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Proteins play an important role in many reproductive functions such as sperm
maturation, sperm transit in the female genital tract or sperm-oocyte interaction.
However, in general, little information concerning reproductive features is available in
the case of aquatic animals. The present study aims to characterize the proteome of
both spermatozoa and seminal plasma of bottlenose dolphins (Tursiops truncatus) as
a model organism for cetaceans. Ejaculate samples were obtained from two trained
dolphins housed in an aquarium. Spermatozoa and seminal plasma were analyzed by
means of proteomic analyses using an LC-MS/MS, and a list with the gene symbols
corresponding to each protein was submitted to the DAVID database. Of the 419
proteins identified in spermatozoa and 303 in seminal plasma, 111 proteins were shared
by both. Furthermore, 70 proteins were identified as involved in reproductive processes,
39 in spermatozoa, and 31 in seminal plasma. The five most abundant proteins
were also identified in these samples: AKAP3, ODF2, TUBB, GSTM3, ROPN1 for
spermatozoa and CST11, LTF, ALB, HSP90B1, PIGR for seminal plasma. In conclusion,
this study provides the first characterization of the proteome in cetacean sperm and
seminal plasma, opening the way to future research into new biomarkers, the analysis
of conservation capacity or possible additional applications in the field of assisted
reproductive technologies.
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INTRODUCTION

Cetaceans, aquatic mammals from the Cetacea infraorder, are considered essential for marine
ecosystems (Bowen, 1997; Uhen, 2007). Their populations are under enormous anthropogenic
pressure, especially as a result of commercial overfishing, incidental captures in fisheries, and
habitat degradation (Reeves et al., 2003; Parsons et al., 2014; Dolman and Brakes, 2018).
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Indeed, many cetacean species are threatened or in danger
of extinction (Davidson et al., 2012). This is why cetaceans
are protected under many national, regional and international
legislations including Appendix II of the Convention on
International Trade in Endangered Species of Wild Fauna
and Flora (CITES), which limits the movement of animals
or their products between countries. However, study of their
populations in the wild involves many limitations (Bowen,
1997; O’Brien and Robeck, 2010) and, in most cases, it is
not possible to keep individuals in captivity due to their size,
their gregarious population structure or other peculiarities of
their ethology that make their ex situ maintenance highly
difficult or almost impossible. Only some species, such as
Tursiops truncatus, the common bottlenose dolphin, have a
docile character and the ability to adapt well to captivity, which
makes them ideal model organisms (Barratclough et al., 2019).
Moreover, important information can be obtained from ex situ
populations in order to deepen our knowledge of their features
for conservation programs, but also to extrapolate the obtained
knowledge to address problems related with other cetacean
species (Barratclough et al., 2019).

During recent decades, aquariums and animal conservation
centers have actively contributed to the conservation and
reproduction of bottlenose dolphins through joint breeding
programs (Katsumata, 2010). Initially, the movement and
exchange of animals for reproductive purposes between centers
was necessary, but this activity entailed certain risks that
could affect the integrity of the animals (O’Brien and Robeck,
2010). Subsequently, the progress made in assisted reproductive
technologies (ARTs) allowed the collection and management of
gametes, thus ensuring their quality to maximize fertilization
(Beirão et al., 2019). In order to minimize any impact on animal
welfare, voluntary semen collection techniques through animal
training have been routinely established in dolphin populations
under human care (Robeck and O’Brien, 2004; Robeck et al.,
2005). The collection of semen facilitates research activity and
the exchange of reproductive cells between geographically distant
centers for further use in artificial insemination programs
(Robeck et al., 2005). For that purpose, methods based on
refrigeration (Takenaka et al., 2013; Ruiz-Díaz et al., 2020) and
freezing (Robeck and O’Brien, 2004; Robeck et al., 2013; Sánchez-
Calabuig et al., 2015b, 2017) have been developed for dolphins,
including techniques for preservation of seminal samples that
have allowed the creation of a gene bank of high biological value
for use in the future (Holt and Pickard, 1999).

A knowledge of the semen characteristics of a species of
interest is essential to gain new insights, either to widen
fundamental basic studies or for further application in ARTs.
Semen is composed of the cellular part, the spermatozoa, and the
liquid part, the seminal plasma. Bottlenose dolphin spermatozoa
are known to have a long tail, a short but hydrodynamic head
shape and a bulky midpiece (van der Horst et al., 2018), these
high quality features being kept after collection (van der Horst
et al., 2018; Ruiz-Díaz et al., 2020). Seminal plasma is a fluid
coming mostly from the prostate, the only sexual accessory gland
described in cetaceans (Harrison et al., 1969; Rommel et al., 2007;
Suárez-Santana et al., 2020). The complex composition of seminal

plasma plays a key role in both the male and female reproductive
features of mammals. In the case of males, seminal plasma is
involved in sperm maturation, motility, transport, capacitation
or acrosome reaction (reviewed by Juyena and Stelletta, 2012).
When the seminal plasma is deposited in the female genital tract,
it affects the inflammatory and immune responses (reviewed
by Bromfield, 2018), protecting sperm (Kawano et al., 2014;
Luongo et al., 2019), and even having an impact on the offspring
(Bromfield et al., 2014). Furthermore, it has been demonstrated
that the proteins of reproductive fluids (including oviductal
and uterine fluids, and seminal plasma) are involved in the
interaction with the sperm proteome (Luongo et al., 2020;
Rickard and de Graaf, 2020).

Proteomic analysis has been used to describe the sperm and
seminal plasma proteome either in non-mammal species, such as
fish (Ciereszko et al., 2017; Dietrich et al., 2017), and in mammals,
such as murine (Baker et al., 2008; Vicens et al., 2017), porcine
(Perez-Patiño et al., 2016; Recuero et al., 2019; Luongo et al.,
2020), equine (Swegen et al., 2015; Guasti et al., 2020), ovine
(Cardozo et al., 2006; Pini et al., 2016), caprine (Pinto et al., 2019;
Zhu et al., 2020; Martínez-Fresneda et al., 2021), bovine (Peddinti
et al., 2008; Byrne et al., 2012), non-human primates (Skerget
et al., 2013), and human (Martínez-Heredia et al., 2006), but
not yet in any cetacean species. Furthermore, such studies have
permitted the identification of proteins that can act as biomarkers
of fertility (Dacheux et al., 2012; Li et al., 2016; Rahman et al.,
2017; Druart and de Graaf, 2018; Pérez-Patiño et al., 2018; Druart
et al., 2019), their relevance for sperm preservation (Soleilhavoup
et al., 2014; Parrilla et al., 2019; Peris-Frau et al., 2019; Ryu et al.,
2019; Bajuk et al., 2020; De Lazari et al., 2020) or involvement in
sperm functional traits (Intasqui et al., 2016; Bezerra et al., 2019;
De Lazari et al., 2019). Moreover, seminal plasma proteins are
influenced by the social and competitive environment (Ramm,
2014; Mead, 2018; Hopkins et al., 2019). Therefore, knowing
the protein profile of semen dolphins may be especially relevant
to better understand the biology of the species in light of the
complex multi-male mating strategy of bottlenose dolphins.

Finally, knowing the proteome of ejaculated spermatozoa
and seminal plasma may contribute to obtaining comprehensive
information and to understanding functional implications for
reproductive processes not only for dolphin species but for
cetaceans in general. For this reason, this study aims to identify,
describe, and classify for the first time, the sperm and seminal
plasma proteins of dolphins and to compare them with the
protein profiles in other species (bovine, canine, and human)
previously described in the literature.

MATERIALS AND METHODS

Ethics of Experimentation
The samples were obtained from two trained dolphin males
housed at the Oceanogràfic de Valencia following the Animal
Care Protocol and policies of the aquarium. The animals were
conditioned through positive reinforcement to participate in
many different medical behaviors, including semen collection
to provide basic husbandry care. Semen samples were obtained
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through training following the same approach as previously
published (Sánchez-Calabuig et al., 2017). Furthermore,
the regulations and policies of EU legislation, Directive
2010/63/EU1, were observed.

Animals
Semen samples were obtained from two adult males, who have
lived in the same dolphin group since 2003. The estimated
ages of both animals were 32 years (Male 1) and 27 years
(Male 2) at the moment of the study. Both males live
together with a stable social group in an outdoor pool that
contains salty water at a temperature of 18–26◦C. Both males
successfully had previously sired several offspring. Their diet is
based on frozen-thawed whole fish (herring-Clupea harengus,
capelin-Mallotus villosus, blue whiting-Micromesistius poutassou,
mackerel-Scomber scombrus, smelt-Osmeridae, squid-Loligo sp.
and European sprat-Sprattus sprattus).

Semen Collection
Two ejaculates from each male were obtained by favoring
extraction in the ventrum in an above water level position.
The animals always collaborated with the trainers, who, through
acoustic and tactile signals, favored extraction of the penis. The
stimulation, which lasted a few seconds, ended in ejaculation.
Sample was collected in a sterile LLDPE (linear low-density
polyethylene) plastic bag (Sánchez-Calabuig et al., 2017). After
collection, the following parameters were evaluated for each
semen sample (as previously described by Ruiz-Díaz et al.,
2020): pH, concentration (number of sperm/ml), total (%) and
progressive motility (%) (evaluated by CASA system; 25 frames
per second, and at least five random fields per sample), and
viability (%) (200 spermatozoa per sample) (Table 1). All the
samples were collected within 1 month (the days between sample
extractions were 6 and 30 for Male 1 and Male 2, respectively).

Protein Extraction
The proteomic analysis was performed in the proteomics facility
of SCSIE, University of Valencia which forms part of ProteoRed,
PRB2-ISCIII, supported by grant PT13/0001. Semen samples
were centrifugated at 800 × g for 5 min at 4◦C to split the
sample into two fractions (spermatozoa and seminal plasma). The
fraction containing spermatozoa was washed twice (800 × g for
5 min, 4◦C) in phosphate-buffered saline (PBS, Sigma-Aldrich R©,
Madrid, Spain) and the pellet was re-suspended in lysis buffer
(50 mM Tris–HCl pH 8, 10 mM DTT and 2% SDS). The mixture
was sonicated for 5 min, centrifuged 5 min at 15,870 × g and
the resulting supernatant was transferred to a fresh microfuge
tube (Figure 1). The seminal plasma was centrifuged twice
(800 × g for 5 min, 4◦C) to remove any remaining spermatozoa
(microscopically verified).

The protein concentration obtained from both, spermatozoa
and seminal plasma samples, was determined by Protein
Quantification Assay Kit (Macherey-Nagel, Düren, Germany)
according to the manufacturer’s instructions. Twenty
micrograms of protein were adjusted to a 40 µl final volume with

1https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32010L0063

Laemmli Sample buffer (Bio-Rad, Hercules, CA, United States)
with 2–5% β-mercaptoethanol.

1D PAGE
The sample was denatured at 95◦C for 5 min and then loaded
into a 1D PAGE. Electrophoresis was performed using a 12%
precast gel (Bio-Rad, Hercules, CA, United States) at 200 V for
5 min. Then, the gel was fixed with 40% ethanol/10% acetic acid
for 1 h, stained with colloidal Coomassie (Bio-Rad, Hercules,
CA, United States) for 1 h and scanned by Image Scanner
(GE Healthcare).

In Gel Protein Digestion
The gel slide was digested with sequencing grade trypsin
(Promega, Madison, WI, United States) as described elsewhere
(Shevchenko et al., 1996). Briefly, isolated proteins were
digested with trypsin (500 ng) at 37◦C overnight. The digestion
was quenched with 10% trifluoroacetic acid (TFA) at final
concentration of 1%. And, after double extraction with neat
acetonitrile (ACN), the peptide mixtures were dried in a rotary
evaporator and resuspended with 20 µl of 2% ACN, 0.1% TFA.

Mass Spectrometry Analysis and Protein
Identification
For liquid chromatography and tandem mass spectrometry (LC–
MS/MS), 3 µl of a peptide mixture sample was loaded onto a
trap column (3 µm C18-CL, 350 µm × 0.5 mm; Eksigent, CA,
United States) and desalted with 0.1% TFA at 5 µl/min for 5 min.
The peptides were then loaded onto an analytical column (3 µm
C18-CL 120 Å, 0.075 × 150 mm; Eksigent, CA, United States)
equilibrated with 5% ACN and 0.1% formic acid (FA). Elution
was carried out with a linear gradient of 5–40% B in A for 45 min
(A: 0.1% FA; B: ACN, 0.1% FA) at a flow rate of 300 nl/min.
Peptides were analyzed in a nanoESIqQTOF mass spectrometer
(6600plus TripleTOF, ABSciex, MA, United States).

Samples were ionized in a Source Type: Optiflow < 1 µl
Nanoapplying 3.0 kV to the spray emitter at 200◦C. Analysis
was carried out in data-dependent mode. Survey MS1 scans were
acquired from 350 to 1,400 m/z for 250 ms. The quadrupole
resolution was set to “LOW” for MS2 experiments, which were
acquired at 100–1,500 m/z for 25 ms in “high sensitivity”
mode. The following switch criteria were used: charge 2+ to 4+;
minimum intensity, 250 counts per second (cps). Up to 100 ions
were selected for fragmentation after each survey scan. Dynamic
exclusion was set to 15 s. The system sensitivity was controlled
by analyzing 0.5 µg of K562 trypsin digestion (Sciex). Two
thousand, eight hundred and seventy proteins were identified
(FDR < 1%) in these conditions in a 45 min gradient.

Data were processed with ProteinPilot v. 5.0 (AB Sciex,
Framingham, MA, United States), using the default parameters
to generate a peak list directly from 6600 plus TripleTofwiff files.
The Paragon algorithm (Shilov et al., 2007) of ProteinPilot v. 5.0
was used to search the Uniprot Delphinidae database (v 02.2020;
3513001 proteins in database) with the following parameters:
Trypsin enzyme specificity, taxonomy non-restricted, and the
search effort was set to rapid.
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TABLE 1 | Seminal parameters of bottlenose dolphin males (Tursiops truncatus) used for proteomic analysis.

Parameters Male 1 Male 2 Mean2

S1 S2 Mean1 S1 S2 Mean1

Concentration (×106 sperm/ml) 570.0 780.0 675.0 ± 148.5 200.0 770.0 485.0 ± 403.1 580.0 ± 289.2

pH 8.0 7.0 7.5 ± 0.7 7.5 7.0 7.2 ± 0.4 7.4 ± 0.5

Viability (%) 95.0 92.0 93.5 ± 1.1 88.0 90.0 89.0 ± 0.7 91.2 ± 1.5

Total motility (%) 69.0 77.0 73.0 ± 2.8 88.0 98.0 93.0 ± 3.5 83.0 ± 6.3

Progressive motility (%) 36.0 35.0 35.5 ± 0.4 24.0 29.0 26.5 ± 1.8 31.0 ± 2.8

S1 and S2 indicate sample 1 and sample 2, respectively.
1Represents the mean of S1 and S2 for each male.
2Represents the mean including the samples (S1 and S2) from both males. Mean data for concentration and pH are expressed as mean ± SD (standard deviation). Mean
data for viability, total motility and progressive motility are expressed as mean ± SEM (standard error of the mean).

FIGURE 1 | Graphical representation of experimental process for bottlenose dolphin semen processing (A) and protein extraction and identification (B). The Venn
diagram shows the proteins found to be common (or not) to seminal plasma and spermatozoa.

Protein Identification
Protein Orthologs Identification
Uncharacterized proteins with no properly assigned gene
symbol accounted for 15–25% of the proteins within each
sample. To identify a direct ortholog for each uncharacterized
protein, the proteins were filtered with a custom script written
in Python (Supplementary File 1) making use of libraries
Bio.Blast (Cock et al., 2009) SeqIO, StrinGIO and pandas.
In essence, the algorythm performed parallel queries with
the uncharacterized proteins against a database made with
“makeblastdb” from a UniProt fasta database made by merging
the Swissprot curated database with the T. truncatus TrEMBL
dataset (release 2020_02). Candidate orthologs were then ranked
from maximum to minimum sequence identity and those
with a sequence identity within 5% of the maximum were
selected. The results were then manually curated, reducing the
uncharacterized proteins to 0.2–1% of the proteins within each
sample. In some cases, it was not possible to distinguish the
direct ortholog within the candidates (the case with several

keratins) and thus the proteins where omitted from the
biological annotation.

Biological Annotation
For the biological annotation, only the proteins identified in all
the samples (seminal plasma or spermatozoa) were analyzed.
A list with the gene symbols corresponding to each protein
was submitted to DAVID [v6.8 (Huang et al., 2009)]. Because
of the performance querying versus the T. truncatus database
was very poor, the queries were made with the Homo sapiens
database, as it is the best annotated organism. Unmapped IDs
were checked for synonyms in GeneCard in order to avoid losing
information by selecting those identifiers present in DAVID
(which were not always the HGNC ones). All the Gene Ontology
terms with a FDR < 0.01 were selected and classified into the
three categories “biological process,” “cellular component,” and
“molecular process.”

The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE
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(Perez-Riverol et al., 2019) partner repository with the dataset
identifier PXD024588.

RESULTS

A total of 722 different proteins in seminal plasma and
spermatozoa were identified in each of the four samples
analyzed): 419 proteins in spermatozoa, and 303 in seminal
plasma, of which 111 proteins were common to both,
spermatozoa and seminal plasma (Figure 1). The total list of
identified proteins for each analyzed sample (two per male)
is shown in Supplementary File 2 (sperm proteins) and
Supplementary File 3 (seminal plasma proteins). Moreover, the
Supplementary File 4 shows the list of the common proteins
between spermatozoa and seminal plasma.

Since bovids and cetaceans are evolutionarily related
(Vislobokova, 2013), belonging to the order Cetartiodactyla,
a bovine dataset (Ramesha et al., 2020) was compared with
dolphin. In addition, human as a biological model (Batruch
et al., 2011; Baker et al., 2013; Amaral et al., 2014) and dogs
(canids) (Aquino-Cortez et al., 2017; Araujo et al., 2020), because
their only accessory sex gland is the prostate, as in dolphins,
were also included in the comparison. The four species were

FIGURE 2 | Venn diagram of sperm (upper diagram) and seminal plasma
(lower diagram) proteomes of man, bull, dog and dolphin.

therefore retrieved to evaluate the proteome profile of bottlenose
dolphin spermatozoa and seminal plasma, resulting in the Venn
diagram of Figure 2. The analysis revealed that 42 were identified
in the spermatozoa of all four species, and 30 in the seminal
plasma of the same. The number of co-present sperm proteins
between animals were the following: (i) bull and dolphin, 362;
(ii) man and dolphin, 375; and (iii) dog and dolphin, 58. The
number of co-present seminal proteins were: (i) bull and dolphin,
218; (ii) man and dolphin, 213; and (iii) dog and dolphin, 51.
These proteins are listed in Supplementary File 5 (sperm) and
Supplementary File 6 (seminal plasma).

Protein Profile of Bottlenose Dolphin
Spermatozoa
As already mentioned, a total of 419 proteins were present in the
spermatozoa of the four samples analyzed (two from each male).
A complete protein list (ordered by the number of peptides) for
the spermatozoa accompanied by the protein name, String ID
dolphin, peptides, mean protein score (±SD), preferred name
and annotation (H. sapiens) is presented in Supplementary
File 7. A detailed search was carried out in the STRING database
v 11.02 to obtain a description of the functions related with each
of the proteins. The following cases were observed: (i) Proteins
described for T. truncatus (269 proteins, 63.9%); (ii) Proteins
described for H. sapiens (416 proteins, 99.3%); and (iii) Proteins
not described in either of the above (3 proteins, 0.7%). Of the
proteins belonging to the third case, one is described for Mus
musculus (ADAM5), one in Pan paniscus (LRRC37A5P) and the
other one has no description for any species (ATP6V1FNB).

A functional annotation of the proteins from H. sapiens
sperm was peformed using DAVID software and divided
into different categories: “Biological processes” (BP), “Cellular
components” (CC), and “Molecular functions” (MF) (Figure 3
and Supplementary File 8). Although there are different
categories for each of the divisions made, the most abundant
were those involved in oxidation-reduction processes (8.4%),
spermatogenesis (6%), and protein folding (6%) in the case of
BP (Figure 3A); extracellular exosome (41.6%), nucleus (36.3%),
and mitochondrion (35.3%) in the case of CC (Figure 3B);
and ATPbinding proteins (14.2%), ATPase activity (5.5%), and
unfolded protein binding (5.3%) for MF (Figure 3C).

Of the total of 419 proteins identified in the spermatozoa,
39 are linked to sperm function categories (Table 2) such as
cilia/flagela (17 proteins, 43.6%), sperm motility (10 proteins,
25.6%), capacitation and acrosome reaction (4 proteins, 10.3%),
sperm-egg fusion (4 proteins, 10.3%), spermatogenesis and
fertilization (2 proteins, 5.1%), and other functions (2 proteins,
5.1%). Not all 39 proteins involved in sperm functions are
identified and/or described in the STRING program for dolphins,
so we divided them into three different categories: (1) Proteins
described for T. truncatus (27 proteins, 69.2%); (2) Proteins
described for H. sapiens (35 proteins, 89.7%); and (3) Proteins
described for M. musculus (1 protein, 2.6%). Twenty-four
proteins were common to both categories (1 and 2).

2https://string-db.org/
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FIGURE 3 | Bar chart representing the gene ontology annotations of protein identified in bottlenose dolphin spermatozoa according to biological processes (A),
cellular components (B), and molecular functions (C).

Protein Profile of Bottlenose Dolphin
Seminal Plasma
A total of 303 proteins were identified in the seminal plasma
of the four samples obtained, two from each male. A complete
protein list (ordered by the number of peptides) for the seminal
plasma with protein name, String ID dolphin, peptides, mean
protein score (±SD), preferred name and annotation (H. sapiens)

is presented in Supplementary File 9. A detailed search was
carried out in the STRING database v 11.0 (see text foot note
2) to obtain a description of the functions related to each of
the proteins, finding the following: (i) Proteins described for
T. truncatus (201 proteins, 66.1%); (ii) Proteins described for
H. sapiens (298 proteins, 98.0%); (iii) Proteins not described in
any of above (4 proteins, 1.3%). Of the proteins belonging to the
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TABLE 2 | Proteins identified in dolphin spermatozoa linked to sperm function
categories.

Function Gene name Protein

Spermatogenesis
and fertilization

NME5 (1,2) NME/NM23 family member 5 (NME5)

SEPT12 (1,2) Septin 12 (SEPT12)

Sperm–egg fusion CD46 (2) CD46 molecule (CD46)

PKD2L2 (2) Polycystin 2 like 2, transient receptor
potential cation channel (PKD2L2)

SPACA1 (1,2) Sperm acrosome-associated 1 (SPACA1)

ADAM5 (3) ADAM metallo peptidase domain 5
(ADAM5)

Capacitation and
acrosome reaction

ACRBP (1,2) Acrosin binding protein (ACRBP)

AKAP3 (1,2) A-kinase anchoring protein 3 (AKAP3)

CABYR (1,2) Calcium binding tyrosine phosphorylation
regulated (CABYR)

DLD (1,2) Dihydrolipoamide dehydrogenase (DLD)

Sperm motility DNAH1 (1,2) Dyneinaxonemal heavy chain 1 (DNAH1)

DNAH10 (1,2) Dyneinaxonemal heavy chain 10 (DNAH10)

DNAH12 (1,2) Dyneinaxonemal heavy chain 12 (DNAH12)

DNAH17 (1,2) Dyneinaxonemal heavy chain 17 (DNAH17)

DNAH2 (1,2) Dyneinaxonemal heavy chain 2 (DNAH2)

DNAH3 (1,2) Dyneinaxonemal heavy chain 3 (DNAH3)

DNAH8 (1,2) Dyneinaxonemal heavy chain 8 (DNAH8)

EFHB (1,2) EF-hand domain family member B (EFHB)

ROPN1L (1,2) Rhophilin-associated tail protein 1 like
(ROPN1L)

SLC25A31 (1,2)Solute carrier family 25 member 31
(SLC25A31)

Cilia and flagela CALM1 (1,2) Calmodulin 1 (CALM1)

CFAP20 (2) Cilia- and flagella-associated protein 20
(CFAP20)

CFAP43 (2) Cilia- and flagella-associated protein 43
(CFAP43)

CFAP52 (2) Cilia- and flagella-associated protein 52
(CFAP52)

CFAP58 (2) Cilia- and flagella-associated protein 58
(CFAP58)

CFAP61 (2) Cilia- and flagella-associated protein 61
(CFAP61)

DNALI1 (1,2) Dyneinaxonemal light intermediate chain 1
(DNALI1)

EFHC1 (1,2) EF-hand domain containing 1 (EFHC1)

ODF1 (1) Outer dense fiber of sperm tails 1 (ODF1)

ODF2 (1) Outer dense fiber of sperm tails 2 (ODF2)

ODF3 (1) Outer dense fiber of sperm tails 3 (ODF3)

PRKACB (2) Protein kinase cAMP-activated catalytic
subunit beta (PRKACB)

RSPH9 (1,2) Radial spoke head 9 homolog (RSPH9)

SAXO1 (2) Stabilizer of axonemal microtubules 1
(SAXO1)

TBC1D21 (1,2) TBC1 domain family member 21
(TBC1D21)

TUBB (2) Tubulin beta class I (TUBB)

TUBB4B (2) Tubulin beta 4B class IVb (TUBB4B)

(Continued)

TABLE 2 | Continued

Function Gene name Protein

Gonadal
development

BANF1 (1,2) Barrier to autointegration factor 1
(BANF1)

Testis TCTE1 (1,2) T-complex-associated-testis-expressed
1; Dynein regulatory complex (TCTE1)

The numbers in the “gene name” column refer to the source organism in which
the proteins are described according to the STRING database: (1) described in
Tursiops truncatus; (2) described in Homo sapiens; and (3) described in Mus
musculus.

third case, all are described for M. musculus (ADAM1, ADAM5,
DNAJB3 y MUC19), an animal with poliandric reproduction and
sperm competition.

The proteins present in seminal plasma described in
H. sapiens were distributed into 3 categories according
DAVID software: “Biological process” (BP), “Cellular
components” (CC), and “Molecular Function” (MF)
(Figure 4 and Supplementary File 8). Although there are
different categories for each of the divisions made the most
abundant are those involved in protein folding (10.6%),
proteolysis (8%), and cell–cell adhesion (7.6%) for BP
(Figure 4A); extracellular exosome (71.1%), cytosol (36.9%),
and extracellular space (29.9%) for CC (Figure 4B); and
protein binding (61.5%), unfolded protein binding (8.3%) and
cadherin binding involved in cell-cell adhesion (7.6%) for
MF (Figure 4C).

Of the 303 proteins identified in seminal plasma, 31 are
involved in reproductive processes (Table 3) such as adhesion
with zona pellucida (8 proteins, 25.8%), spermatogenesis (6
proteins, 19.3%), sperm motility process (4 proteins, 12.9%),
the formation of microtubules involved in flagellar development
(4 proteins, 12.9%), sperm maturation/capacitation (4 proteins,
12.9%), epididymal proteins (2 proteins, 6.5%), muellerian
inhibitor (1 protein, 3.2%), oocyte maturation (1 protein,
3.2%), and testis protein (1 protein, 3.2%). Not all the 31
reproductive proteins are identified and/or described in the
STRING program for dolphins, so we divided them into three
different categories: (1) Those described in T. truncatus (29
proteins, 93.5%); (2) Those described in H. sapiens (17 proteins,
54.8%); and (3) Those described in M. musculus (2 proteins,
6.7%). All the proteins described in H. sapiens are also present
in T. truncatus.

Protein–Protein Interaction Networks
All proteins were searched using STRING software. A total
of 266 nodes and 1,452 edges were identified in T. truncatus
spermatozoa (Figure 5), as well as 201 nodes and 804 edges in
seminal plasma (Figure 6) for the protein–protein interaction
(PPI) networks. Network nodes represent proteins and the
line color indicates the type of interaction evident, light blue
color for known interactions from curated databases, and pink
color for interactions experimentally determined. The Predicted
Interactions are represented by different colors: green for gene
neighborhood, red for gene fusions and dark blue for gene
co-occurrence. Other relations between proteins are identified
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FIGURE 4 | Bar chart representing the gene ontology annotations of protein identified in bottlenose dolphin seminal plasma (SP) according to biological processes
(A), cellular components (B), and molecular functions (C).

with light green for text mining, black for co-expression and
blue for protein homology. Query proteins are represented
as colored nodes and the second shell of interactors are
represented as white nodes. Empty nodes represent proteins of
unknown 3D structure and filled nodes represent predicted or
known structures.

DISCUSSION

Dolphins are one of the most studied marine mammals, mainly
due to their easy maintenance in ex situ conditions compared to
other cetaceans. Although dolphins can reproduce in captivity,
the main problem is the inbreeding that occurs in small groups
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TABLE 3 | Proteins identified in dolphin seminal plasma linked to sperm function
categories.

Function Gene name Protein

Sperm motility (energy)

AK1 (1) Adenylate kinase 1 (AK1)

APOA1 (1,2) Apolipoprotein A1 (APOA1)

CKMT1 (1) Creatine kinase mitochondrial 1A (CKMT1A)

ROPN1 (1) Rhophilin-associated tail protein 1 (ROPN1)

Sperm maturation/capacitation

ADAM1 (3) ADAM metallo peptidase domain 1
(ADAM1)

CST11 (1,2) Cystatin-11 (CST11)

AKAP3 (1,2) A-kinase anchoring protein 3 (AKAP3)

ROPN1L (1,2) Rhophilin-associated tail protein 1 like
(ROPN1L)

Sperm adhesion zona pellucida

ADAM2 (1) ADAM metallo peptidase domain 2
(ADAM2)

ADAM5 (3) ADAM metallo peptidase domain 5
(ADAM5)

CD9 (1,2) CD9 molecule (CD9)

CLGN (1,2) Calmegin (CLGN)

FETUB (1) Fetuin B (FETUB)

MFGE8 (1) Milk fat globule-EGF factor 8 protein
(MFGE8)

PRSS37 (1,2) Protease, serine 37 (PRSS37)

TEX101 (1,2) Testis expressed 101 (TEX101)

Epididymal

LCN6 (1,2) Lipocalin 6 (LCN6)

NPC2 (1) NPC intracellular cholesterol transporter 2
(NPC2)

Muellerian inhibitor

AMH (1,2) Anti-Muellerian hormone (AMH)

Oocyte maturation

CALR (1,2) Calreticulin (CALR)

Spermatogenesis

BSG (1,2) Basigin (Ok bloodgroup) (BSG)

NAP1L4 (1,2) Nucleosome assembly protein 1 like 4
(NAP1L4)

PRKACB (1) Protein kinase cAMP-activated catalytic
subunit beta (PRKACB)

RNASE10 (1) Ribonuclease A (RNASE10)

SHCBP1L (1,2) SHC binding and spindle-associated 1 like
(SHCBP1L)

SPAG4 (1,2) Sperm-associated antigen 4 (SPAG4)

Testis

PDILT (1,2) Protein disulfide isomerase like, Testis
expressed (PDILT)

Microtubules: cilia and flagella

CFAP36 (1) Cilia- and flagella-associated protein 36
(CFAP36)

PCMT1 (1,2) Protein-l-isoaspartate (d-aspartate)
O-methyl transferase (PCMT1)

TUBB (1) Tubulin beta class I (TUBB)

TUBB4B (1) Tubulin beta 4B class IVb (TUBB4B)

The numbers in the “gene name” column refer to the source organism where
the proteins are described according to the STRING database: (1) described in
Tursiops truncatus; (2) described in Homo sapiens; and (3) described in Mus
musculus.

of animals. For this reason, their reproductive characteristics and
subsequent improvements in ARTs are essential in these animals
to ensure genetic spread and conservation. In this respect, studies
of the semen protein composition has determined the possibility
of using sperm freezing in different species (Soleilhavoup et al.,
2014; Kasimanickam et al., 2019; Gaitskell-Phillips et al., 2021;
Martínez-Fresneda et al., 2021), the identification of presumptive
fertility biomarkers (Dacheux et al., 2012; Li et al., 2016; Rahman
et al., 2017; Druart and de Graaf, 2018; Pérez-Patiño et al., 2018;
Druart et al., 2019) or sperm traits (Intasqui et al., 2016; Bezerra
et al., 2019; De Lazari et al., 2019). The present study describes
the proteins in spermatozoa and seminal plasma of bottlenose
dolphin. To the best of our knowledge, this study represents the
first description of the semen proteome in any cetacean. A total of
722 proteins (common to the 4 samples analyzed) were described
for sperm (419) and seminal plasma (303).

Proteins Identified in the Spermatozoa of
Bottlenose Dolphin
The five most abundant proteins found in dolphin spermatozoa
(based on the number of peptides identified) were the following:
AKAP3, ODF2, TUBB, GSTM3, and ROPN1. Four of these
proteins (AKAP3, ODF2, TUBB, and GSTM3) are also in the
top five of highly abundant proteins in the spermatozoa of
buffalo (Fu et al., 2019). AKAP3 protein was the most abundant
sperm protein according to our data. This protein is not only
essential for the formation of the subcellular structure of the
sperm flagellum, sperm motility and male fertility in mice, but
also for sperm capacitation. As is known, sperm capacitation is a
series of biochemical and physiological changes that mammalian
sperm must undergo to become fertile (Gervasi and Visconti,
2016). AKAP3 null mice sperm has low sperm motility, leading
to sperm morphology abnormalities, the displacement of PKA
subunits and misregulated PKA activity, a key factor during
sperm capacitation, and in male sterility (Xu et al., 2020).
Moreover, other proteins identified in our study, such as
CABYR and ROPN1, interact with AKAP3 (Carr et al., 2001;
Li et al., 2011). CABYR protein is a fibrous sheath calcium-
binding tyrosine phosphorylation-regulated protein (Li et al.,
2007), which associates with AKAP3 in human spermatozoa
(Li et al., 2011). CABYR is located in the principal piece of
the sperm flagellum (Li et al., 2007; Zhang et al., 2016) and
it is involved in calcium-binding when phosphorylated during
capacitation (Naaby-Hansen et al., 2002). Moreover, this protein
is expressed in the oviduct of several species (Hanlon Newell
et al., 2008; Martinez et al., 2020), where its expression increases
in response to sperm entry. ODF2 is the second most abundant
protein found in the spermatozoa of bottlenose dolphin. In
mammalian sperm, the flagellum presents complex accessory
structures surrounding the central axoneme, the outer dense
fibers (ODFs) being part of these structures (Zhao et al., 2018).
Dolphin sperm is not an exception, and ODFs are almost of
similar form and size as in most other mammals (van der Horst
et al., 2018). ODFs play a role in the protection of the sperm tail
against shear forces during epididymal transport and ejaculation
(Baltz et al., 1990). More than 14 polypeptides from mammalian
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FIGURE 5 | STRING protein–protein interaction network showing the interactions of the spermatozoa proteins identified in bottlenose dolphin.

ODFs have been identified, including four major proteins (ODF1,
ODF2, ODF3, and ODF4) (reviewed by Zhao et al., 2018).
Our analysis identified ODF1, ODF2, and ODF3 in dolphin
sperm, the most abundant being ODF2 protein. The disruption
of ODF2 expression in mice reduced sperm motility, and is
compatible with asthenozoospermia characteristics (Zhao et al.,
2018). Moreover, ODF2 is indispensable for the neck midpiece
connection, which is composed of a centrosome-derived
component and a flagellar component (Ito et al., 2019).
Tubulins are a family of proteins in which α- and β-tubulin
are the major components of microtubules in spermatozoa
(Kierszenbaum, 2002). TUBB and TUBB4B proteins are two
of the tubulin proteins previously be found in the sperm of
our analyzed dolphin samples. These proteins are important in
the development of cilia and flagellum, but there is nothing in
the bibliography which explains in detail the relation between
this fact and the presence/absence of this group as fertility
biomarkers, although TUBB protein exhibits clear differences

in expression according to porcine litter size (Kwon et al.,
2015b). GSTM3 is another protein situated among the five most
abundant sperm proteins identified in our study. GSTM3 is
a detoxification protein, which has been reported to play a
key role in oocyte binding (Gopalakrishnan et al., 1998; Petit
et al., 2013) and their interaction with the zona pellucida (Petit
et al., 2013). Moreover, sperm GSTM3 has been proposed as a
quality (Llavanera et al., 2020b), fertility (Kwon et al., 2015a) and
cryotolerance (Llavanera et al., 2019) biomarker for pig sperm.
Our data also report the presence of this protein in the seminal
plasma of dolphins. Recently, it has been demonstrated that low
concentration of GSTM3 in pig seminal plasma is related to an
increased percentage of sperm abnormalities (Llavanera et al.,
2020a). ROPN1 protein is found in sperm flagellum as part of
the fibrous sheath, specifically located in the principal piece and
end piece of the flagellum (Fujita et al., 2000; Chen et al., 2011).
The expression level of ROPN1 was found to be significantly
lower in asthenozoospermic men than in normozoospermic
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FIGURE 6 | STRING protein–protein interaction network showing the interactions of the seminal plasma proteins identified in bottlenose dolphin.

suggesting its involvement in sperm motility (Chen et al., 2011).
When mice lacking ROPN1 were analyzed, the sperm exhibited
altered motility, the same males being subfertile, and producting
fewer and smaller litters (Fiedler et al., 2012). Indeed, a positive
correlation between motility (progressive and total motile sperm
number) and ROPN1/CABYR gene expression has been observed
(Pelloni et al., 2018).

One interesting sperm protein identified in our data was
IZUMO1. Sperm-egg fusion is accomplished through the
interaction of a specific membrane proteins in sperm, IZUMO1
(Inoue et al., 2005), and oocyte, JUNO (Bianchi et al., 2014).
During acrosome reaction, IZUMO1 relocates from the anterior
head of the sperm to the site where fusion takes place and
which was the first site to be shown as critical for gamete fusion
(Inoue et al., 2005, 2011). Thus, our data suggest that gamete
fusion is probably mediated by the same mechanism as that
described in mouse.

Proteins Identified in the Seminal Plasma
of Bottlenose Dolphin
As mentioned above, the seminal plasma of dolphins comes
from the testis, epididymis and the prostate, the only accessory

sex gland in this species (Harrison et al., 1969; Rommel et al.,
2007; Suárez-Santana et al., 2020). Seminal plasma is not simply
a transport fluid for sperm but also modulates the female
genital tract environment (Bromfield, 2014). It also protects
sperm during their journey toward the oocyte (Kawano et al.,
2014; Luongo et al., 2019) and interacts with other reproductive
fluids modifying the sperm proteome (Luongo et al., 2020).
The five most abundant proteins (based on the number of
peptides identified) represented in seminal plasma of dolphin
were CST11, LTF, ALB, HSP90B1, and PIGR. Of these CST11
(Cystatin11) was seen to be the most abundant protein in
the seminal plama of dolphin (and was also detected in the
sperm). CST11 belongs to the cystatin type 2 family of cysteine
protease inhibitor and exhibits antimicrobial activity in vitro
(Magister and Kos, 2013), suggesting that cystatins defend
the male reproductive tract against invading pathogens (Hamil
et al., 2002; Fan et al., 2014). This protein has been detected
throughout the epididymis (particularly in the initial segment)
and in ejaculated human sperm (Hamil et al., 2002). LTF is a
glycoprotein with antioxidant and antibacterial activities that is
synthesized in the epididymis in mammals (Pearl and Roser,
2008) and has been detected in the prostate and seminal vesicles
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in humans (Wichmann et al., 1989). It has been reported
that the treatment of asthenoteratozoospermic males with LTF,
combined with other natural antioxidants, significantly improves
the motility of sperm cells (Piomboni et al., 2008). Moreover, a
positive correlation between seminal plasma LFT concentration
and sperm density was established in dogs (Kikuchi et al., 2003a)
and horses (Kikuchi et al., 2003b). The addition of LTF to
freezing sperm extender protected stallion sperm, increasing the
percentage of sperm with functional membranes and decreased
lipid oxidizing agents (Martins et al., 2018). ALB protein is
positively related with sperm concentration, total sperm count
and the percentage of morphologically normal spermatozoa,
but negatively related with semen volume in humans (Elzanaty
et al., 2007). In a study developed in Holstein bulls, high
concentrations of this protein correlated with animals whose
semen was classified as highly fertile (Kasimanickam et al.,
2019), so this protein could be used as a biomarker of fertility.
HSP90B1 is a molecular chaperone member of the heat shock
protein 90 (HSP90) family. This protein is involved in the
immune response (Graustein et al., 2018) in the suppression of
cell apoptosis and autophagy (Sun et al., 2015). This function
suggests a putative role for HSP90B1 once it is in the female
genital tract after insemination, since it is known that seminal
plasma modulates maternal immunity (Bromfield, 2018). PIGR is
involved in the tissue homeostasis pathway (Panner Selvam et al.,
2019) and its expression is regulated by cytokines, which show
high levels in the seminal plasma of varicocele patients due to
an inflammatory response (Zeinali et al., 2017). The presence of
PIGR was previously reported in the semen of bulls (Rego et al.,
2014) and cats (Mogielnicka-Brzozowska et al., 2020). In humans,
PIGR expression was observed in the prostate (Sirigu et al., 1995)
which agrees with our results as the prostate is the only accessory
sex gland in dolphins.

NPC2 is one of the proteins found in abundance in the
seminal plasma of bottlenose dolphin (the sixth most abundant
protein). NPC2 has also been described to be among the
most abundant secreted proteins in the epididymis in bovine
(Belleannée et al., 2011). In the epididymal fluid, NPC2
participates in cholesterol efflux from the spermatozoa during
epididymal sperm maturation (Légaré et al., 2006). Furthermore,
capacitated NPC2(−/−) mice spermatozoa exhibited defective
tyrosine phosphorylation patterns and a reduced ability to
fertilize cumulus-oocyte complexes compared with wild-type
spermatozoa, supporting the relevance of epididymal NPC2 in
male mouse fertility (Busso et al., 2014). Recently, relative levels
of two isoforms of NPC2 were found to be higher in the porcine
seminal plasma of poor freezability ejaculates than in that with
good freezability, suggesting that the NPC2 content may be useful
for predict ejaculate freezability (Valencia et al., 2020).

Proteome Profile of Dolphin
Spermatozoa and Seminal Plasma
Compared to Other Species (Human,
Bovine, and Canine)
Comparative analyses and a Venn diagram were made relating
dolphin to other three species: bovine, canine and human. Bovine
and porcine species are even-toed ungulates (artiodactyls), and

closest living relatives of dolphin (Thewissen et al., 2007;
Spaulding et al., 2009). Actually, both species (bovine and
delphinus) share 362 of the 419 sperm proteins detected in the
analysis (86.4%) and 218 of the 304 detected in seminal plasma
protein (71.7%), appointing to the high number of conserved
proteins between these animals. Likewise, dolphin sperm are able
to attach and penetrate bovine ZP, even triggering the blockage
of polyspermy (Sánchez-Calabuig et al., 2015a, 2017). The dog
was also compared to dolphin because they both share the
fact that of having only one accessory sex gland, the prostate.
Dog and dolphin share 51 seminal plasma proteins, only 6 of
which are exclusive to these animals (NBR1, BCAP29, KLK6,
SQSTM1, SLC16A7, and MUC19). This suggests that, although
prostate is the only accessory sex gland common to dogs and
dolphins, the protein composition is not well conserved between
species, and less than 25% of the seminal plasma proteins are
shared. Moreover, as an outgroup, we also included human in
the comparative analysis because of the availability proteomic
data. The results indicated that 42 sperm proteins and 30 seminal
plasma proteins are common to the four species.

FSIP2 is one of the sperm proteins identified as common
to all four compared species (Supplementary File 5) (sixth
position in the sperm protein list based on the number
of identified peptides; Supplementary File 7). FISP2 is one
of the main genes involved in the multiple morphological
abnormalities of sperm flagella syndrome (Martinez et al.,
2018). Moreover, mutations in FSIP2 lead to the absence of
A-kinase anchoring protein 4 (AKAP4), a protein also detected
in dolphin sperm. DNAH8 has also been found also to be
common to the four species analyzed (Supplementary File 5)
(tenth position in sperm protein list based on the number
of identified peptides; Supplementary File 7). Loss-of-function
mutation in DNAH8 is suggested to cause male infertility
because of the multiple morphological abnormalities of sperm
flagella syndrome, DNAH8 being essential for sperm flagellum
formation (Yang et al., 2020). There are 12 sperm proteins that
have only been identified in dolphin: LRRC37A5P, CFAP61,
HOGA1, CCDC127, UBB, C6orf58, CST11, DEFB130, HEL-S-
80P, ADAM10, ATP6V1FNB, and GCAT.

In the case of seminal plasma, LTF and ALB are present in
all the compared species. ENO1, which has been recognized as a
candidate for fertility marker in bulls (Park et al., 2019) is another
protein conserved in the four species and a good freezability
predictor in human (Jiang et al., 2015). It would be interesting to
analyze ENO1 in dolphins with different degrees of fertility and as
a possible component of an extender during preservation. A total
of 61 proteins were exclusively detected in the sperm of dolphin
but not in dogs, humans or bulls.

To evaluate whether the most abundant protein found in
dolphin are also in the semen of other species (human and
bovine) the most abundant protein situated in the first decile
of the lists for sperm and seminal plasma of these species were
analyzed. In the case of sperm proteins, 16 of them were shared
across the three species (DNAH8, ODF2, NDUFS1, HSPA2,
TUBB4B, HK1, TEKT5, DLAT, AKAP3, TEKT2, EFHC1, LTF,
GSTM3, SDHA, TEKT3, and UQCRC2). Four of them are
included in the top ten of the most abundant proteins detected
in dolphin sperm (DNAH8, ODF2, AKAP3, and GSTM3). In the
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case of seminal plasma, 13 proteins were shared between the three
species (ACE, QSOX1, PDIA3, P4HB, HYOU1, HSPA5, ALB,
GLB1, PIGR, LTF, HSP90B1, HSPA8, and HSP90AA1). Seven of
them are included in the top ten of the most abundant proteins
detected in the seminal plasma of dolphin (ACE, PDIA3, ALB,
PIGR, LTF, HSP90B1, HSPA8, and HSP90AA1).

Protein differences between the species could be a result
of different requirements for spermatozoa to interact with
the female tract (Druart and de Graaf, 2018). The species
here compared (human, bovine, canine, and dolphin) have
vaginal semen deposition which can explain a similar protein
profile between species for helping with cervical migration.
Moreover, cross-species comparison of mammalian seminal
plasma proteomes performed in seven species (bovine, sheep,
goat, pig, horse, camel, and alpaca) revealed that the phylogenetic
proximity between species could be related to the similarity of
seminal plasma proteome (Druart et al., 2013).

CONCLUSION

In conclusion, this study provides an inventory of 722 proteins
present in bottlenose dolphin semen. As demonstrated in
most mammalian species, bottlenose dolphin semen proteome
includes proteins that are essential to the sperm structure and
function. Comparison of this proteome with other physio-
pathologies enable the identification of semen markers for
reproduction purposes. Moreover, this work opens the door to
future research aimed at investigating a new molecular basis of
sperm, proteins that are involved in sperm conservation, or those
that can be used as biomarkers of sperm quality and fertility.
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