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ABSTRACT
Background. Cholangiocarcinoma (CCA) is a malignancy of the cholangiocytes.
One of the major issues regarding treatment for CCA patients is the development of
chemotherapeutic resistance. Recently, the association of intratumoral bacteria with
chemotherapeutic response has been reported in many cancer types.
Method. In the present study, we aimed to investigate the association between the
intratumoral microbiome and its function on gemcitabine and cisplatin response in
CCA tissues using 16S rRNA sequencing and 1H NMR spectroscopic analysis.
Result. The results of 16S rRNA sequencing demonstrated that Gammaproteobac-
teria were significantly higher in both gemcitabine- and cisplatin-resistance groups
compared to sensitive groups. In addition, intratumoral microbial diversity and
abundance were significantly different compared between gemcitabine-resistant and
sensitive groups. Furthermore, the metabolic phenotype of the low dose gemcitabine-
resistant group significantly differed from that of low dose gemcitabine-sensitive group.
Increased levels of acetylcholine, adenine, carnitine and inosine were observed in the
low dose gemcitabine-resistant group, while the levels of acetylcholine, alpha-D-glucose
and carnitine increased in the low dose cisplatin-resistant group.We further performed
the intergrative microbiome-metabolome analysis and revealed a correlation between
the intratumoral bacterial and metabolic profiles which reflect the chemotherapeutics
resistance pattern in CCA patients.
Conclusion. Our results demonstrated insights into the disruption of the microbiome
and metabolome in the progression of chemotherapeutic resistance. The altered
microbiome-metabolome fingerprints could be used as predictive markers for drug
responses potentially resulting in the development of an appropriate chemotherapeutic
drug treatment plan for individual CCA patients.
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INTRODUCTION
Cholangiocarcinoma (CCA) is amalignancy of the bile duct epithelia or cholangiocytes with
its highest incidence in Thailand, especially in the northeastern region (Alsaleh et al., 2019).
This region has high incidence of liver fluke (Opisthorchis viverrini (Ov)) infection which
is recognized as the major risk factor of cholangiocarcinoma development (Piratae et al.,
2012). Nowadays, surgical resection is considered the standard treatment for the patients
with CCA. However, surgical treatment still provides a low survival rate (Aljiffry, Walsh &
Molinari, 2009), and it leads to better treatment outcomes for the CCA patients who have
been diagnosed at an early stage (Khuntikeo et al., 2015). Moreover, surgical resection in
combination with adjuvant chemotherapy provides a higher survival rate when compared
with the surgery alone (Wirasorn et al., 2013). Common chemotherapeutic regimens used
in clinical treatments for biliary tract cancer patients are gemcitabine and gemcitabine plus
cisplatin (Valle et al., 2010). Okusaka et al. (2014) demonstrated that the combination of
cisplatin and gemcitabine provide the best benefit in terms of extending survival for CCA
patients. However, the major issue regarding chemotherapeutic drug treatment for CCA
patients is the development of chemotherapeutic resistance phenotypes, especially those
involving multi-drug resistance (MDR) (Chan & Coward, 2013).

In 2019, Suksawat et al. (2019, 2022) evaluated the chemotherapeutic response of CCA
patients to gemcitabine and gemcitabine plus cisplatin treatments using a histoculture
drug response assay (HDRA) and metabolic profiling. In their results, the TCA cycle
intermediates, alpha-D-glucose and ethanol may serve as predictive biomarkers for
gemcitabine and cisplatin sensitivity in the tumor tissue of CCA patients. Moreover,
methyl-guanidine may be used as a serum predictive biomarker for gemcitabine sensitivity
(Suksawat et al., 2022).

Evidence has shown that the gut microbiota can shape the efficiency of cancer therapy
(Ma et al., 2019). Studies have also demonstrated that the alteration of microbiota
composition have various effects on tumor biology, including the transformation process,
tumor progression, and the response to anti-cancer therapies such as chemotherapeutic
agents (Elkrief et al., 2019; Gopalakrishnan et al., 2018; Helmink et al., 2019; Saus et
al., 2019; Song, Chan & Sun, 2020; Viaud et al., 2013). Moreover, the metabolism of
chemotherapeutic drugs can be altered by the gut or tissue microbiota, which could further
determine the response of cancer cells to chemotherapy (Geller et al., 2017). In particular,
Gammaproteobacteria could metabolize gemcitabine (2,2-di-fluorodeoxycytidine) into its
inactive form (2,2-difluorodeoxyur-idine), suggesting that the presence of such bacteria in
pancreatic adenocarcinoma (PDAC) tissue may be contributing to the PDAC resistance to
gemcitabine treatment (Geller et al., 2017). Recently, bacteria have been found in the tissues
of several tumor types where they plausibly play roles in shaping the chemotherapeutic
drug response (Nejman et al., 2020).
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Next-generation sequencing has been widely used to study the tumormicrobiome, based
on the 16S rRNA gene (Flemer et al., 2017; Greathouse et al., 2018; Yan et al., 2015; Zhou et
al., 2019). Currently, a wide-scale bacterial 16S rRNA analysis based on multiple variable
regions has been applied. This has become a standard method in bacterial taxonomic
classification and identification due to its easy and rapid procedure, and the fact that
it contains enough phylogenetic information (Caporaso et al., 2012; Johnson et al., 2019).
Moreover, 16S rRNA analysis in combination with metabolomics can provide the estimate
of microbiota functions through the changing levels of microbial and host-microbial
metabolites (Langille et al., 2013). Therefore, metabolic profiling using either nuclear
magnetic resonance (NMR) spectroscopy or liquid chromatography mass spectroscopy
(LC-MS) can be applied to investigate the metabolic reflection of the tumor microbiota-
induced drug resistance (Gong et al., 2020).

In the current study, we performed 16S rRNA sequencing of the bacteria in the tumor
tissues from the CCA patients. Furthermore, an investigation of the microbial functions
through metabolomic profiling was conducted. Taken together, we hypothesize that
there are microbiota that can promote chemotherapeutic drug resistance, focusing on
gemcitabine and cisplatin drugs for individual CCA patients. The association of the
microbiota and their functions with the chemotherapeutic drug response patterns were
investigated.

MATERIALS & METHODS
Patient characteristics and tissue sample collection
Thirty-six freshly frozen tissues were obtained from CCA patients who had undergone
surgery at Srinagarind Hospital, Khon Kaen University during January 2017 until May
2019 and patient data have been previously described (Suksawat et al., 2019). The protocol
of the specimen collection and study were approved by the Ethic Committee for Human
Research, Khon Kaen University (HE601149). In addition, written informed consent was
obtained from each patient prior to surgery. Fresh tumor tissues were obtained from
the resection of the primary tumor and stored in Hank’s balanced salt solution (HBSS)
with antibiotic (Ciproflaxin, Cefazolin and Amphotericin B) at −80 ◦C. In the present
study, we further explored the tumor tissues based on the HDRA result from the study of
Suksawat et al. (2019) which divided patients into subgroups based on chemotherapeutic
response patterns. The chemotherapeutic response characteristics of CCA patients whose
the intratumoral microbiota profile were analyzed using 16S rRNA sequencing and whose
metabolic signature were analyzed using NMR spectroscopy are shown in Table 1.

Histoculture drug response assay (HDRA)
Fresh tumor tissues were obtained from the resection of the primary tumor and storage
in Hank’s Balanced Salt Solution (HBSS) at 4 ◦C. Then, the tumor tissues were minced
into small pieces of approximately 9–12 mg and placed onto sponge in 24 well plates. Each
well of the 24 well plates contained RPMI-1640 medium and a varying concentration of
the gemcitabine and cisplatin drugs. The medium was supplemented with 20% fetal craft
serum (FCS), 100 U/mL penicillin and 100 mg/mL streptomycin. After that, the tumor
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Table 1 The characteristics of CCA patients fromwhom the tumor tissues were taken for the micro-
biome andmetabolomics studies.

Variable 16S rRNA
sequencing
(n= 18)

1HNMR based
metabolomics
(n= 36)

1,000 ug/mL gemcitabine (LDGem)
Sensitive 6 11
Resistant 12 25

1,500 ug/mL gemcitabine (HDGem)
Sensitive 4 11
Resistant 14 25

20 ug/mL cisplatin (LDCis)
Sensitive 7 15
Resistant 11 21

25 ug/mL cisplatin (HDCis)
Sensitive 9 16
Resistant 9 20

1,000 ug/mL gemcitabine plus 20 ug/mL
cisplatin (Combined)

Sensitive 13 23
Resistant 5 13

tissues were incubated at 37 C in 5% CO2 for 4 days. Then, 100 µL of HBSS containing 0.1
mg/mL of collagenase type I and 100 µL of MTT solution were added into each well and
further incubated for 4 h. The cell viability was then measured using an MTT assay. After
that, the MTT formazan products are dissolved in DMSO and subjected to absorbance
measurement at 540 nm (TECAN sunrise ELISA Reader, Triad Scientific, Manasquan,
NJ, USA). Finally, the percent cell growth inhibition rate was calculated as previously
described (Suksawat et al., 2019). The criteria for classification sample into sensitive and
resistant were previously reported (Suksawat et al., 2019). A total of thirty-six CCA tumor
tissues were treated with chemotherapy in five conditions , including low dose gemcitabine
(LDGem) at 1,000 ug/mL, high dose gemcitabine (HDGem) at 1,500 ug/mL, low dose
cisplatin (LDCis) at 20 ug/mL, high dose cisplatin (HDCis) at 25 ug/mL and combined
treatment composed of 1000 ug/mL of gemcitabine and 20 ug/mL cisplatin, and evaluated
using HDRA. Tissues were then sub-classified into sensitive (S) and resistant (R) groups
to a particular chemotherapeutic condition.

DNA extraction and 16s rRNA sequencing
Total DNA was isolated from approximately 50 mg fresh frozen tumor tissues
following the manufacture’s protocol (QIAGEN, Hilden, Germany). For quantification
of the DNA extracted a spectrophotometer (Nanodrop) was used and with 1.5%
agarose gel electrophoresis for visualization. Amplification and sequencing of the
V1-V2 region were conducted. Briefly, 7.5 µL of genomic DNA from tissues
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were amplified using the 16 rRNA gene at the variable region V1-V2 incorpo-
rating Illumina adapters and a barcode sequence amplified (forward primer:5′-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAGTTTGATCMTGGCTCAG-
3′ and reverse primer:5′GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCTG
CCTCCCGTAGGAGT-3′) using polymerase chain reaction (PCR) (T100TM Thermal
Cycler, Bio-Rad, Hercules, CA, USA) with the specific primer using Hotstar Master Mix
(QIAGEN, Hilden, Germany). The PCR cycling conditions used were: initial denaturation
at 95 ◦C for 3 min; 25 cycles of denaturation at 95 ◦C for 30 s, annealing at 55 ◦C for 30
s, and extension at 72 ◦C for 30 s; and the final extension step at 72 ◦C for 5 min. The
negative control (DNase free water) was applied in DNA extraction and 16S amplification
steps. The absent band of the negative control was observed. Sequencing was performed
on the Illumina MiSeq platform (Illumina R©, Macrogen, Korea), with read length of 301
base pair, paired-end.

16S rRNA data processing
Following standard quality control and demultiplexing, the reads were processed using
the QIIME2 (version 2021.11) pipeline (Hall & Beiko, 2018). First, paired-end reads were
joined and size selected to reduce non-specific amplification. These reads were then
grouped into operational taxonomic units (OTUs) based on sequence similarity using
the SILVA database (version 132) (Quast et al., 2013) and classified at ≥ 99% identity of
reads. Data were rarefied to the minimum library size using total sum scaling (TSS). The
alpha diversity and richness of CCA tissues between resistant and sensitive groups were
calculated by using Chao1 and the Shannon and Simpson diversity indices. In addition, the
edgeR algorithm was applied in order to compare and classify of differential abundance
between resistant and sensitive groups to chemotherapeutic treatments. To evaluate the
intratumoral microbial community between resistant and sensitive groups, we used the
abundance data and calculated the differential microbial composition using Bray-Curtis
dissimilarity and visualized by non-metricmultidimensional scaling (NMDS) on projection
in MicrobiomeAnalyst (Chong et al., 2020; Dhariwal et al., 2017).

Metabolite extraction and metabolomics analysis
Approximately 100mg of each fresh frozen tumor tissue was used formetabolite extraction.
The tumor tissues were then homogenized using a Dounce homogenizer and extracted
by adding 400 µL of methanol and 85 µL of HPLC grade water, followed vortex mixing.
Then, 200 µL of chloroform and 200 µL of HPLC grade water were added followed by
vortex mixed. Next, the tissue extracted solutions are transferred into 15 mL tubes and
sonicated 3 times using the following parameters: sonicate on 30 s and sonicate off 10 s
at amplitude 40% and temperature of 4 ◦C. After that, the 15 mL tubes were subjected to
centrifugation at 1,000 g at 4 ◦C for 15 min. The aqueous phase was subjected to nuclear
magnetic resonance (NMR) spectroscopy or global profiling analysis. The NMR spectra
data acquisition fromNMR used peak alignment, normalization with probablistic quotient
normalization and scaling using matrix laboratory software (MATLAB) (MathWorks
Inc., US). The significant metabolites were identified using statistical total correlation
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spectroscopy (STOCSY), human metabolome database (HMDB) (Wishart et al., 2018;
Wishart et al., 2013; Wishart et al., 2009; Wishart et al., 2007) and the Chenomx NMR
suite (Chenomx Inc., Canada). The pairwise comparison of the log2 transformed data
of metabolites between the resistant and sensitive groups was conducted with a paired
non-parametric test (Mann–Whitney U test) and adjusted p value was calculated with
a Benjamini–Hochberg procedure. The data was illustrated using Graph Pad prism 5
(GraphPad Software, Inc., CA, US). The network analysis was performed using Metscape
(Gao et al., 2010) for visualizing metabolic pathways.

Correlation analysis
The correlation analysis was performed with Spearman’s correlation coefficient at the
genus level and metabolites using the M2IA pipeline (Ni et al., 2020) for the integrated
microbiome and metabolome dataset.

RESULTS
Difference of intratumoral microbiota composition between resistant
and sensitive group of chemotherapeutic treatment in
cholangiocarcinoma patients
Out of 36 tumor tissues, amplification for V1–V2 regions was successful for 18 samples.
These samples were sequenced and a total read of 3,504,888 were acquired for microbial
profiling. Following quality trimming and merging of overlapping paired-end reads, total
read counts of 540,202 counts were retained from 18 samples, average counts per sample
30,011 counts. These reads could be assigned into a total of 890 bacterial OTUs. Overall, the
intratumoral microbiome profile revealed a common pattern with the phyla Proteobacteria,
Actinobacteria and Firmicutes dominating in both the resistant and sensitive groups in all
conditions of chemotherapeutic treatment (Figs. 1A and 1D). The top three most abundant
classes were Gammaproteobacteria, Actinobacteria and Alphaproteobacteria (Figs. 1B and
1E). The intratumoral microbiome profile in genera were shown in Figs. 1C and 1F. We
then compared the alpha diversity between the resistant and sensitive groups. The Shannon
and Simpson indexes revealed that tumor tissues treated with LDGem and HDGem had
significant differences in microbial diversity between the resistant and sensitive groups. In
contrast, Chao1 index demonstrated no difference in species richness between the resistant
and sensitive groups (Fig. 2). A comparison of taxonomic profiles at the phylum level
revealed that LDGem resistant group, HDGem resistant group, LDCis resistant group and
HDCis resistant group showed higher abundance of Proteobacteria. A comparison of the
taxonomic profiles at the class level demonstrated that tumor tissues which were resistant
to LDGem, HDGem and LDCis exhibited higher abundances of Gammaproteobacteria,
whereas the abundances of Actinobacteria was found to be lower in LDGem resistant group
and HDGem resistant group (Fig. 3).

To explore whether the intratumoral microbial composition of CCA patients was
different between the resistant and sensitive groups, non-metric multidimensional scaling
(NMDS) was performed. NMDS is based on Euclidean distance and can reveal a shift of
centroid (indicated by arcs) and variation in the microbiota community profiles of each
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Figure 1 Taxonomic composition of the intratumoral bacteria in cholangiocarcinoma tissues. Taxo-
nomic composition of the intratumoral bacteria in cholangiocarcinoma tissues. Stacked bar plot of taxo-
nomic relative abundance (A) phylum level (B) class level (C) genus level. The heatmap and hierarchical
clustering represent the relative abundance of intratumoral microbiota, which each row demonstrated the
taxonomic unit and each column represent the sample at (D) phylum level (E) class level (F) genus level.
The resistant and sensitive groups were color-coded in red and blue, respectively, and indicated on top of
heatmap. The heatmap color spectrum (blue to darked) represents the relative abundance of each taxon.
The clustering was constructed based on Euclidean distance.

Full-size DOI: 10.7717/peerj.13876/fig-1

chemotherapeutic drug treatment condition (circled area). The NMDS analysis at the class
level demonstrated the overlap of the circle areas in each plot between the sensitive and
resistant groups, showing some similar bacterial communities between the sensitive and
resistant groups in all chemotherapeutic treatment conditions except, the resistant group
of HDCis showed the smallest variance in the bacterial community (Fig. 4).

Metabolic alteration associated with chemotherapeutic responses
1H NMR metabolic signatures from the CCA tissues are represented in Table 2. The
metabolic differences between resistant and sensitive groups of CCA patients can be
distinguished on univariate analysis (Mann–Whitney U test) using a log2 transformation
of maximum intensity. Significantly higher levels of acetylcholine, adenine, carnitine and
inosine were observed in the LDGem resistant group. For the LDCis treatment, the levels
of acetylcholine, alpha-D-glucose and carnitine were significantly increased in the resistant
group compared to the sensitive group (Fig. 5). Towards the understanding of host-bacterial
altered metabolic profiles, we performed metabolic pathway analysis executed onMetscape
using KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, to investigate
the most relevant pathways triggered by the chemotherapeutic response conditions. In
addition to the upregulated acetylcholine metabolism and carnitine metabolism in both
LDGem and LDCis groups, LDGem group exhibited the enhanced inosine and adenine
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Figure 2 The microbial alteration in cholangiocarcinoma based on chemotherapeutic treatments.
The alpha diversity index of the relative abundance from cholangiocarcinoma tissues was analysed by the
Kruskal–Wallis (pairwise) test. An adjusted P-value less than 0.05 was considered as statistically signifi-
cant.

Full-size DOI: 10.7717/peerj.13876/fig-2
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Figure 3 Intratumoral bacteria between the resistant and sensitive groups at the phylum and class lev-
els. The significant difference of log2 fold differential abundance was analysed by edgeR algorithm of mi-
crobiome analyst based on adjusted P values.

Full-size DOI: 10.7717/peerj.13876/fig-3

metabolism and glucose metabolism (Fig. 6). Therefore, adenine and inosine involved
in nucleotide metabolism also promote cancer cell proliferation (Newman & Maddocks,
2017). In addition, carnitine indicated cancer development and progression (Kawai et al.,
2017). In term of glucose, glucose serve as inducer of progression of CCA (Saengboonmee et
al., 2016). Furthermore, acetylcholine can promote cancer stem cell proliferation (Nguyen
et al., 2018).

Correlation of metabolic profile and intratumoral microbiota
composition
To examine the overall correlation between tissue microbial and metabolic profiles and
to identify the accountable microbiota and metabolite(s), we performed a Spearman-rank
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Figure 4 The non-metric multidimensional scaling (NMDS) plot based on Euclidean distance (β-
diversity) at class level. (A) LDGen (B) HDGem (C) LDCis (D) HDCis (E) combined.

Full-size DOI: 10.7717/peerj.13876/fig-4

correlation analysis between the genus-level relative abundances of tissues microbiota
and the log2 transformed relative concentrations of metabolites. In LDGem, Deinococcus
was negatively correlated with homocarnosine and L-methionine, and Escherichia-Shigella
was negatively correlated with homocarnosine (Fig. 7A). In HDGem, Deinococcus and
Pseudomonas were negatively correlated with acetic acid and L-methionine; Atopostipes
and Paracoccus were negatively correlated with acetic acid; and Streptococcus was negatively
correlated with L-methionine (Fig. 7B). Finally, in HDCis, Cutibacterium was found to be
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Table 2 List of all metabolites that were found in NMR spectra of CCA tumor samples.

NO. 1H chemical shift Metabolites

1. 0.942 (t)a, 0.994 (d)a, 1.039 (d)a, 1.261 (m)b, 1.478(m)a,
1.963 (m)b, 3.615 (d)a

Isoleucine

2. 0.955 (t)a, 1.671 (m)b, 3.73 (m)a Leucine
3. 0.987 (d)a, 1.038 (d)a, 2.247 (m)a, 3.614 (d)a Valine
4. 1.327 (d)a, 4.103 (q)a Lactate
5. 1.478 (d)a, 3.754 (q)a Alanine
6. 1.923 (s)a Acetate
7. 2.105 (m)a, 2.358 (dt)a, 3.763 (t)a Glutamate
8. 2.113 (m)a, 2.635 (t)b, 3.832 (dd)a Methionine
9. 2.340 (m)a, 2.077 (m)a, 3.329 (dt)a, 3.401 (m)a, 4.120 (dd)b Proline
10. 2.408 (s)a Succinate
11. 2.520 (d)a ,2.664 (d)a Citrate
12. 3.040 (s)a, 3.935 (s)a Creatine
13. 3.188 (s)a, 3.514 (dd)a, 4.063 (m)a Choline
14. 2.163 (s)a, 3.230 (s)a, 3.74(t)a, 4.56 (m)b Acetylcholine
15. 2.421(s)a, 3.215(s)b, 3.231 (s)a, 3.414(s)a, 4.555(s)b Carnitine
16. 3.258 (t)a, 3.414 (t)a Taurine
17. 3.033 (dd)a, 3.280(dd)a, 3.289(dd)a, 3.304 (dd)a, 3.554

(dd)a, 3.720(dd)a, 4.103 (dd)a
Cysteate

18. 2.730 (s)b, 3.614 (s)a Sarcosine
19. 2.142 (m)a, 2.446 (m)a, 3.754 (t)a Glutamine
20. 3.029 (s)b, 3.934 (s)a Phosphocreatine
21. 2.827 (d)a, 2.853 (s)a, 2.874(s)a, 2.930 (d)b, 2.960 (d)b,

3.973 (dd)a
Asparagine

22. 3.239 (dd)a, 3.396 (m)a, 3.456 (m)a, 3.532 (dd)a, 3.720 (m)a,
3.820 (m)a, 4.648 (d)b, 5.240 (d)a

Alpha-glucose

23. 6.524 (s)a Fumarate
24. 3.037 (d)a, 3.062 (d)a, 3.205 (dd)a, 3.935 (dd)a, 6.914 (d)a,

7.191 (d)a
Tyrosine

25. 5.803 (d)a, 7.542 (d)a Uracil
26. 2.470(s)b, 7.688 (s)a Pyridoxine
27. 3.140(dd)a, 3.247(dd)a, 3.972 (dd)a, 7.900 (s)b, 7.08 (s)b,

7.841 (s)a
Histidine

28. 2.827(m)a, 3.140 (m)a, 3.515(s)a, 7.130(m)b, 7.840 (m)a Thyroxine
29. 3.487(s)a, 3.783(d)a, 3.917(d)a, 4.108(dd)b, 4.620(td)b,

6.070 (d)a, 6.097(d)a, 9.580(d)b
Uridine

30. 1.893(m)a, 2.340(m)a, 2.900(m)a,3.003(dd)a,
3.188(dd)a,4.480(m)a, 7.901 (s)a

Homocarnosine

31. 8.245 (s)a Adenine

(continued on next page)
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Table 2 (continued)

NO. 1H chemical shift Metabolites

32. 3.823(dd)a,3.900(dd)a,4.259(dd)a, 4.420(dd)b, 6.098 (d)a,
8.187(s)a, 8.351 (s)a

Inosine

33. 8.461 (s)a Formate

Notes.
s, Singlet; d, Doublet; dd, Doublet of doublet; t, Triplet; q, Quartet; m, Multiplet.

aResonances that were identified in both STOCSY and HMDB.
bResonances that were identified only in HMDB.
Bold text represents chemical shift that were selected to analysis.

Figure 5 Significantly changedmetabolites in LDGem and LDCis from tumor tissues of CCA patients.
The blue color shows sensitive group and red color shows resistant group. An asterisk (*) indicates statisti-
cally significant (adjusted P value< 0.05).

Full-size DOI: 10.7717/peerj.13876/fig-5

positively correlated with L-leucine and L-isoleucine (Fig. 7C). There was no observable
correlation between microbiome and metabolites in the LDCis and combined groups.

DISCUSSION
Host metabolism has been known to interact with the gut microbiota, which can, in
turn, affect host disease status (Elia & Haigis, 2021; Zhao, 2013). In the present study,
we performed metabolome analysis in 36 tumor tissues and microbiome analysis in 18
tumor tissues of CCA patients. We elucidated the microbial community using 16S rRNA
sequencing and metabolic profiles using NMR-based metabolomics. The exploration
of intratumoral microbiome of CCA tumor with 16S rRNA sequencing allows us
to compare resistant and sensitive groups of chemotherapeutic treatment condition.
Based on our results using 16S rRNA sequencing, a significant difference occurred in
α-diversity and β-diversity in gemcitabine treatment responses comparing resistant and
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Figure 6 The metabolic pathway constructed byMetscape. (A) the metabolic network of LDGem resis-
tance group (B) the metabolic network of LDCis resistance group. The red box represents significantly in-
creased metabolites in resistance group (adjusted P value< 0.05).

Full-size DOI: 10.7717/peerj.13876/fig-6

sensitive subgroups. Interestingly, the intratumoral microbiota shift was found in the CCA
tissues which resisted the chemotherapeutic drug treatment. Our findings are consistent
with the previous study in which the microbiota dysbiosis was correlated with CCA
progression and pathogenesis (Saab et al., 2021). Microbial community at the phylum level
demonstrated a common pattern of microbiota composition between the resistant and
sensitive groups of chemotherapeutics treatment. However, the relative abundance of the
class Gammaproteobacteria was significantly higher in the resistant group to gemcitabine
treatment. Our results conform with a previous study in pancreatic ductal adenocarcinoma
(PDAC) (Geller et al., 2017). The Gammaproteobacteria, the most common bacteria found
in gemcitabine resistant PDAC tissues, can express cytidine deaminase (CDD) enzyme in its
long form (CDDL) which can metabolize the active form of gemcitabine into the inactive
form (Choy et al., 2018). The present work was limited by the low amount of bacterial

Sitthirak et al. (2022), PeerJ, DOI 10.7717/peerj.13876 13/22

https://peerj.com
https://doi.org/10.7717/peerj.13876/fig-6
http://dx.doi.org/10.7717/peerj.13876


Figure 7 Spearman-rank correlation analysis between the genera of the intratumoral microbiome and
metabolites by chemotherapeutic treatments. (A) LDGem (B) HDGem (C) HDCis. An asterisk (*) indi-
cates significant correlation. The color is based on the Spearman-rank correlation coefficient between sig-
nificant changes for genera and metabolites; blue represents a significantly negative correlation (adjusted P
< 0.05), red a significantly positive correlation (adjusted P < 0.05).

Full-size DOI: 10.7717/peerj.13876/fig-7

DNA extracted from tumor tissues, resulting in some difficulties during the amplification,
which may affect the power in finding more candidate phyla from the microbial profiles.
Moreover, a future study in larger cohorts will help further validate the sensitivity and
specificity of biomarkers based on microbial composition.

We further investigated the metabolic differences and their biological relevance in the
chemotherapeutic drug response pattern. In regards with the NMR-based metabolomics,
the levels of acetylcholine, adenine, carnitine and inosine were increased with gemcitabine
resistance, while the levels of acetylcholine, alpha-D-glucose and carnitine were increased
with cisplatin resistance. Expectedly, we found significantly increased amino acid levels
in the resistant group of gemcitabine and cisplatin treatment, that is consistent with
a previous study showing the elevated amino acid levels in a resistant group of both
chemotherapeutic drugs (Ciccarone et al., 2017). Moreover, we found a significantly higher
levels of nucleotides inCCA that were resistant to gemcitabine. The previous study indicated
that nucleotide metabolites also promote cancer cell proliferation (Newman & Maddocks,
2017). We also found a significantly higher glucose level in the cisplatin resistant group,
which is consistent with previous studies that demonstrated lung cancer patients who are
resistant to platinum-based combination chemotherapy shown elevated of glucose level was
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found in serum and increased of glucose level in CCA patients associated with progression
of CCA in an in vitro study (Saengboonmee et al., 2016; Xu et al., 2017). Acetylcholine may
also serve as an inducer of cancer stem cell proliferation (Nguyen et al., 2018). Even though
the evidence of carnitine in chemotherapy response has not been widely studied, a previous
study has shown that patients responding to cisplatin therapy had lower levels of carnitine
in gastric cancer patients and it has been defined as an oncometabolite that is involved
in cancer development and progression (Kawai et al., 2017). In conclusion, the metabolic
profiles could reflect the drug response patterns of CCA patients’ tissues and may serve as
predictive biomarkers for chemotherapeutic drug response.

Based on an integration analysis between intratumoral microbiota and metabolites
data related to the drug response pattern, Streptococcus and Deinococcus were negatively
correlated with L-methionine. Previous work showed that Streptococcus could take up
L-methionine through ABC transport lipoprotein, which reflects the decreased level of
L-methionine (Basavanna et al., 2013). We also found that Cutibacterium was positively
correlated with L-isoleucine and L-leucine in the cisplatin treatment group. Bacteria in the
Cutibacterium phyla (formerly Propionibacterium) have been reported to be able to trigger
the catabolism of leucine and isoleucine metabolic pathway from substrates available in
the colon environment (Saraoui et al., 2013). Escherichia-Shigella was negatively correlated
with homocarnosine. Presently, there is no study, to our knowledge, that demonstrates the
interaction between homocarnosine and Escherichia-Shigella. Furthermore, Pseudomonas,
Atopostipes, Paracoccus and Deinococcus were negative correlated with acetic acid in the
high dose gemcitabine treatment group, reflecting the alteration of intestinal microbiota
as evident by a previous study in colorectal cancer patients (Yusof et al., 2018). However,
there is no report on the association of acetic acid, which could induce microbiota
composition change in cholangiocarcinoma. The relationship between the response pattern
to chemotherapy from HDRA and clinical drug response of CCA patients in a prospective
manner requires further study. Moreover, validation studies will need to be performed in
larger cohorts (pre- and post-treatment) prior to the actual clinical use. Ultimately, such
data will serve the development of effective ways and less invasive tools to be eventually
applied in the clinical application.

CONCLUSIONS
An integration of the omics studies potentially provides an understanding of the
alteration of host metabolic changes and microbiota composition shifts during disease
progression. The present study provides an insight into the correlation between the
metabolic changes and microbial alterations in the CCA tissues and its potential effects
on the chemotherapeutic treatments. The disruption of the intratumoral microbiome,
metabolites, functional analysis and the clinical chemotherapy outcomes could be further
validated in a larger cohort to improve the stratified treatment regimen for individual
patients. Moreover, the drug resistance biomarker detection of biological fluids including
plasma, serum, urine, bile fluid needs to be explored in order to find a quick, effective and
less invasive strategy to be eventually applied in the clinical application.

Sitthirak et al. (2022), PeerJ, DOI 10.7717/peerj.13876 15/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.13876


ACKNOWLEDGEMENTS
The authors express gratitude to Professor Trevor N. Petney for editing the MS via the
Publication Clinic KKU, Thailand.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This study was supported by a grant of the National Research Council of Thailand through
Fluke Free Thailand Project and the NSRF under the Basic Research Fund of Khon Kaen
University through Cholangiocarcinoma Research Institute to Watcharin Loilome and a
grant from the Invitation Research Grant (IN64123) allocated to Sirinya Sitthirak. Sirinya
Sitthirak was awarded a scholarship from the Graduate school of Khon Kaen University
(Grant No. 621JH102). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The National Research Council of Thailand through Fluke Free Thailand Project.
The NSRF under the Basic Research Fund of Khon Kaen University through
Cholangiocarcinoma Research Institute to Watcharin Loilome.
Invitation Research Grant allocated to Sirinya Sitthirak: IN64123.
The Graduate school of Khon Kaen University: 621JH102.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Sirinya Sitthirak performed the experiments, analyzed the data, prepared figures and/or
tables, authored or reviewed drafts of the article, and approved the final draft.
• Manida Suksawat analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.
• Jutarop Phetcharaburanin conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.
• Arporn Wangwiwatsin performed the experiments, analyzed the data, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.
• Poramate Klanrit performed the experiments, analyzed the data, authored or reviewed
drafts of the article, and approved the final draft.
• Nisana Namwat performed the experiments, analyzed the data, authored or reviewed
drafts of the article, and approved the final draft.
• Narong Khuntikeo analyzed the data, authored or reviewed drafts of the article, specimen
enqury and Visualization, and approved the final draft.

Sitthirak et al. (2022), PeerJ, DOI 10.7717/peerj.13876 16/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.13876


• Attapol Titapun analyzed the data, authored or reviewed drafts of the article, specimen
enqury and Visualization, and approved the final draft.
• Apiwat Jarearnrat analyzed the data, authored or reviewed drafts of the article, specimen
enqury and Visualization, and approved the final draft.
• Sakkarn Sangkhamanon analyzed the data, prepared figures and/or tables, authored or
reviewed drafts of the article, specimen enqury and Visualization, and approved the final
draft.
• Watcharin Loilome conceived anddesigned the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

Human Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

The protocol of the specimen collection and studywere approved by the EthicCommittee
for Human Research, Khon Kaen University (HE601149).

DNA Deposition
The following information was supplied regarding the deposition of DNA sequences:

The 16S rRNA sequencing data, adapters trimmed, are available at the Sequence Read
Archive (SRA): PRJEB47824.

They are also available at the European Nucleotide Archive: ERP132128.

Data Availability
The following information was supplied regarding data availability:

Sequencing data is available at NCBI: PRJEB47824.
Metabolomic data is available at Open Science Framework (OSF):
SIRINYA. ‘‘Chemotherapeutic Resistant Cholangiocarcinoma Displayed Distinct

Intratumoral Microbial Composition and Metabolic Profiles.’’ OSF, December 5, 2021.
https://osf.io/6uxbr/.

REFERENCES
Aljiffry M,WalshMJ, Molinari M. 2009. Advances in diagnosis, treatment and

palliation of cholangiocarcinoma: 1990-2009.World Journal of Gastroenterology
15(34):4240–4262 DOI 10.3748/wjg.15.4240.

AlsalehM, Leftley Z, Barbera TA, Sithithaworn P, Khuntikeo N, LoilomeW, Yongvanit
P, Cox IJ, Chamodol N, Syms RRA, Andrews RH, Taylor-Robinson SD. 2019.
Cholangiocarcinoma: a guide for the nonspecialist. International Journal of General
Medicine 12:13–23 DOI 10.2147/IJGM.S186854.

Basavanna S, Chimalapati S, Maqbool A, Rubbo B, Yuste J, Wilson RJ, Hosie A, Ogun-
niyi A, Paton J, Thomas G, Brown JS. 2013. The effects of methionine acquisition
and synthesis on Streptococcus pneumoniae growth and virulence. PLOS ONE
8(1):e49638 DOI 10.1371/journal.pone.0049638.

Sitthirak et al. (2022), PeerJ, DOI 10.7717/peerj.13876 17/22

https://peerj.com
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB47824
https://www.ebi.ac.uk/ena/browser/view/PRJEB47824?show=reads
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB47824
https://osf.io/6uxbr/
http://dx.doi.org/10.3748/wjg.15.4240
http://dx.doi.org/10.2147/IJGM.S186854
http://dx.doi.org/10.1371/journal.pone.0049638
http://dx.doi.org/10.7717/peerj.13876


Caporaso JG, Lauber CL,WaltersWA, Berg-Lyons D, Huntley J, Fierer N, Knight R,
Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert J, Smith G, Knight R.
2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq
and MiSeq platforms. ISME Journal 6(8):1621–1624 DOI 10.1038/ismej.2012.8.

Chan BA, Coward JI. 2013. Chemotherapy advances in small-cell lung cancer. Journal of
Thoracic Disease 5:S565-78 DOI 10.3978/j.issn.2072-1439.2013.07.43.

Chong J, Liu P, Zhou G, Xia J. 2020. Using MicrobiomeAnalyst for comprehensive
statistical, functional, and meta-analysis of microbiome data. Nature Protocols
15(3):799–821 DOI 10.1038/s41596-019-0264-1.

Choy ATF, Carnevale I, Coppola S, Meijer LL, Kazemier G, Zaura E, Deng D, Giovan-
netti E. 2018. The microbiome of pancreatic cancer: from molecular diagnostics to
new therapeutic approaches to overcome chemoresistance caused by metabolic in-
activation of gemcitabine. Expert Review of Molecular Diagnostics 18(12):1005–1009
DOI 10.1080/14737159.2018.1544495.

Ciccarone F, Vegliante R, Di Leo L, Ciriolo MR. 2017. The TCA cycle as a bridge
between oncometabolism and DNA transactions in cancer. Seminars in Cancer
Biology 47:50–56 DOI 10.1016/j.semcancer.2017.06.008.

Dhariwal A, Chong J, Habib S, King IL, Agellon LB, Xia J. 2017.MicrobiomeAnalyst:
a web-based tool for comprehensive statistical, visual and meta-analysis of micro-
biome data. Nucleic Acids Research 45(W1):W180–W188 DOI 10.1093/nar/gkx295.

Elia I, Haigis MC. 2021.Metabolites and the tumour microenvironment: from
cellular mechanisms to systemic metabolism. Nature Metabolism 3(1):21–32
DOI 10.1038/s42255-020-00317-z.

Elkrief A, Derosa L, Zitvogel L, Kroemer G, Routy B. 2019. The intimate relationship
between gut microbiota and cancer immunotherapy. Gut Microbes 10(3):424–428
DOI 10.1080/19490976.2018.1527167.

Flemer B, Lynch DB, Brown JM, Jeffery IB, Ryan FJ, ClaessonMJ, O’RiordainM,
Shanahan F, O’Toole PW. 2017. Tumour-associated and non-tumour-associated
microbiota in colorectal cancer. Gut 66(4):633–643 DOI 10.1136/gutjnl-2015-309595.

Gao J, Tarcea VG, Karnovsky A, Mirel BR,Weymouth TE, Beecher CW, Cav-
alcoli JD, Athey BD, Omenn GS, Burant CF, Jagadish HV. 2010.Metscape:
a Cytoscape plug-in for visualizing and interpreting metabolomic data in
the context of human metabolic networks. Bioinformatics 26(7):971–973
DOI 10.1093/bioinformatics/btq048.

Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, Nejman D, Gavert N,
Zwang Y, Cooper ZA, Shee K, Thaiss CA, Reuben A, Livny J, Avraham R, Frederick
DT, Ligorio M, Chatman K, Johnston SE, Mosher CM, Brandis A, Fuks G, Gurbatri
C, Gopalakrishnan V, KimM, HurdMW, Katz M, Fleming J, Maitra A, Smith
DA, SkalakM, Bu J, MichaudM, Trauger S, Barshack I, Golan T, Sandbank J,
Flaherty KT, Mandinova A, Garrett WS, Thayer SP, Ferrone CR, Huttenhower
C, Bhatia SN, Gevers D,Wargo JA, Golub TR, Straussman R. 2017. Potential role
of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug
gemcitabine. Science 357(6356):1156–1160 DOI 10.1126/science.aah5043.

Sitthirak et al. (2022), PeerJ, DOI 10.7717/peerj.13876 18/22

https://peerj.com
http://dx.doi.org/10.1038/ismej.2012.8
http://dx.doi.org/10.3978/j.issn.2072-1439.2013.07.43
http://dx.doi.org/10.1038/s41596-019-0264-1
http://dx.doi.org/10.1080/14737159.2018.1544495
http://dx.doi.org/10.1016/j.semcancer.2017.06.008
http://dx.doi.org/10.1093/nar/gkx295
http://dx.doi.org/10.1038/s42255-020-00317-z
http://dx.doi.org/10.1080/19490976.2018.1527167
http://dx.doi.org/10.1136/gutjnl-2015-309595
http://dx.doi.org/10.1093/bioinformatics/btq048
http://dx.doi.org/10.1126/science.aah5043
http://dx.doi.org/10.7717/peerj.13876


Gong H, Zhang S, Li Q, Zuo C, Gao X, Zheng B, LinM. 2020. Gut microbiota
compositional profile and serum metabolic phenotype in patients with pri-
mary open-angle glaucoma. Experimental Eye Research 191:107921–107927
DOI 10.1016/j.exer.2020.107921.

Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A,Wargo JA. 2018. The influence
of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer
Cell 33(4):570–580 DOI 10.1016/j.ccell.2018.03.015.

Greathouse KL,White JR, Vargas AJ, Bliskovsky VV, Beck JA, vonMuhline N, Polley
EC, Bowman ED, KhanMA, Robles AI, Cooks T, Ryan BM, Padgett N, Dzutsev
AH, Trinchieri G, PinedaMA, Bilke S, Meltzer PS, Hokenstad AN, Stickrod TM,
Walther-AntonioMR, Earl JP, Mell JC, Krol JE, Balashov SV, Bhat AS, Ehrlich GD,
Valm A, Deming C, Conlan S, Oh J, Segre JA, Harris CC. 2018. Interaction between
the microbiome and TP53 in human lung cancer. Genome Biology 19(1):123–138
DOI 10.1186/s13059-018-1501-6.

Hall M, Beiko RG. 2018. 16S rRNA gene analysis with QIIME2.Methods in Molecular
Biology 1849:113–129 DOI 10.1007/978-1-4939-8728-3_8.

Helmink BA, KhanMAW, Hermann A, Gopalakrishnan V,Wargo JA. 2019. The
microbiome, cancer, and cancer therapy. Nature Medicine 25(3):377–388
DOI 10.1038/s41591-019-0377-7.

Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L,We-
instock GM. 2019. Evaluation of 16S rRNA gene sequencing for species and
strain-level microbiome analysis. Nature Communications 10(1):5029–5039
DOI 10.1038/s41467-019-13036-1.

Kawai A, Matsumoto H, Endou Y, Honda Y, Kubota H, HigashidaM, Hirai T.
2017. Repeated combined chemotherapy with cisplatin lowers carnitine levels
in gastric cancer patients. Annals of Nutrition and Metabolism 71(3–4):261–265
DOI 10.1159/000485808.

Khuntikeo N, Chamadol N, Yongvanit P, LoilomeW, Namwat N, Sithithaworn
P, Andrews RH, Petney TN, Promthet S, Thinkhamrop K, Tawarungruang C,
Thinkhamrop B, on behalf of the CASCAP investigators. 2015. Cohort profile:
cholangiocarcinoma screening and care program (CASCAP). BMC Cancer 15:459
DOI 10.1186/s12885-015-1475-7.

Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente
JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C. 2013.
Predictive functional profiling of microbial communities using 16S rRNA marker
gene sequences. Nature Biotechnology 31(9):814–821 DOI 10.1038/nbt.2676.

MaW,Mao Q, XiaW, Dong G, Yu C, Jiang F. 2019. Gut microbiota shapes the efficiency
of cancer therapy. Frontiers in Microbiology 10:1050–1058
DOI 10.3389/fmicb.2019.01050.

Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, Rotter-Maskowitz A,
Weiser Roi, Mallel G, Gigi E, Meltser A, Douglas GM, Kamer I, Gopalakrishnan
V, Dadosh T, Levin-Zaidman S, Avnet S, Atlan T, Cooper ZA, Arora R, Cogdill
AP, KhanMd AW, Ologun G, Bussi Y, Weinberger A, Lotan-PompanM, Golani

Sitthirak et al. (2022), PeerJ, DOI 10.7717/peerj.13876 19/22

https://peerj.com
http://dx.doi.org/10.1016/j.exer.2020.107921
http://dx.doi.org/10.1016/j.ccell.2018.03.015
http://dx.doi.org/10.1186/s13059-018-1501-6
http://dx.doi.org/10.1007/978-1-4939-8728-3_8
http://dx.doi.org/10.1038/s41591-019-0377-7
http://dx.doi.org/10.1038/s41467-019-13036-1
http://dx.doi.org/10.1159/000485808
http://dx.doi.org/10.1186/s12885-015-1475-7
http://dx.doi.org/10.1038/nbt.2676
http://dx.doi.org/10.3389/fmicb.2019.01050
http://dx.doi.org/10.7717/peerj.13876


O, Perry G, RokahM, Bahar-Shany K, Rozeman EA, Blank CU, Ronai A, Shaoul R,
Amit A, Dorfman T, Kremer R, Cohen ZR, Harnof S, Siegal T, Yehuda-Shnaidman
E, Gal-Yam EN, Shapira H, Baldini N, Langille MGI, Ben-Nun A, Kaufman B,
Nissan A, Golan T, Dadiani M, Levanon K, Bar J, Yust-Katz S, Barshack I, Peeper
DS, Raz DJ, Segal E, Wargo JA, Sandbank J, Shental N, Straussman R. 2020. The
human tumor microbiome is composed of tumor type-specific intracellular bacteria.
Science 368(6494):973–980 DOI 10.1126/science.aay9189.

Newman AC, Maddocks ODK. 2017. One-carbon metabolism in cancer. British Journal
of Cancer 116(12):1499–1504 DOI 10.1038/bjc.2017.118.

Nguyen PH, Touchefeu Y, Durand T, Aubert P, Duchalais E, Bruleydes Varannes S,
Matysiak-Budnik T. 2018. Acetylcholine induces stem cell properties of gastric can-
cer cells of diffuse type. Tumor Biology 40(9):1010428318799028–1010428318799037
DOI 10.1177/1010428318799028.

Ni Y, Yu G, Chen H, Deng Y,Wells PM, Steves CJ, Ju F, Fu J, Xu J. 2020.M2IA: a
web server for microbiome and metabolome integrative analysis. Bioinformatics
36(11):3493–3498 DOI 10.1093/bioinformatics/btaa188.

Okusaka T, Ojima H, Morizane C, IkedaM, Shibata T. 2014. Emerging drugs for biliary
cancer. Expert Opinion on Emerging Drugs 19(1):11–24
DOI 10.1517/14728214.2014.870553.

Piratae S, Tesana S, Jones MK, Brindley PJ, Loukas A, Lovas E, Eursitthichai V, Sripa
B, Thanasuwan S, Laha T, Cappello M. 2012.Molecular characterization of a
tetraspanin from the human liver fluke, Opisthorchis viverrini. PLOS Neglected
Tropical Diseases 6(12):e1939
DOI 10.1371/journal.pntd.0001939.

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO.
2013. The SILVA ribosomal RNA gene database project: improved data processing
and web-based tools. Nucleic Acids Research 41(Database issue):D590–D596
DOI 10.1093/nar/gks1219.

SaabM,Mestivier D, Sohrabi M, Rodriguez C, Khonsari MR, Faraji A, Sobhani I. 2021.
Characterization of biliary microbiota dysbiosis in extrahepatic cholangiocarcinoma.
PLOS ONE 16(3):e0247798 DOI 10.1371/journal.pone.0247798.

Saengboonmee C, SeubwaiW, Pairojkul C,Wongkham S. 2016.High glucose enhances
progression of cholangiocarcinoma cells via STAT3 activation. Scientific Reports
6:18995 DOI 10.1038/srep18995.

Saraoui T, Parayre S, Guernec G, Loux V, Montfort J, Le Cam A, Falentin H. 2013. A
unique in vivo experimental approach reveals metabolic adaptation of the probiotic
Propionibacterium freudenreichii to the colon environment. BMC Genomics 14:911
DOI 10.1186/1471-2164-14-911.

Saus E, Iraola-Guzman S,Willis JR, Brunet-Vega A, Gabaldon T. 2019.Microbiome
and colorectal cancer: roles in carcinogenesis and clinical potential.Molecular Aspects
of Medicine 69:93–106 DOI 10.1016/j.mam.2019.05.001.

Sitthirak et al. (2022), PeerJ, DOI 10.7717/peerj.13876 20/22

https://peerj.com
http://dx.doi.org/10.1126/science.aay9189
http://dx.doi.org/10.1038/bjc.2017.118
http://dx.doi.org/10.1177/1010428318799028
http://dx.doi.org/10.1093/bioinformatics/btaa188
http://dx.doi.org/10.1517/14728214.2014.870553
http://dx.doi.org/10.1371/journal.pntd.0001939
http://dx.doi.org/10.1093/nar/gks1219
http://dx.doi.org/10.1371/journal.pone.0247798
http://dx.doi.org/10.1038/srep18995
http://dx.doi.org/10.1186/1471-2164-14-911
http://dx.doi.org/10.1016/j.mam.2019.05.001
http://dx.doi.org/10.7717/peerj.13876


SongM, Chan AT, Sun J. 2020. Influence of the gut microbiome, diet, and en-
vironment on risk of colorectal cancer. Gastroenterology 158(2):322–340
DOI 10.1053/j.gastro.2019.06.048.

Suksawat M, Klanrit P, Phetcharaburanin J, Namwat N, Khuntikeo N, Tita-
pun A, LoilomeW, Alpini GD. 2019. In vitro and molecular chemosensi-
tivity in human cholangiocarcinoma tissues. PLOS ONE 14(9):e0222140
DOI 10.1371/journal.pone.0222140.

Suksawat M, Phetcharaburanin J, Klanrit P, Namwat N, Khuntikeo N, Titapun A,
Jarearnrat A, Vilayhong V, Sa-ngiamwibool P, Techasen A,Wangwiwatsin A, Ma-
halapbutr P, Li JV, LoilomeW. 2022.Metabolic phenotyping predicts gemcitabine
and cisplatin chemosensitivity in patients with cholangiocarcinoma. Frontiers in
Public Health 10:766023–766035 DOI 10.3389/fpubh.2022.766023.

Valle J, Wasan H, Palmer DH, CunninghamD, Anthoney A, Maraveyas A, Madhusu-
dan S, Iveson T, Hughes S, Pereira SP, RoughtonM, Bridgewater J. 2010. Cisplatin
plus gemcitabine versus gemcitabine for biliary tract cancer. The New England
Journal of Medicine 362(14):1273–1281 DOI 10.1056/NEJMoa0908721.

Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillere R, Hannani D, Enot DP, Pfirschke
C, Engblom C, Pittet MJ, Schlitzer A, Ginhoux F, Apetoh L, Chachaty E, Woerther
P-L, Eberl G, BérardM, Ecobichon C, Clermont D, Bizet C, Gaboriau-Routhiau
V, Cerf-Bensussan N, Opolon P, Yessaad N, Vivier E, Ryffel B, Elson CO, Doré J,
Kroemer G, Lepage P, Boneca IG, Ghiringhelli F, Zitvogel L. 2013. The intestinal
microbiota modulates the anticancer immune effects of cyclophosphamide. Science
342(6161):971–976 DOI 10.1126/science.1240537.

Wirasorn K, Ngamprasertchai T, Khuntikeo N, Pakkhem A, Ungarereevittaya P, Chin-
daprasirt J, Sookprasert A. 2013. Adjuvant chemotherapy in resectable cholangio-
carcinoma patients. Journal of Gastroenterology and Hepatology 28(12):1885–1891
DOI 10.1111/jgh.12321.

Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vazquez-Fresno R, Sajed T,
Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal
S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R,
Neveu V, Pon A, Knox C,WilsonM,Manach C, Scalbert A. 2018.HMDB 4.0: the
human metabolome database for 2018. Nucleic Acids Research 46(D1):D608–D617
DOI 10.1093/nar/gkx1089.

Wishart DS, Jewison T, Guo AC,WilsonM, Knox C, Liu Y, Djoumbou Y, Mandal R,
Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl
T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A. 2013.HMDB
3.0–the human metabolome database in 2013. Nucleic Acids Research 41(Database
issue):D801–D807 DOI 10.1093/nar/gks1065.

Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios
N , Dong E , Bouatra S , Mandal R , Sinelnikov I , Xia J , Jia L , Cruz JA , Lim E ,
Sobsey CA , Shrivastava S , Huang P , Liu P , Fang L , Peng J , Fradette R , Cheng
D , Tzur D , Clements M , Lewis A , De Souza A , Zuniga A , DaweM , Xiong Y ,
Clive D , Greiner R , Nazyrova A , Shaykhutdinov R , Li L , Vogel HJ , Forsythe I.

Sitthirak et al. (2022), PeerJ, DOI 10.7717/peerj.13876 21/22

https://peerj.com
http://dx.doi.org/10.1053/j.gastro.2019.06.048
http://dx.doi.org/10.1371/journal.pone.0222140
http://dx.doi.org/10.3389/fpubh.2022.766023
http://dx.doi.org/10.1056/NEJMoa0908721
http://dx.doi.org/10.1126/science.1240537
http://dx.doi.org/10.1111/jgh.12321
http://dx.doi.org/10.1093/nar/gkx1089
http://dx.doi.org/10.1093/nar/gks1065
http://dx.doi.org/10.7717/peerj.13876


2009.HMDB: a knowledgebase for the human metabolome. Nucleic Acids Research
37(Database issue):D603–D610 DOI 10.1093/nar/gkn810.

Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D,
Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly MA, Forsythe I, Tang P, Shrivas-
tava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau DD,Wagner J, Miniaci J,
Clements M, GebremedhinM, Guo N, Zhang Y, Duggan GE, MacInnis GD,Weljie
AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD,
Vogel HJ, Querengesse L. 2007.HMDB: the human metabolome database. Nucleic
Acids Research 35(Database issue):D521–D526 DOI 10.1093/nar/gkl923.

Xu S, Zhou Y, Geng H, Song D, Tang J, Zhu X, Yu D, Hu S, Cui Y. 2017. Serum
metabolic profile alteration reveals response to platinum-based combination
chemotherapy for lung cancer: sensitive patients distinguished from insensitive ones.
Scientific Reports 7(1):17524 DOI 10.1038/s41598-017-16085-y.

Yan X, YangM, Liu J, Gao R, Hu J, Li J, Zhang L, Shi Y, Guo H, Cheng J, Razi M, Pang
S, Yu X, Hu S. 2015. Discovery and validation of potential bacterial biomarkers for
lung cancer. American Journal of Cancer Research 5(10):3111–3122.

Yusof HM, Ab-Rahim S, Suddin LS, SamanMSA, MazlanM. 2018.Metabolomics
profiling on different stages of colorectal cancer: a systematic review.Malaysian
Journal of Medical Sciences 25(5):16–34 DOI 10.21315/mjms2018.25.5.3.

Zhao L. 2013. The gut microbiota and obesity: from correlation to causality. Nature
Reviews Microbiologyl 11(9):639–647 DOI 10.1038/nrmicro3089.

Zhou B, Sun C, Huang J, Xia M, Guo E, Li N, Lu H, ShanW,Wu Y, Li Y, Xu X,
Weng D, Meng L, Hu J, Gao Q, Ma D, Chen G. 2019. The biodiversity composi-
tion of microbiome in ovarian carcinoma patients. Scientific Reports 9(1):1691
DOI 10.1038/s41598-018-38031-2.

Sitthirak et al. (2022), PeerJ, DOI 10.7717/peerj.13876 22/22

https://peerj.com
http://dx.doi.org/10.1093/nar/gkn810
http://dx.doi.org/10.1093/nar/gkl923
http://dx.doi.org/10.1038/s41598-017-16085-y
http://dx.doi.org/10.21315/mjms2018.25.5.3
http://dx.doi.org/10.1038/nrmicro3089
http://dx.doi.org/10.1038/s41598-018-38031-2
http://dx.doi.org/10.7717/peerj.13876

