino acid Alanine and aspartate metabolism 2.884 ± 0.264 0

1-palmitoyl-2-oleoyl-GPG (16:0/18:1) Lipid Phosphatidylglycerol (PG) 2.077 ± 0.187 0
N,N-dimethyl-pro-pro Peptide Modified peptides 4.193 ± 0.400 0

FAD Cofactors and vitamins Riboflavin metabolism 2.761 ± 0.266 0
Deoxycarnitine Lipid Carnitine metabolism 3.110 ± 0.297 0

Taurine Amino acid Methionine, cysteine, SAM, and
taurine metabolism 2.714 ± 0.266 0

To determine whether metabolite levels differed by breast tumor subtype, we per-
formed univariate analysis on TNBC and Luminal breast tissues for comparison. Table 3
highlights the major metabolites differently expressed in TNBC vs Luminal breast tumor
tissues. The major metabolic sub pathways that were different between the two groups
included sphingolipid synthesis, phosphatidylinositol (PI), phosphatidylinositol (PI), TCA
cycle, alanine and aspartate metabolism, pyrimidine metabolism, uracil containing hexosyl-
ceramides (HCER), histidine metabolism, hexosylceramides (HCER), methionine, cysteine,
and SAM and taurine metabolism. Interestingly, phytosphingosine, 1-stearoyl-2-oleoyl-GPI
(18:0/18:1)*, N-acetylasparagine, 3-(3-amino-3-carboxypropyl)uridine*, glycosyl ceramide
(d18:1/20:0, d16:1/22:0)*, histamine, glycosyl-N-stearoyl-sphingosine (d18:1/18:0), and
N-acetyltaurine were each significantly lower in TNBC tissues compared to Luminal breast
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tissues (p < 0.01) (Table 3). Figure 3B further illustrates these significant differences in
metabolite levels between Luminal and TNBC tissues.

Figure 3. Significant differences in metabolite levels between normal and breast tumor tissue groups.
Shown are scatter plots of the mean +/− standard error measurement. (A) Individual differences
in scale intensities of the most significantly altered metabolites between normal (green), Luminal
(blue), and TNBC (purple) breast tissues. (B) Individual differences in scale intensities of the most
significantly altered metabolites between Luminal (blue) and TNBC (purple) breast tissues. * p < 0.05,
** p < 0.005, *** p < 0.0005, **** p < 0.0001 is considered statistically significant.
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Table 3. Significantly different metabolites between TNBC and Luminal breast tissues.

Biochemical Super Pathway Sub Pathway Mean ± SD p-Value

Phytosphingosine Lipid Sphingolipid synthesis −3.214 ± 0.561 0.000015
1-palmitoyl-2-arachidonoyl-GPI (16:0/20:4) Lipid Phosphatidylinositol (PI) 1.543 ± 0.318 0.000055

1-stearoyl-2-oleoyl-GPI (18:0/18:1) Lipid Phosphatidylinositol (PI) −2.862 ± 0.589 0.000074
Alpha-ketoglutarate Energy TCA cycle 0.939 ± 0.217 0.000197
N-acetylasparagine Amino Acid Alanine and aspartate metabolism −1.700 ± 0.423 0.000828

3-(3-amino-3-carboxypropyl) uridine Nucleotide Pyrimidine metabolism, uracil containing −2.258 ± 0.602 0.001013
Glycosyl ceramide (d18:1/20:0, d16:1/22:0) Lipid Hexosylceramides (HCER) −2.437 ± 0.707 0.002439

Histamine Amino Acid Histidine metabolism −1.867 ± 0.577 0.003713
Glycosyl-N-stearoyl-

sphingosine (d18:1/18:0) Lipid Hexosylceramides (HCER) −2.497 ± 0.795 0.004926

N-acetyltaurine Amino Acid Methionine, cysteine, SAM, and taurine
metabolism −1.262 ± 0.425 0.009224

We previously showed that breast tumor tissues, including TNBC breast tissues, have a
lower abundance of common microbiota compared to normal breast tissues using 16S rRNA
sequencing [11]. In this study, we expanded our analysis to determine whether differences
in specific microbiota phyla correlated with alterations in lipid metabolites based on breast
tumor subtype. We observed significant differences in the pattern of microbiota and lipid
metabolites (Figure 4). As shown by the heatmap illustrating the Spearman correlation-
based hierarchical clustering analysis, the pattern of microbial phyla and the top 50 signif-
icant lipid metabolites revealed differences among the breast tumor subtypes (Figure 4).
For example, Fusobacteria and Tenericutes showed a negative correlation with Lipid-42463
(sphingomyelin (d18:1/14:0, d16:1/16:0)*, Lipid-57432 (ceramide (d18:1/14:0, d16:1/16:0)*,
Lipid-57365 (myristoyl dihydrosphingomyelin (d18:0/14:0)*, and Lipid-42446 (1-palmitoyl-
2-linoleoyl-GPC (16:0/18:2) in normal tissues (Figure 4A), while Tenericutes showed a signif-
icant positive correlated with these lipids in TNBC tissues (p < 0.05) (Figure 4C), suggesting
that a higher abundance of Tenericutes may give rise to elevated levels of these metabolites
observed in TNBC tissues. Furthermore, there was no correlation between Crenarchaeota
and lipid metabolites in TNBC tissues (Figure 4C). Circos analysis further revealed correla-
tions among Tenericutes and Fusobacteria and the top 50 significant metabolites in TNBC
and normal breast tissues, respectively (Figure 4B, 4D). On the other hand, Actinobacteria
and Crenarchaeota were positively correlated with Lipid-44621 (1-(1-enyl-oleoyl)-GPE (P-
18:1)*, Lipid-52716 (1-(1-enyl-palmitoyl)-2-palmitoyl-GPC (P-16:0/16:0)*), and Lipid-19265
(1-stearoyl-2-oleoyl-GPS (18:0/18:1)) in Luminal breast tissues (Figure 4E,4F). Lastly, we
determined whether microbiota phyla were more significantly correlated with certain lipid
metabolites in TNBC vs. Luminal breast tissues. Six major microbial phyla were observed
in Luminal and TNBC tissues, including phyla Tenericutes, Proteobacteria, Firmicutes, Bac-
teroidetes, Actinobacteria, and Euryarchaeota. We found that phyla Firmicutes and Bacteroidetes
were positively correlated with Lipid-19503 (stearoyl sphingomyelin (d18:1/18:0) and Lipid-
52669 (1-palmitoyl-2-oleoyl-GPI (16:0/18:1)* in TNBC. Additionally, phylum Bacteroidetes
was positively correlated with Lipid-61700 (2-hydroxyarachidate*) and Lipid-52467 (1-
palmitoyl-2-arachidonoyl-GPI (16:0/20:4)* in TNBC (Figure 4G,4H). Proteobacteria, the most
abundant microbiota phylum in the breast, was also strongly correlated with Lipid-52477
(1-(1-enyl-palmitoyl)-2-oleoyl-GPE (P-16:0/18:1)* in TNBC tissues. Conversely, several
phyla, including Firmicutes and Tenericutes, were negatively correlated with many of these
and several other lipid metabolites in Luminal breast tissues (Figure 4G,H). These findings
suggest that phyla Firmicutes and Tenericutes may promote an imbalance in the levels of
certain lipid metabolites, such as sphingomyelin (d18:1/14:0, d16:1/16:0), stearoyl sph-
ingomyelin (d18:1/18:0), 1-palmitoyl-2-oleoyl-GPI (16:0/18:1), and ceramide (d18:1/14:0,
d16:1/16:0), leading to TNBC development.
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Figure 4. Correlation between microbiota phyla and lipid metabolites in normal and breast tumor tis-
sues. Spearman correlation-based hierarchical clustering analysis and Circos diagrams revealed diver-
sity differences in microbiota phyla and lipid metabolites in (A,B) normal, (C,D) TNBC (E,F) Luminal,
and (G,H) TNBC vs. Luminal breast tumor tissues. Blue color represents a negative correlation
between the microbiota and lipid shown and red color indicates a positive correlation between the
microbiota and lipid shown.
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4. Discussion

In the present study, we sought to identify differences in metabolite profiles between
normal and breast tumor tissues and to determine whether breast microbial dysbiosis may
be associated with enrichment of microbial metabolites in TNBC tissues. Our initial analysis
revealed significantly elevated levels of metabolites involved in Trp metabolism in breast
tumor tissues, including KYN, compared to normal breast tissues. Interestingly, KYN is
regarded as an inflammatory marker, which is a common characteristic in cancer [17,18].
While KYN can function to modulate the inflammatory immune response in normal tissues,
activity of this pathway in tumor cells tends to be overexpressed and can lead to the
depletion of tryptophan in the microenvironment, thereby suppressing T-cell mediated
immune response [19]. In our study, we observed that many of the metabolites belonging to
the Trp metabolism pathway were significantly elevated among breast tumor tissues when
compared to normal breast tissues. The metabolites in this pathway were also significantly
altered between the different tumor expression profiles, particular among TNBC tissues
(data not shown). In a study by Kanaan et al., 3-fold greater Trp levels and a 7-fold and
8-fold increase in its metabolic intermediates in NAD+ biosynthesis, KYN and quinolinate,
respectively [20] were reported, which is in agreement with our findings (data not shown).
Furthermore, a positive correlation between the increased expression of enzymes involved
in KYN metabolism, including kynurenine 3-monooxygenase (KMO), has been observed to
play a role in TNBC metastasis and recurrence [21] and malignant phenotype in patients
with TNBC [22]. Of interest, overexpression of KMO has been suggested to contribute to
the malignant phenotype of TNBC cells, particularly cancer stem cell (CSC) properties,
and 3) KMO-induced β-catenin stabilization, which also leads to increased expression of
pluripotent genes such as Nanog, Oct4, and Sox2 [23].

In line with increased metabolic activity of tumor tissue, within the dataset there
were significant alterations in several metabolites linked to energy metabolism. Glucose
was not among the biochemicals that were significantly altered; however, metabolites
derived from glucose via the glycolytic pathway (dihydroxyacetone phosphate, pyruvate),
pentose phosphate pathway (lyxonate), and hexosamine pathways (UDP-glucuronate,
UDP-N-acetylglucosamine/galactosamine) were among those that were most significantly
elevated. UDP-N-acetylglycosamine (UDP-GlcNAc) and UDP-glucuronate, both nucleotide
sugar with pivotal functions as a key substrate for the synthesis of glycoconjugates and
polysaccharides, have been linked to breast cancer through its dependence on glycolysis
intermediate availability [24]. These increases are consistent with increased rates of glucose
utilization. Importantly, changes of this nature may facilitate anabolic growth in tumor cells.
Our findings agree with those of Tayyari et al., who observed profound metabolic alterations
characterized by decreased mitochondrial respiration and increased glycolysis in TNBC
of African American women compared to Caucasian women [25]. Metabolites belonging
to the catabolism of branched chain amino acids butyrylcarnitine and propionylcarnitine
were also significantly elevated in tumor tissue. Additionally, longer acylcarnitine species,
such as palmitoylcarnitine (C16) and stearoylcarnitine (C18), associated with lipid beta
oxidation, were also significantly higher in tumor tissue.

Increases in collagen metabolites were also observed and could be indicative of the
breakdown of extracellular matrix and tissue remodeling. Many metabolites found almost
exclusively within collagen were significantly increased in tumor tissue when compared
to healthy breast tissue. Trans-4-hydroxyproline, pro-hydroxyproline, and N,N-dimethyl-
pro-pro were all significantly elevated. Interestingly, a link between collagen levels and
breast cancer metastasis has been established in several published reports [26–28]. Collagen
degradation products, in fact, have been explored as potential breast cancer biomarkers
in other studies [29]. Significant increases were also observed in several of the phospho-
lipid synthetic intermediates, including choline phosphate, cytidine 5′-diphosphocholine,
and cytidine-5′-diphosphoethanolamine. Intermediates involved in sphingosine synthe-
sis (sphinganine) and triacylglycerol metabolism were also significantly elevated among
tumor samples when compared to normal control tissue. Metabolites generated during
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phospholipid and sphingolipid turnover (e.g., lysolipids, plasmalogens, sphingosine) were
also elevated. These changes could also be indicative of tissue remodeling and increased
lipid synthesis.

Metabolites of the Krebs cycle and oxidative phosphorylation were also significantly
altered among tumor tissue when compared to healthy breast tissue, and some metabolites
were differentially regulated between tumor expression patterns. Alpha-ketoglutarate was
significantly elevated in TNBC tumors when compared to Luminal tumors. In addition,
tumor tissue exhibited significant differences with regard their nucleotide and nicotinamide
profiles. Purine nucleotides, such as AMP, cAMP, and GMP, were significantly elevated
(data not shown), while FAD had greater than 3-fold change in TNBC tissue compared to
normal breast tissue. The increase in these metabolites likely correlates with increases in
their synthesis and utilization likely to promote tumor growth and proliferation [30].

Considering that aberrant lipid accumulation and marked changes in cellular lipid
profiles are related to breast cancer metabolism and disease progression [31], it is not surpris-
ing that the metabolites most significantly altered in TNBC tissues were involved in lipid
metabolism, including phytosphingosine, 1-palmitoyl-2-arachidonoyl-GPI (16:0/20:4)*, and
1-stearoyl-2-oleoyl-GPI (18:0/18:1)*. These changes could be indicative of tissue remodeling
and alterations in lipid synthesis and catabolism. Additionally, longer acylcarnitine species,
such as palmitoylcarnitine (C16) and stearoylcarnitine (C18), associated with lipid beta
oxidation, were also significantly higher in breast tumor tissue. Our findings agree with
those by Zhang et al., who reported that butyrylcarnitine (C4) levels were associated with
increased odds of breast cancer (OR 1.12; 95% CI 1.02–1.23) in a retrospective case-control
study of 991 female breast cancer cases and 991 female controls [32]. These increases are
consistent with increased rates of glucose utilization [33]. Importantly, changes of this
nature may facilitate anabolic growth in breast tumor cells [34].

In addition to these findings, our study demonstrated for the first time a significant
correlation between alterations in lipid metabolites and abundance of certain microbiota
phyla in TNBC and Luminal breast tissues of NHB and NHW women. Specifically, we
observed a significant negative correlation between Fusobacteria and Tenericutes and the
lipids sphingomyelin (d18:1/14:0, d16:1/16:0)*, ceramide (d18:1/14:0, d16:1/16:0)*, and
1-palmitoyl-2-linoleoyl-GPC (16:0/18:2) in normal tissues (Figure 4A), while Tenericutes
showed a significant positive correlation with these lipids in TNBC tissues (p < 0.05)
(Figure 4C), suggesting that a higher abundance of Tenericutes may give rise to elevated
levels of these metabolites observed in TNBC tissues. Tenericutes, a phylum of Gram-
negative bacteria, has been associated with diet-induced maternal obesity, a common
characteristic of TNBC, in a murine model [35]. Interestingly, we observed significantly
elevated levels of these lipids, particularly sphingomyelin and 1 and 2-palmitoleoyl-GPC, in
NHB women compared to NHW women (data not shown), which could explain a portion
of the racial disparities in TNBC risk and outcomes. Furthermore, a higher abundance of
Tenericutes was reported in advanced stages of breast cancer [14]. Fusobacterium contains a
lipopolysaccharide (LPS) that functions as a bacterial toxin by activating immune responses
which has been observed in autoimmune disorders, obesity, depression, and cellular
senescence [36–39]. Bacterial LPS has been shown to stimulate ceramide-activated protein
kinase activity via hydrolysis of sphingomyelin in human leukemia (HL–60) cells [40].
Thus, it is plausible that elevated levels of sphingomyelin may contribute to the activity
of LPS in Fusobacterium. Interestingly, strains of Fusobacterium have been associated with
several human diseases, including estrogen receptor positive breast cancer, colon cancer,
periodontal diseases, and topical skin ulcers [15,41–43]. Hibberd et al., reported a reduction
in Fusobacterium in feces of colorectal cancer patients that received probiotics compared to
those who did not receive probiotics [44]. These findings suggest that intake of probiotics
may be a potential therapeutic approach to manipulate Fusobacterium microbiota thereby
reducing LPS and the risk of TNBC development.

We recognize that a limitation of our study is the small number of breast tissue
samples analyzed. However, we were able to validate findings from similar metabolomic
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studies to identify signatures associated with breast cancer, including TNBC [20,25,45–49].
Furthermore, this study is the first to show a significant correlation between alterations in
lipid metabolites and the abundance of certain microbiota phyla in TNBC and Luminal
breast tissues of NHB and NHW women. Our study expands on our previous published
findings on the breast tissue microbiome in which we further identified distinct microbial
signatures that differ by race, stage, and breast tumor subtype [11]. Importantly, the
present study consists of breast tissue specimens from populations of African and European
ancestry and, therefore, is representative of a diverse and inclusive population.

5. Conclusions

In conclusion, we report for the first time significant correlations between the breast
tissue microbiome and the lipid metabolome in TNBC and luminal breast tissues com-
pared to normal breast tissues of NHB and NHW women. We observed a significant
correlation between alterations in lipid metabolites and the abundance of Tenericutes and
Fusobacterium in TNBC tissues of NHB and NHW women. Further investigations to deter-
mine whether alterations in sphingolipid, phospholipid, ceramide, and energy metabolism
pathways modulate Tenericutes and Fusobacterium abundance and composition to alter
host metabolism in TNBC are necessary to help us understand the risk and underlying
mechanisms and to identify potential microbial-based targets.
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