
Neuro-Oncology Advances
2(1), 1–11, 2020 | doi:10.1093/noajnl/vdaa079 | Advance Access date 22 June 2020

1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

© The Author(s) 2020. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology.

Xi Chen†, Zhen Fan†, Kay Ka-Wai Li, Guoqing Wu, Zhong Yang, Xin Gao, Yingchao Liu, Haibo Wu, 
Hong Chen, Qisheng Tang, Liang Chen, Yuanyuan Wang, Ying Mao, Ho-Keung Ng, Zhifeng Shi, 
Jinhua Yu, and Liangfu Zhou

Department of Electronic Engineering, Fudan University, Shanghai, China (X.C., G.W., Y.W., J.Y.); Department of 
Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (Z.F., Q.T., L.C., Y.M., Z.S., L.Z.); Department 
of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, 
China SAR (K.K.-W.L., H.-K.N.); Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China 
(Z.Y.); Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China (X.G.); Department 
of Neurosurgery, Shandong Provincial Hospital, Jinan, China (Y.L.); Department of Pathology, the First Affiliated 
Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 
China (H.W.); Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China (H.C.)

†These authors contributed equally to this work.

Corresponding Authors: Jinhua Yu, PhD, Department of Electronic Engineering, Fudan University, 200040 Shanghai, China  
(jhyu@fudan.edu.cn); Zhifeng Shi, PhD, Department of Neurosurgery, Huashan Hospital, Fudan University, 200433 Shanghai, China 
(shizhifeng@fudan.edu.cn).

Abstract
Background. The determination of molecular subgroups—wingless (WNT), sonic hedgehog (SHH), Group 3, and 
Group 4—of medulloblastomas is very important for prognostication and risk-adaptive treatment strategies. Due 
to the rare disease characteristics of medulloblastoma, we designed a unique multitask framework for the few-shot 
scenario to achieve noninvasive molecular subgrouping with high accuracy.
Methods. We introduced a multitask technique based on mask regional convolutional neural network (Mask-
RCNN). By effectively utilizing the comprehensive information including genotyping, tumor mask, and prognosis, 
multitask technique, on the one hand, realized multi-purpose modeling and simultaneously, on the other hand, 
promoted the accuracy of the molecular subgrouping. One hundred and thirteen medulloblastoma cases were 
collected from 4 hospitals during the 8-year period in the retrospective study, which were divided into 3-fold cross-
validation cohorts (N = 74) from 2 hospitals and independent testing cohort (N = 39) from the other 2 hospitals. 
Comparative experiments of different auxiliary tasks were designed to illustrate the effect of multitasking in mo-
lecular subgrouping.
Results.  Compared to the single-task framework, the multitask framework that combined 3 tasks increased the av-
erage accuracy of molecular subgrouping from 0.84 to 0.93 in cross-validation and from 0.79 to 0.85 in independent 
testing. The average area under the receiver operating characteristic curves (AUCs) of molecular subgrouping were 
0.97 in cross-validation and 0.92 in independent testing. The average AUCs of prognostication also reached to 0.88 
in cross-validation and 0.79 in independent testing. The tumor segmentation results achieved the Dice coefficient 
of 0.90 in both cohorts.
Conclusions. The multitask Mask-RCNN is an effective method for the molecular subgrouping and prognostication 
of medulloblastomas with high accuracy in few-shot learning.

Molecular subgrouping of medulloblastoma based on 
few-shot learning of multitasking using conventional 
MR images: a retrospective multicenter study
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Key Points

•	 Proposing a unique multitask framework for the few-shot learning scenario.

•	 Molecular subgrouping of medulloblastoma into 4 subtypes with an average AUC 
of 0.95.

•	 Simultaneous tumor segmentation and prognosis prediction.

Medulloblastoma (MB) is the most common malignant pe-
diatric brain tumor with about 40% being located in poste-
rior cranial fossa.1–3 The 5-year survival rate reaches 65–70% 
in terms of tumor resection plus chemo-radiotherapy.4 
Although the survival rates have increased dramatically 
during the past decade, the clinical outcome still varies a 
lot due to underlying biological distinctions.5,6 Based on ge-
nomic profiles, 4 distinct subgroups (wingless [WNT], sonic 
hedgehog [SHH], Group 3, and Group 4) were widely rec-
ognized and adapted into the latest version of WHO 2016 
medulloblastoma classification.7–10 Tumors with different 
molecular subgroups have different clinical outcomes and 
chemo-radiosensitivity.11–13 Meanwhile, for surgery, the ex-
tent of surgical resection had no significant patient survival 
outcome, hence accounting for molecular subgroups.4 Thus, 
more and more studies have highlighted the importance of 
molecular subgrouping in the precise diagnosis and treat-
ment of MB.14–21

Several laboratory methods have been developed to per-
form molecular subgrouping of MB by using tumor sam-
ples from surgical resection. Owing to technical complexity 
and costs, these methods were not applicable for routine 
clinical practice in a large number of medical facilities. 
However, the magnetic resonance (MR) scanning costs 
much less than the genomic test and could obtain medical 
images with high resolution. Moreover, this medical im-
aging method does not expose patients to ionizing radiation 
that causes tissue damage to patients. Hence, conventional 
MR images are first-hand clinical information for clinicians 
with cost-effective, high-resolution, and noninvasive traits. 
By analyzing tumor characteristic of MR images, several pa-
pers have been published to correlate the subgroups of MB 
with location, enhancing pattern, cystic change, and other 
image features reviewed by radiologists.6,14–21 Recently, 

radiomics has emerged as a new medical tool to bridge 
high-throughput MR features with tumor genomic and tran-
scriptome profiling. With the help of deep learning tech-
niques, radiomics methods have provided the possibility to 
perform accurate molecular diagnosis of various brain tu-
mors such as glioma, metastases, and craniopharyngioma 
preoperatively and noninvasively.22–24

However, the data-driven predictions by deep learning 
techniques highly depend on a large number of training 
samples. The number of training samples limited the per-
formance of radiomics algorithms in biomedical image 
analysis. The age-adjusted incidence rates per 100 000 
person-years of MB are about 0.16 in all ages and about 0.44 
in children (0–14  years).2 Very few papers were published 
about radiomics study in MB because of the limited number 
of cases. In our study, an improved multitask learning 
method for the predictive analysis of molecular subgroups 
of MB is designed based on the mask regional convolutional 
neural network (Mask-RCNN) to compensate the lack of 
training data.25 The multitask technique26–28 was introduced 
into radiomics modeling to reduce the risk of overfitting and 
to improve the generalization ability of facing the few-shot 
challenge. This method has been widely used in the field of 
brain tumor analysis and achieved impressive results. Liu 
et al.29 introduced the multitask technique jointly identifying 
the stage of Alzheimer’s disease and predicting clinical 
scores incorporating MR images and demographic informa-
tion. Bui et al.30 proposed a multitask learning method to si-
multaneously learn both tissue segmentation and geodesic 
distance regression using brain MR images. Estienne et al.31 
proposed a multitask algorithm that addresses the problems 
of image registration and brain tumor segmentation jointly. 
Collier et al.32 used a multitask learning strategy to integrate 
information about gene mutations and protein–protein 

Importance of the Study

In the latest version of the WHO 2016 classi-
fication of medulloblastoma, the molecular 
subgroups (WNT, SHH, Group 3, and Group 4) 
were widely recognized as the markers for pa-
tient treatment and prognosis strategies. Due 
to the technological complexity and cost, mo-
lecular subgrouping of medulloblastoma based 
on the genomic test might be unavailable in 
every neurosurgical center as routine clinical 
practice. Recently, radiomics method provided 

a potential tool for noninvasive molecular 
subgrouping of medulloblastoma. Regarding 
the relatively low incidence of medulloblastoma, 
our study designed a multitask network for the 
few-shot learning scenario with a small sample 
size by using preoperative MR images. Through 
the multitask technique, the proposed scheme 
achieved high diagnostic accuracy in both cross-
validation and independent testing, with an av-
erage AUC of 0.97 and 0.92, respectively.
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interactions in a versatile manner and to predict tumor-driver 
genes in a pan-cancer setting and also for specific tumor 
types. Considering that location was proved to be an impor-
tant MRI feature for molecular subgrouping of MB and the 
4 molecular subgroups had different prognosis,14,21,33 the in-
formation of tumor mask and patient prognosis were inte-
grated into the multitask framework to promote the accuracy 
of molecular subgroups prediction. Moreover, to effec-
tively utilize the comprehensive information of our dataset, 
we expanded the input views of the Mask-RCNN. Both T1 
contrast-enhanced (T1C) and T2 sequences were incorpo-
rated as input to obtain multi-view feature representations 
of patients. To the best of our knowledge, this is the first at-
tempt at introducing the multitasking technique of few-shot 
learning to assist the preoperative prediction of molecular 
subgrouping in MB.

Materials and Methods
Patients Selection

This multicenter retrospective study was approved by 
the institutional ethics board of 4 participating hos-
pitals (Huashan Hospital, Huadong Hospital, Shandong 

Provincial Hospital, and Anhui Provincial Hospital). We ret-
rospectively reviewed the medical systems of 4 hospitals 
during the 8-year period (from January 2010 to December 
2017)  and screened out 120 patients diagnosed with MB 
histologically with high-quality preoperative MRI data and 
tumor tissue for molecular subtyping. The collected high-
quality MR images have no artifacts and the diseased tissue 
could be clearly observed on them. Seven cases diagnosed 
as “medulloblastoma highly suspected” by neuropatholo-
gists were excluded because of very limited tumor sam-
ples. Finally, 113 patients were included from 4 hospitals in 
this study (Huashan Hospital = 52, Huadong Hospital = 22, 
Shandong Provincial Hospital  =  16, and Anhui Provincial 
Hospital = 23). The detailed clinical and genomic character-
istics of all cases from different institutions were given in 
Table 1. Seventy-three patients had a complete follow-up. 
Patients younger than 18  years were defined as child 
medulloblastomas, and those aged older than 18  years 
are defined as the adult counterparts. According to pa-
tients’ prognosis, they were also divided into 2 categories: 
good prognosis (overall survival [OS] time longer than 
27  months) and poor prognosis (OS time shorter than 
27 months). The OS time of 27 months was the median OS 
time of all patients in our study. Patient-informed consent 
was waived due to the retrospective study.

  
Table 1.  Clinical and Genomic Characteristics of Different Institutions

Characteristic Cross-validation cohort (n = 74) Independent testing cohort (n = 39) P

Huashan  
(n = 52)

Huadong  
(n = 22)

Total  
(n = 74)

Shandong  
(n = 16)

Anhui  
(n = 23)

Total  
(n = 39)

Molecular subgroup       .902

  WNT 15 2 17 2 5 7  

  SHH 11 7 18 5 4 9  

  Group 3 13 7 20 3 8 11  

  Group 4 13 6 19 6 6 12  

Age, years       .488

  ≤5  1 2 0 5 5  

  6–18 29 11 40 11 12 23  

  ≥18  10 32 5 6 11  

Gender       .104

  Male 38 15 53 10 12 22  

  Female 14 7 21 6 11 17  

OS time       .382

  ≥27 months 33 5 38 7 13 20  

  <27 months 19 17 36 9 10 19  

Histology       .101

  Classic 28 16 44 9 5 14  

  Desmoplastic 13 2 15 3 7 10  

  Nodularity 2 2 4 0 6 6  

  LCA 5 2 7 0 4 4  

  N/Aa 4 0 4 4 1 5  

OS, overall survival; LCA, large cell and/or anaplastic.
aPathologic categories of 9 patients are difficult to judge due to the suboptimal quality of tumor tissues and denoted as N/A.
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Molecular Analysis

Molecular subgroup affiliation was done by the 
NanoString-based platform according to the previous pub-
lication.34 In brief, RNA was extracted from formalin-fixed 
paraffin-embedded (FFPE) tissues with an RNeasy FFPE Kit 
(Qiagen). RNA was then quantified by a NanoDrop 2000 
spectrophotometer. A  total of 100  ng RNA was then hy-
bridized using the NanoString nCounter CodeSet at 67ºC 
for 20  h. The CodeSet contained gene-specific probes 
that assayed the abundance of 22 molecular-subgroup-
specific genes and 3 housekeeping genes. Then, the ex-
cessive probes were washed, purified, and immobilized 
on a streptavidin-coated cartridge using the nCounter 
Prep Station (NanoString Technologies) according to the 
manufacturer’s protocol. Signals of fluorescent barcodes 
representing the target RNA molecules were then counted 
and recorded by the nCounter Digital Analyzer (NanoString 
Technologies). An automated script together with a 
training set was employed to transform raw data into sub-
group prediction. The script normalized the raw data with R 
package NanoStringNorm, trained the pamr classifier with 
the training set, and made a subgroup prediction.

MR Imaging

Brain MR imaging of enrolled patients was performed on 
MR systems, including Siemens, GE, and Philips, at 3 T 
before surgery to collect T1 contrast-enhanced (T1C) and 
T2 sequences. MR images were acquired using different 
protocols during the 8-year period. The protocol param-
eters were given in Supplementary Table S1. Two experi-
enced radiologists blinded to patients’ clinical, pathologic, 
and molecular characteristics reviewed the imaging data 
and drew the region of interest around the tumor margin in 
MR images independently, and the final tumor segmenta-
tion results were confirmed by both radiologists.

Mask Regional Convolutional Neural Network

Taking into consideration the low incidence of MB, we 
introduced a multitask technique to address the few-shot 
challenge. Due to the mechanism of exploiting the generic 
information shared across tasks and specific information 
among tasks, multitask learning could reduce the risk of 
overfitting and improve generalization ability and hence 
was efficient in few-shot scenarios.26–28 In our study, we 
adopted the Mask-RCNN as the original multitask frame-
work and expanded the input views and the output tasks in 
the improved model. To take full advantage of our collected 
imaging data, we expanded our multitask model inputs 
with both T1C and T2 MRI sequences to obtain multiview 
feature representations. Meanwhile, 2 other related auxil-
iary tasks of prognosis categorization and tumor segmen-
tation were tackled to constitute multitask learning in order 
to further improve the molecular diagnosis. The flowchart 
of our model is shown in Figure 1.

The improved Mask-RCNN model consisted of 3 stages: 
feature extraction, region proposal, and prediction. In the 
first stage, a feature pyramid network (FPN)35 with the 

refined basic feature extraction layers of Residual Neural 
Network (ResNet101)36 was first utilized as the backbone of 
the Mask-RCNN. The ResNet101 was comprised of 5 stages: 
C1, C2, C3, C4, and C5. By using pyramid representations 
to construct feature pyramids, multiscale features were ex-
tracted to combine the FPN with the ResNet101 in the study. 
FPN constructed 3 parts: a bottom-up pathway, a top-down 
pathway, and lateral connections. The feed-forward prop-
agation of the ResNet101 was defined as the bottom-up 
pathway. The outputs of different stages were employed to 
form the feature maps of different pyramid levels. In the 
top-down pathway, the spatially coarser but semantically 
stronger feature maps from the higher pyramid levels were 
up-sampled by a factor of 2 to acquire higher resolution 
features. Then the up-sampled features from the top-down 
pathway were merged with the feature maps of the same 
spatial size from the bottom-up pathway by element-wise 
addition. Finally, each merged map was appended a 3*3 
convolutional layer to acquire the final feature maps {P2, 
P3, P4, P5}. The feature map of P6 was obtained by sub-
sampling P5 with a stride of 2. The pyramid feature maps 
were composed of P2, P3, P4, P5, and P6.

In the second stage, region proposal networks37 slid 
across the multiscale pyramid feature maps extracted 
from the backbone net to obtain region proposals that con-
tained tumor lesions. A window slid over every level of the 
feature pyramid to get anchors. The anchors had areas of 
{4*4, 8*8, 16*16, 32*32, 64*64} pixels on {P6, P5, P4, P3, 
P2}, respectively. In addition, anchors of multiple aspect 
ratios {1:2, 1:1, 2:1} were applied at each level. Therefore, 
15 anchors were obtained simultaneously at each sliding 
window location. Then the anchors were fed into a 3*3 
convolutional layer, which mapped the sliding window 
to a 256-dimensional vector. The 3*3 convolutional layer 
was followed by 2 sibling 1*1 convolutional layers, one of 
which is used for bounding box regression and the other 
for object/nonobject binary classification. Thus, the outputs 
of the regression layer were 4*15 coordinates for 15 boxes 
and the outputs of the classification layer were 2*15 scores 
for probability estimation of whether the box represented 
an object. Then the anchors were selected as proposals 
according to the Intersection-over-Union ratios of the an-
chors and ground-truth boxes.

In the third stage, the feature map of any region pro-
posal was transformed into fixed spatial dimensions 
(7*7 for prognosis classification, molecular prediction, 
and bounding-box regression while 14*14 for tumor seg-
mentation) by the RoIAlign25 method. Then following 3 
branches were constructed for prognosis classification, 
molecular prediction, and mask segmentation. For the 
prognosis or molecular branch, the feature map was fed 
into 2 concatenated fully connected layers followed by 2 
sibling fully connected layers, one of which is used for 
bounding-box regression and the other for box classi-
fication. The outputs of the regression layer were used 
to refine bounding-box positions for 4 subgroups, and 
the classification layer separately outputted probability 
predictions of different classes. The category with the 
highest probability is the forecast subgroup. For the seg-
mentation branch, the feature map was fed into a fully 
convolutional network including 4 convolutional layers 
followed by a transposed convolutional layer with a 

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa079#supplementary-data
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stride of 2 to acquire the segmented mask of each pro-
posal from RPN.

The multitask losses were obtained by performing a 
weighted linear sum of the losses for each individual task 
in the Mask-RCNN model. Hence, we could adjust the loss 
weight of an auxiliary task to zero and then investigate the 
model performance based on other tasks. The detailed net-
work structure was described in Supplementary Text S1.

Model Evaluation

All MB patients were divided into 2 cohorts: Firstly, 74 pa-
tients collected from Huashan Hospital and Huadong Hospital 
constituted the 3-fold cross-validation cohort (CVC) to as-
sess model performance. Secondly, the patients enrolled in 
the previous cohort were applied to train the model and the 
model was performed on the remaining 39 patients from 
Shandong Provincial Hospital and Anhui Provincial Hospital 
as the independent testing cohort (ITC). Genomic charac-
teristics, gender, OS time, and histology had no statistical 
differences between different evaluation cohorts (Table  1). 
Moreover, we researched how the 2 auxiliary tasks of prog-
nosis categorization and tumor segmentation affected the 
main task performance of molecular prediction in each cohort 
by setting the loss weight of each auxiliary task to zero.

Statistical Analysis

Kruskal–Wallis test analyses were performed to assess 
whether genomic characteristics, age at diagnosis, gender, 

OS time, and histology had statistical differences between 
different evaluation cohorts. All statistical analyses were 
performed by using SPSS software version 22.0 (IBM 
Corp.) with a 2-sided significance level of P value .05. In 
3-fold cross-validation, the prediction probabilities and re-
sults in every fold were concatenated to assess the model 
performance using the accuracy (ACC) and area under 
the receiver operating characteristic curve (AUC) values. 
For prognosis prediction, we used the additional indexes 
of sensitivity (SEN) and specificity (SPE) to evaluate the 
model by treating the good prognosis subjects as positive 
samples and the poor prognosis subjects as negative sam-
ples. In addition, we employed a pixel-level measurement 
to evaluate the tumor segmentation quality of our ap-
proach: Dice coefficient. The calculation methods of quanti-
tative indexes are described in Supplementary Text S2.

Results

Patient Characteristics

There were 75 male and 38 female patients enrolled 
in this study, consisting of 6 infant patients (mean age 
4.4  years, range 3–5  years), 64 child patients (mean age 
10.5 years, range 6–17 years), and 43 adult patients (mean 
age 30.4  years, range 18–58  years). There were 24 WNT 
tumors (21%), 27 SHH tumors (24%), 31 Group 3 tumors 
(27%), and 31 Group  4 tumors (27%). Patients’ demo-
graphic information, genetic pattern, and OS time are 
concluded in Figure 2. In our study cohorts, adult patients 
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Figure 1.  Illustration of our improved Mask-RCNN model.
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were commonly seen in the SHH subgroup. SHH tumors 
predominantly located in the cerebellar hemisphere were 
determined by a more quantitative location evaluation 
method (Supplementary Text S3). WNT subgroup patients 
were present with the most favorable clinical outcome 
(5-year survival rate was 80%), whereas Group 3 tumors 
were the worst in OS time. These results were in good ac-
cordance with previous reports.13,38 In our cohort, adult MB 
patients were presented with a trend of better survival than 
pediatric patients (Supplementary Figure S2). SHH tumors 
were predominant in the adult cohort (Supplementary 
Table S2).

Evaluation of Molecular Subgrouping

The evaluation results of ACC and AUC for prediction of MB 
subgroups are summarized in Table 2 using 3-fold CVC and 
ITC with different auxiliary tasks. Figure  3A–H shows the 
receiver operating characteristic (ROC) curves in different 
evaluation cohorts using different combinations of auxiliary 

tasks. Figure 3I–J shows the confusion matrices of the mo-
lecular prediction task assisted with prognosis classification 
and tumor segmentation tasks using different evaluation 
cohorts.

The effects of multitasking are summarized in Figure 4. 
In the 3-fold CVC, adding an extra branch to assist in 
predicting molecular subtypes could improve the accu-
racy from 0.84 to 0.85 (added tumor segmentation branch) 
and further to 0.93 (added both tumor segmentation and 
prognosis classification branches). In the 3-fold CVC, the 
AUC of each molecular subgroup also improved with the 
assistance of prognosis classification and tumor segmen-
tation tasks (WNT, AUC = 0.96; SHH, AUC = 0.96; Group 3, 
AUC = 0.99; Group 4, AUC = 0.96). Likewise, multitasking 
played a similar role in the ITC. Compared to the results 
of different cohorts, the performance dropped a little when 
the model was validated on the dataset from the inde-
pendent institution, which demonstrated the good general-
ization ability and effectiveness of our proposed method in 
molecular prediction.
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Evaluation of Auxiliary Tasks

Patient characteristics of different prognosis categories di-
vided according to the threshold of 27 months, which was 
the median OS time of all patients in our study, are given in 
Supplementary Table S2. Genomic characteristics, gender, 
and histology had no statistical differences between dif-
ferent OS time cohorts. Prognosis categorization was dis-
criminated with AUC of 0.88 and 0.79, ACC of 0.80 and 0.74, 
SEN of 0.81 and 0.76, and SPE of 0.78 and 0.72 for 3-fold 
CVC and ITC, respectively (see Supplementary Figure S3 
for ROC curves).

The OS time distributions of the ITC (using the true 
and predicted molecular subtypes) and all 113 cases 
are shown in Supplementary Figure S4. By comparing 
Supplementary Figure S4B with Supplementary Figure 
S4C, the predicted molecular results could provide more 
accurate prognosis categorization than the true molecular 
subtypes in the ITC.

The improved Mask-RCNN achieved an average Dice co-
efficient of 0.90 in both CVC and ITC in the tumor segmen-
tation task (Supplementary Figure S5).

Discussion

MB is an embryonal tumor with an incidence of 0.16 cases 
per 1 000 000 worldwide.2,3 Meanwhile, it is the most 
common malignant pediatric brain tumor with a very high 
rate of mortality.1–3 Thanks to the large-scale genomic 
studies of MB, it was clearly accepted that MB comprised 
at least 4 distinct molecular subgroups such as WNT, SHH, 
Group  3, and Group  4 with various stages at diagnosis, 
trends to metastasis, different transcriptomes patterns, 
copy number variations, and the clinical outcomes.5–13 
These molecular subgroups present a critical clinical value 
for clinicians to designate a personal comprehensive med-
ical paradigm for patients, especially pediatric patients. In 

the SJMB12 clinical trial,39 a workflow to treat MB patients 
was established and mainly depended on molecular sub-
groups. In Thompson et al.’s4 published paper, clinical data 
of MB patients demonstrated that the extent of resection 
was no more important once accounting for molecular sub-
groups, which would definitely change neurosurgeon’s sur-
gical strategy. However, the methods to perform molecular 
subgrouping are not popularized due to technical difficul-
ties and economic ineffectiveness. A noninvasive method 
for preoperative MB molecular subgrouping is ideal in the 
current medical situation. MRI is a clinically routine medical 
imaging method. Different MR findings can help clinicians 
make rough judgments about tumor diagnosis, surgical 
planning, and future prognosis. In recent years, many pub-
lished articles have used MR images to determine the mo-
lecular type of MB, but most studies have been based on 
subjective observation, such as the location of the tumor, 
the enhanced morphology, and the presence or absence 
of cystic changes.14–21 For example, Perreault et  al.14 col-
lected 99 cases to predict molecular subgroups of pediatric 
MB using tumor location and enhancement pattern and 
achieved the accuracy of 65% in the validation cohort. The 
accuracy, specificity and stability of this subtype prediction 
method are not satisfactory. The emerging radiomics tech-
nology provides the possibility to extract the characteris-
tics of the entire tumor by mining high-throughput features 
in MR images. Some researchers have applied radiomics 
approaches in MB for molecular diagnosis15; nevertheless, 
the diagnosis result was far from satisfaction with a limited 
number of cases in each molecular subgroup. Therefore, in 
our study, we adopted a multitask learning approach to ad-
dress the few-shot problem for the accurate prediction of 
molecular subtyping of MB.

Multitask learning is an available solution to compen-
sate for the lack of training data due to the low incidence 
of MB and molecular subtyping predisposition (lower oc-
currence of WNT and SHH tumors). In respect of data size, 
multitask learning increases the implicit data to train our 

  
Table 2.  Classification Results of Different Gene Subgroups With Different Auxiliary Tasks

Gene subtypes Index M-taska M-S-tasksb M-P-tasksc M-P-S-tasksd

CVC ITC CVC ITC CVC ITC CVC ITC

WNT ACC 0.88 0.71 0.88 0.86 0.94 0.86 0.94 0.86

AUC 0.94 0.86 0.94 0.88 0.95 0.88 0.96 0.88

SHH ACC 0.83 0.78 0.89 0.78 0.89 0.89 0.94 0.89

AUC 0.89 0.88 0.90 0.94 0.96 0.91 0.96 0.98

Group 3 ACC 0.85 0.82 0.85 0.82 0.90 0.82 0.90 0.82

AUC 0.92 0.98 0.92 0.98 0.93 0.89 0.99 0.90

Group 4 ACC 0.79 0.83 0.79 0.83 0.79 0.75 0.95 0.83

AUC 0.91 0.92 0.91 0.86 0.92 0.86 0.96 0.93

Average ACC 0.84 0.79 0.85 0.82 0.88 0.82 0.93 0.85

AUC 0.92 0.91 0.92 0.92 0.94 0.89 0.97 0.92

aMolecular subgrouping prediction task.
bMolecular subgrouping prediction and tumor segmentation tasks.
cMolecular subgrouping prediction and prognosis classification tasks.
dMolecular subgrouping prediction, prognosis classification, and tumor segmentation tasks.

  

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa079#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa079#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa079#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa079#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa079#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa079#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa079#supplementary-data
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Figure 3.  Receiver operating characteristic (ROC) curves and confusion matrices for the identification of medulloblastoma molecular subgroups 
with different auxiliary tasks (A and B are nonauxiliary tasks; C and D are tumor segmentation auxiliary tasks; E and F are prognosis classification 
auxiliary tasks; G, H, I, and J are prognosis classification and tumor segmentation auxiliary tasks). The left row figures (A, C, E, G, and I) are for the 
3-fold cross-validation cohort, whereas the right row figures (B, D, F, H, and J) are for the independent testing cohort.
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models. A model that simultaneously learns multiple tasks 
that have different noise patterns is capable of learning 
a more general representation by averaging noise pat-
terns.26–28 Hence, the complexity of the model and the risk 
of overfitting are reduced. In respect of attention focusing, 
if training data are limited with high-dimensional features, 
one task could focus its attention on those significant fea-
tures as other tasks could provide additional prior knowl-
edge to constrain model construction.26–28 This helps the 
model with improved generalization ability. In respect of 
feature learning, features that are difficult for one task to 
learn could be easy for other tasks to learn.26–28 The fea-
tures’ eavesdropping learning mechanism makes the tasks 
perform better. Comparison of the prediction results pre-
sented in Table 2 shows that, although we could generally 
achieve acceptable performance by mainly focusing on 
the single task of molecular diagnosis, adding the related 
tasks of prognosis categorization and tumor segmentation 
could improve the performance of molecular prediction 
task significantly through the multitask learning technique. 
In addition, in previous studies about prognostication in 
MB, researchers tend to concentrate on certain age group 
patients such as children or adults.40,41 Due to the supe-
rior performance of multitasking learning, we were able 
to predict the prognosis for pediatric and adult patients 
simultaneously.

It is widely acknowledged that the clinical outcome of 
MB depends on not only molecular subgrouping but also 
on other molecular biomarkers and metastatic status.42–44 
Hence, predicting the patient’s OS status based on a 4-type 
classification scheme is not adequate and could result in 
heterogeneous prognosis. In our study, we utilized im-
aging data from T1C and T2 MRI sequences to categorize 
the prognosis, and this method of prognosis prediction 
was more accurate and representative. In our study, prog-
nostication was estimated with AUC of 0.88 and 0.79 in 
3-fold CVC and ITC, respectively. In addition, the prognosis 
classification task provided particular prognostic informa-
tion to the molecular prediction task during the estab-
lishment of the multitask framework and the outputs of 

molecular prediction task could reflect clearer prognostic 
stratification in turn compared with the true molecular cat-
egorization. As shown in Supplementary Figure S4, the 
predicted molecular results could provide a more accurate 
prognosis categorization than the true molecular subtypes.

Moreover, the variation of bioinformatics analytics 
makes a deep insight into intratumoral heterogeneity 
within 4 molecular subgroups. Based on genome-wide 
DNA methylation and gene expression data, Cavalli et al.45 
worked out 12 subgroups of MB with more biological di-
versity, disparate prognosis, and discrepancy in response 
to chemo-radiotherapy. Methods based on MR images 
have advantages to attenuate discrepancy of intratumoral 
heterogeneity regarding its comprehensive insight of the 
tumor as a whole. For example, it is still an unresolved 
question for WHO 2016 consensus to completely differen-
tiate Group 3 tumor from Group 4 tumor because of quite 
similar genetic background. In the study of Sharma et al.,46 
they analyzed a series of 1501 MBs to verify that there were 
8 robust Group  3/Group  4 subtypes with distinct molec-
ular and clinic-pathological features based on large-scale 
methylation and expression profiling which was not easy 
to duplicate and apply. In this study, we could effectively 
distinguish Group 3 and Group 4 by the proposed method 
and achieve a satisfactory level of accuracy (0.90 and 0.95 
corresponding to Group 3 and Group 4).

Limitations

Preoperative MRI scans were collected from various 
centers using different scanner vendors and imaging 
parameters, with potential heterogeneity in imaging 
data. A  multicenter, large sample data are still needed 
to balance the imaging data heterogeneity and demon-
strate the performance of our method. There are very few 
infant patients in our study as the 4 hospitals involved 
are not children’s hospitals. Moreover, TP53 and TERTp 
are 2 major prognostic biomarkers beyond 4 subgroups, 
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Figure 4.  The effect of multitasking in molecular diagnosis.
  

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa079#supplementary-data
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and we do not include them in this study because the 
case number will be reduced if more risk stratification is 
categorized. Finally, we do not have evidence of spinal 
metastasis of all patients. That is why we cannot use this 
method to predict the tendency of tumor dissemination 
and metastasis.

Conclusions

With the help of multitask learning, this study represents 
that the MRI-based method succeeded in predicting mo-
lecular subgroups of MBs with high accuracy. Molecular 
subgroups were discriminated with AUC of 0.88, 0.98, 
0.90, and 0.93 corresponding to WNT, SHH, Group 3, and 
Group  4 tumors. The final AUC of molecular diagnosis 
achieved 0.97 and 0.92 and prognosis subtypes were es-
timated with AUC of 0.88 and 0.79 in 3-fold CVC and ITC, 
respectively. To date, this is the first attempt at introducing 
multitask learning techniques into the few-shot scenario of 
molecular subgrouping prediction in MBs based on preop-
erative MRI. The high accuracy indicates that our proposed 
radiomic model is a promising tool that has the potential to 
be a useful clinical assistant.

Supplementary Data

Supplementary data are available at Neuro-Oncology 
Advances online.

Keywords

few-shot learning | medulloblastoma | molecular 
subgrouping | MRI | prognosis categorization

Funding

This research work is supported by the Shanghai Municipal 
Science and Technology Major Project (2018SHZDZX01) and 
ZJLab, National Natural Science Foundation of China (81702471), 
and Intelligent Medical Research Project of Shanghai Health 
and Family Planning Commission (2018ZHYL0107).

Conflict of interest statement. None declared.

Authorship statement. X.C.  and Z.F.  designed the methods, 
carried out experiments, and wrote the paper; K.K.-W.L.  and 
G.W.  offered help in designing the methods and carrying out 
experiments; Z.Y., X.G., and Y.L. offered help in carrying out ex-
periments and writing the paper; H.C.  and Q.T.  offered help in 
writing the paper and evaluating the experiments; Z.F., X.G., Y.L., 

and H.-K.N. acquired MR images and follow-up survey from pa-
tients; Z.S. and J.Y. proposed the project, directed the method 
and experiment design, and revised the paper; L.C., Y.W., Y.M., 
and L.Z.  directed and supervised the data acquisition and fol-
low-up survey from patients.

References

1.	 Khanna V, Achey RL, Ostrom QT, et al. Incidence and survival trends for 
medulloblastomas in the United States from 2001 to 2013. J Neurooncol. 
2017;135(3):433–441.

2.	 Leece  R, Xu  J, Ostrom  QT, Chen  YW, Kruchko  C, Barnholtz-Sloan  JS. 
Global incidence of malignant brain and other central nervous system 
tumors by histology, 2003–2007. Neuro Oncol. 2017;19(11):1553–1564.

3.	 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 
2015;65(1):5–29.

4.	 Thompson  EM, Hielscher  T, Bouffet  E, et  al. Prognostic value of 
medulloblastoma extent of resection after accounting for molecular sub-
group: a retrospective integrated clinical and molecular analysis. Lancet 
Oncol. 2016;17(4):484–495.

5.	 Gupta T, Shirsat N, Jalali R. Molecular subgrouping of medulloblastoma: 
impact upon research and clinical practice. Curr Pediatr Rev. 
2015;11(2):106–119.

6.	 Northcott PA, Korshunov A, Witt H, et al. Medulloblastoma comprises 
four distinct molecular variants. J Clin Oncol. 2011;29(11):1408–1414.

7.	 Northcott PA, Buchhalter I, Morrissy AS, et al. The whole-genome land-
scape of medulloblastoma subtypes. Nature. 2017;547(7663):311–317.

8.	 Taylor  MD, Northcott  PA, Korshunov  A, et  al. Molecular subgroups 
of medulloblastoma: the current consensus. Acta Neuropathol. 
2012;123(4):465–472.

9.	 Bavle  A, Parsons  DW. From one to many: further refinement of 
medulloblastoma subtypes offers promise for personalized therapy. 
Cancer Cell. 2017;31(6):727–729.

10.	 Louis  DN, Perry  A, Reifenberger  G, et  al. The 2016 World Health 
Organization classification of tumors of the central nervous system: a 
summary. Acta Neuropathol. 2016;131(6):803–820.

11.	 Gajjar AJ, Robinson GW. Medulloblastoma-translating discoveries from 
the bench to the bedside. Nat Rev Clin Oncol. 2014;11(12):714–722.

12.	 Archer  TC, Mahoney  EL, Pomeroy  SL. Medulloblastoma: molec-
ular classification-based personal therapeutics. Neurotherapeutics. 
2017;14(2):265–273.

13.	 Skowron  P, Ramaswamy  V, Taylor  MD. Genetic and molecular al-
terations across medulloblastoma subgroups. J Mol Med (Berl). 
2015;93(10):1075–1084.

14.	 Perreault S, Ramaswamy V, Achrol AS, et  al. MRI surrogates for mo-
lecular subgroups of medulloblastoma. AJNR Am J Neuroradiol. 
2014;35(7):1263–1269.

15.	 Iv M, Zhou M, Shpanskaya K, et al. MR imaging-based radiomic signa-
tures of distinct molecular subgroups of medulloblastoma. AJNR Am J 
Neuroradiol. 2019;40(1):154–161.

16.	 Patay Z, DeSain LA, Hwang SN, Coan A, Li Y, Ellison DW. MR imaging 
characteristics of wingless-type-subgroup pediatric medulloblastoma. 
AJNR Am J Neuroradiol. 2015;36(12):2386–2393.

17.	 Teo WY, Shen J, Su JM, et al. Implications of tumor location on subtypes 
of medulloblastoma. Pediatr Blood Cancer. 2013;60(9):1408–1410.

18.	 Yeom  KW, Mobley  BC, Lober  RM, et  al. Distinctive MRI features 
of pediatric medulloblastoma subtypes. AJR Am J Roentgenol. 
2013;200(4):895–903.



11Chen et al. Few-shot learning for molecular diagnosis of medulloblastoma
N

eu
ro-O

n
colog

y 
A

d
van

ces

19.	 Zhao F, Li C, Zhou Q, et al. Distinctive localization and MRI features cor-
relate of molecular subgroups in adult medulloblastoma. J Neurooncol. 
2017;135(2):353–360.

20.	 Łastowska  M, Jurkiewicz  E, Trubicka  J, et  al. Contrast enhance-
ment pattern predicts poor survival for patients with non-WNT/SHH 
medulloblastoma tumours. J Neurooncol. 2015;123(1):65–73.

21.	 Dasgupta A, Gupta T, Pungavkar S, et al. Nomograms based on preoper-
ative multiparametric magnetic resonance imaging for prediction of mo-
lecular subgrouping in medulloblastoma: results from a radiogenomics 
study of 111 patients. Neuro Oncol. 2019;21(1):115–124.

22.	 Chen  X, Tong  YS, Shi  ZF, et  al. Noninvasive molecular diagnosis of 
craniopharyngioma with MRI-based radiomics approach. BMC Neurol. 
2019;19:6.

23.	 Yu  JH, Shi  ZF, Lian  YX, et  al. Noninvasive IDH1 mutation estimation 
based on a quantitative radiomics approach for grade II glioma. Eur 
Radiol. 2017;27(8):3509–3522.

24.	 Li ZJ, Wang YY, Yu JH, Guo Y, Cao W. Deep Learning based Radiomics 
(DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. 
Sci Rep. 2017;7:5467.

25.	 He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. Paper presented at: 
Proceedings of the IEEE International Conference on Computer Vision 
(ICCV); October 22-29; 2017; Venice, Italy.

26.	 Zhang  Y, Yang  Q. A survey on multi-task learning. arXiv preprint 
arXiv:1707.08114. 2017.

27.	 Ruder S. An overview of multi-task learning in deep neural networks. 
arXiv preprint arXiv:1706.05098. 2017.

28.	 Caruana R. Multitask learning. Mach Learn. 1997;28(1):41–75.
29.	 Liu M, Zhang J, Adeli E, Shen D. Joint classification and regression via 

deep multi-task multi-channel learning for Alzheimer’s disease diag-
nosis. IEEE Trans Biomed Eng. 2019;66(5):1195–1206.

30.	 Bui TD, Wang L, Chen J, Lin W, Li G, Shen D. Multi-task learning for 
neonatal brain segmentation using 3D dense-unet with dense atten-
tion guided by geodesic distance. Domain Adapt Represent Transf Med 
Image Learn Less Labels Imperfect Data. 2019;11795:243–251.

31.	 Estienne T, Lerousseau M, Vakalopoulou M, et al. Deep learning-based 
concurrent brain registration and tumor segmentation. Front Comput 
Neurosci. 2020;14:17.

32.	 Collier  O, Stoven  V, Vert  JP. LOTUS: A  single- and multitask machine 
learning algorithm for the prediction of cancer driver genes. PLoS 
Comput Biol. 2019;15(9):e1007381.

33.	 Wefers AK, Warmuth-Metz M, Pöschl J, et al. Subgroup-specific local-
ization of human medulloblastoma based on pre-operative MRI. Acta 
Neuropathol. 2014;127(6):931–933.

34.	 Leal  LF, Evangelista  AF, de  Paula  FE, et  al. Reproducibility of the 
NanoString 22-gene molecular subgroup assay for improved prognostic 
prediction of medulloblastoma. Neuropathology. 2018;38(5):475–483.

35.	 Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S. Feature pyr-
amid networks for object detection. Paper presented at: Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR); July 21-26; 2017; Honolulu, HI.

36.	 He K, Zhang X, Ren S, Sun J. Deep residual learning for image recog-
nition. Paper presented at: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition  (CVPR); June  27-30; 2016; Las 
Vegas, NV.

37.	 Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object 
detection with region proposal networks. Paper presented at: Advances 
in Neural Information Processing Systems (NIPS); December 7-9; 2015; 
Montreal, Canada.

38.	 Kool  M, Korshunov  A, Remke  M, et  al. Molecular subgroups 
of medulloblastoma: an international meta-analysis of tran-
scriptome, genetic aberrations, and clinical data of WNT, SHH, 
Group  3, and Group  4 medulloblastomas. Acta Neuropathol. 
2012;123(4):473–484.

39.	 Waszak SM, Northcott PA, Buchhalter I, et al. Spectrum and prevalence 
of genetic predisposition in medulloblastoma: a retrospective genetic 
study and prospective validation in a clinical trial cohort. Lancet Oncol. 
2018;19(6):785–798.

40.	 Zhao  F, Ohgaki  H, Xu  L, et  al. Molecular subgroups of adult 
medulloblastoma: a long-term single-institution study. Neuro Oncol. 
2016;18(7):982–990.

41.	 Nalita  N, Ratanalert  S, Kanjanapradit  K, Chotsampancharoen  T, 
Tunthanathip  T. Survival and prognostic factors in pediatric patients 
with medulloblastoma in southern thailand. J Pediatr Neurosci. 
2018;13(2):150–157.

42.	 Lindsey JC, Schwalbe EC, Potluri S, Bailey S, Williamson D, Clifford SC. 
TERT promoter mutation and aberrant hypermethylation are associ-
ated with elevated expression in medulloblastoma and characterise 
the majority of non-infant SHH subgroup tumours. Acta Neuropathol. 
2014;127(2):307–309.

43.	 Zhukova  N, Ramaswamy  V, Remke  M, et  al. Subgroup-specific prog-
nostic implications of TP53 mutation in medulloblastoma. J Clin Oncol. 
2013;31(23):2927–2935.

44.	 Zapotocky  M, Mata-Mbemba  D, Sumerauer  D, et  al. Differential pat-
terns of metastatic dissemination across medulloblastoma subgroups. 
J Neurosurg Pediatr. 2018;21(2):145–152.

45.	 Cavalli FMG, Remke M, Rampasek L, et al. Intertumoral heterogeneity 
within medulloblastoma subgroups. Cancer Cell. 2017;31(6):737–754.
e6.

46.	 Sharma  T, Schwalbe  EC, Williamson  D, et  al. Second-generation 
molecular subgrouping of medulloblastoma: an international 
meta-analysis of Group  3 and Group  4 subtypes. Acta Neuropathol. 
2019;138(2):309–326.


