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1.Introduction
Type 2 diabetes is defined as a chronic inflammatory 
metabolic disease that is characterized with the impaired 
insulin effect and high blood glucose level [1]. The disease 
has degenerative effects on many tissues and a high 
incidence worldwide. Although many drugs are used for 
the treatment of this disease, more effective treatment 
strategies have yet to be found [2,3]. 

Adenosine 5′-monophosphate activated protein kinase 
(AMPK) is considered to be an important potential 
therapeutic target for the treatment of type 2 diabetes 
(T2D). AMPK is defined as serine/threonine protein 
kinase complex. The kinase consists catalytic α (α1, α2), 
regulatory β (β1, β2), and regulatory γ (γ1, γ2, γ3) subunits 
and express in each tissue [3]. Although the isoforms have 
been reported to have different effects and tissue-specific, 
the effects of isoforms have not been fully cleared. However, 

α1 isoform predominates in the liver and adipose tissue; 
whereas, α2 predominates in the brain, heart, and skeletal 
muscles [4]. The AMPK acts as a sensor that determines 
the AMP/ATP or ADP/ATP ratio. The AMPK is activated 
by phosphorylation of Thr-172 residue in the α subunit and 
increasing AMP/ATP ratio in the cell [3-6]. The activated 
AMPK provides the phosphorylation of key metabolic 
proteins that inhibits anabolic activities and increase 
catabolic activities [3]. The AMPK activation suppresses 
genes mediating gluconeogenesis and lipogenesis in the 
liver [7], and the activation of AMPK has been reported 
to increase insulin secretion from pancreatic β cells [3,8]. 
On the contrary, the excessive increased insulin, leptin and 
diacylglycerol levels and hyperglycemia, hyperlipidemia 
inhibit the AMPK activation [6]. Therefore, the AMPK 
activation increases insulin sensitivity, stimulates glycogen 
synthesis while inhibits glycolysis. Thus, it is an important 
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therapeutic target for glucose hemostasis in the treatment 
of T2D patients [3,4,6,8]. 

Metformin, one of the most important antidiabetics, 
provides indirect activation of AMPK [3,7]. In addition, 
thiazolidinedione, which is also an antidiabetic drug and 
nondrug ginsenosids, berberine, quercetin, and resveratrol 
indirectly activate the AMPK [3,9]. Recently, potential 
antidiabetic agents (AICAR, A769662, PT1, C24, MK-8722, 
PF-06409577, ex229, PF-06409577 and benzimidazole 
compound 991) that enable the AMPK activation of skeletal 
muscles and liver have been tested for T2D treatment [3]. 
The ex229, newly developed benzimidazole derivative and 
the AMPK activator, stimulates glucose entry into skeletal 
muscles and increases oxidation of fatty acids in skeletal 
muscles. Moreover, the antidiabetic effects of ex229 are 
variable as depending on the dose [10]. Metformin has also 
been shown to reduce insulin resistance, hyperglycemia, 
and it increases dose-dependent glucose entry into the 
cell by the dose-dependent effect and the indirect AMPK 
activation [11]. Metformin contributes to glucagon-
like peptide (GLP)-1 secretion by AMPK activation and 
potentiates reducing blood glucose [12]. Metformin has 
inhibited the lipogenesis and gluconeogenesis, and it 
regulates the glucose transport, glycolysis, glycogenesis 
and fatty acid oxidation by activating AMPK α1 and α2 
transcription in fish fed a high with energy diet [13]. 
Metformin and AICAR administration have restricted 
the hepatic production of glucose by the phosphorylation 
of Thr172 region of the AMPK [14]. Antidiabetic drugs 
troglitazone and pioglitazone have increased glucose entry 
into muscle cells and fatty acid oxidation in muscle cells 
by the AMPK activation. Also, troglitazone has activated 
the AMPK signal in liver and adipose tissue and increases 
AMP/ATP ratio [15].

Albendazole, a benzimidazole derivative, is generally 
used as an anthelmintic in most mammals. It is defined 
as an enantiomeric drug. Albendazole is converted to the 
sulfoxide structure in the liver and distributes widely to 
tissues [16]. In addition, albendazole has been reported 
to provide the AMPK activation in vitro and in vivo [17]. 
Lansoprazole, another benzimidazole derivative, has 
been used for the treatment of diseases such as ulcers and 
esophagitis for about 27 years [18]. Although lansoprazole 
is not reported the direct effect on the AMPK, it regenerates 
and sensitizes beta cells, induces peroxisome proliferator-
activated receptor-γ (PPARγ) through incretin and the 
regulation of lipid metabolism, and increases the insulin 
synthesis and adiponectin/leptin ratio [19-22]. In addition, 
its high doses decrease glucose, triglyceride levels, and 
stimulate beta cells by increasing incretin secretion, 
providing β cell regeneration and neogenesis, delaying 
gastric emptying [19-23]. 

In recent years, alternative treatment strategies have 
been tried in the treatment of T2D. Benzimidazole-

derived substances have antidiabetic potentials by 
affecting different mechanism, especially the AMPK 
pathway. The aim of this study was to determine the 
efficacy of benzimidazole-derived albendazole (5 mg/kg 
and 10 mg/kg) and lansoprazole (15 mg/kg and 30 mg/kg) 
on different endocrinological and biochemical parameters 
in experimental T2D rats.

2.Materials and methods
2.1. Animals
The study was carried out on 46 healthy male Wistar 
Albino rats aged 8-12 weeks. The fasting blood glucose 
and basal lipid profiles of rats were determined before 
the study. Feed and water requirements were met as ad 
libitum. The composition of the ration given to the healthy 
control group is as follows: dry matter: 89%, crude protein: 
21%, cellulose: <5%, ash <10%, Ca: 1%–2%, P: 0.5%–1%, 
NaCl: 0.5%, ME: 2850 kcal/kg. The animals were housed 
in Selçuk University Chair of Experimental Medicine 
Research and Application Center (SUCEMRAC), Konya, 
Turkey. Research protocol was reviewed and approved by 
the Ethic Committee of SUCEMRAC (Approved number: 
2017-41).
2.2. Induction of Type 2 diabetes
Experimental Type 2 diabetes (T2D) model was induced 
according to the method proposed by Srinivasan et al 
[24]. In this method, rats were fed by high fat diet (HFD, 
containing 58% fat, 25% protein and 17% carbohydrate, as 
a percentage of total kcal) ad libitum for 2 weeks. HFD 
composition included 37% animal fat as tallow, 30.5% corn, 
3% vegetable oil, 20% casein, 4.5% soy pulp, 1.7% dicalcium 
phosphate, 0.2% dl-methionine, 1.6% limestone, 0.5% salt, 
and a vitamin-mineral blend 1%. The streptozotocin (STZ, 
35 mg/kg, s.c.) were administered to rats after the 2 weeks. 
Before injection, streptozotocin (STZ, ≥98%, analytical 
purity, Sigma-Aldrich Corp., St. Louis, MO, USA) was 
dissolved in citrate buffer (pH 4.5, 20 mg/mL). After the 
injection, 5 % dextrose was supplemented to prevent the 
animal from fatal hypoglycemia for 24 h. The rats with the 
nonfasting glucose level of ≥300 mg/dL were considered 
as diabetic on 5 days following STZ injection. The diabetic 
rats were fed by HFD ad libitum until the end of the study. 
2.3. Drug preparation
Albendazole was used commercially solution 
(Vermiprazole 10%, oral solution, Hipra, Spain) 
formulation. Lansoprazole (≥98%, analytical purity) was 
provided in powder form from Tokyo Chemical Industry 
(Product Number-L0233, Japan). Lansoprazole was 
dissolved in solution containing 0.9% sodium chloride 
and 0.05% sodium hydroxide in water as 30 mg/mL. After 
preparing the stock solutions of the drugs, they were 
diluted with 0.9% sodium chloride to the appropriate 
dosage amounts.
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The doses of the drugs, which were chosen according to 
EMEA data, used in the current research were determined 
experimentally in the experimental research, and the 
standard doses were indicated in the drug package insert.
2.4. Experimental design
The rats were housed in standard polypropylene cages 
during the study. The light (12/12 h light/dark cycle), 
temperature (22 ± 2 ° C) and humidity (55 ± 5%) of the 
room were maintained under control. All the rats were 
grouped as follows.

The saline (0.1 mL/rat/day, s.c.) solution were 
administered to group 1 (Healthy control, n = 6) and group 
2 (Diabetes control, n = 8) during the experiment. Group 
3 [Diabetes+Low-Dose Albendazole (n: 8)] and group 
4 [Diabetes+High Dose Albendazole (n: 8)] received 
albendazole at 5 mg and 10 mg/kg/day by oral for 8 weeks, 
respectively. Group 5 [Diabetes+Low-Dose Lansoprazole 
(n: 8)] and group 6 [Diabetes+High Dose Lansoprazole (n: 
8)] received lansoprazole at 15 mg and 30 mg/kg/day by 
subcutaneously for 8 weeks, respectively.

The healthy control rats were fed with the commercially 
available rat normal pellet diet, and all of the diabetic rats 
were fed with HFD and all of the rats drank water ad 
libitum. The blood samples were collected by retro-orbital 
sinus at the end of week 8 under thiopental Na anesthesia 
(40 mg/kg, i.p.) and separated as serum. Then, the animals 
were euthanized by cervical dislocation. The whole blood 
samples for HbA1c were analyzed immediately while the 
serum samples were stored at -800 C until analysis.
2.5. Biochemical, endocrinological, and antioxidant 
capacity analysis
Biochemistry parameters (HDL: high density 
cholesterol, LDL: low density cholesterol, AST: aspartate 
aminotransferase, ALT: alanine aminotransferase, glucose, 
urea, creatinine, cholesterol, triglyceride) in serum samples 
and HbA1c (Hemoglobin A1c) parameter in whole blood 
samples were analyzed by the autoanalyser (BT-300 
plus, Rome, Italy) and HPLC (Primus Primatech USA), 
respectively. Insulin (Ultra Sensitive Rat Insulin ELISA 
Kit, Catalog no: 90060, Crystal Chem, USA), adiponectin 
(Rat ADP / Acrp 30 ELISA Kit, Catalog no: E-EL-R0329, 
Elabscience Biotechnology Co. Ltd., China), resistin (Rat 
RTN ELISA Kit, Catalog no. E-EL-R0614, Elabscience 
Biotechnology Co. Ltd., China), leptin (Rat LEP ELISA 
Kit, Catalog no. E-EL-R0582, Elabscience Biotechnology 
Co. Ltd., China), and total antioxidant capacity marker 
(TAC) (Total Antioxidant Capacity Assay Kit, Catalog 
no: ab65329, Abcam Company, United Kingdom) were 
determined following to manufacturer’s protocol by the 
ELISA reader (Bio-Tek Instruments Inc., MWGt Lambda 
Scan 200).

Homeostatic Model Assessment for insulin resistance 
(HOMA-IR) and β-cell activity (HOMA-β) were 

calculated according to the following formula using with 
the determined glucose and insulin values determined in 
the study.

HOMA-IR: (Glucose × Insulin) / 405, 
HOMA-β: (360 × Insulin) / (Glucose − 63).

2.6. Statistical analysis
The data were analyzed on SPSS 25.0 (SPSS, Inc., Chicago, 
IL, USA) software, and all values were evaluated as median 
[interquartile range (IQR)]. Statistical significance between 
groups was tested using the Kruskal-Wallis and post hoc 
Dunn-Bonferoni test. The data was considered statistically 
significant at p < 0.05.

3. Results
The changes in various biochemical parameters after 
lansoprazole (15 and 30 mg / kg / day, SC) and albendazole 
(5 and 10 mg / kg / day, oral) treatment in experimental 
T2D are illustrated Table 1. The endocrinological data are 
presented in Table 2 and HOMA results are presented in 
Table 3.  

The glucose, HbA1c, triglyceride, and LDL values in the 
diabetes group increased compared to the control group (p 
< 0.05). Also, leptin and HOMA-IR levels increased, while 
insulin and HOMA-β levels decreased in the diabetes 
control group. 

The low-dose albendazole treatment (LDAT) partially 
decreased glucose, HbA1c, triglyceride, and leptin levels. 
However, LDAT significantly decreased LDL level and 
increased insulin and HOMA-β levels compared to diabetes 
control group (p < 0.05). 

The low-dose lansoprazole treatment (LDLT) decreased 
partially triglyceride level and increased insulin level 
however the high-dose lansoprazole treatment (HDLT) 
significantly increased insulin level compared to diabetes 
control group (p < 0.05). Although there were statistically 
significant changes in AST, ALT, urea, and creatinine values, 
these values were within the reported ranges for rats.

The insulin levels in the LHLT and LDAT groups were 
similar to healthy control group level. Besides, leptin and 
HOMA-β levels in the LDAT group were similar to healthy 
control group level.

Although there were no statistically significant 
differences in the treatment groups compared to the 
diabetes control group for adiponectin and resistin, its level 
in LDAT and high-dose albendazole treatments (HDAT) 
groups were higher 209% and 161% than diabetes control 
group, respectively (p > 0.05). The resistin levels decreased 
significantly in LDAT and HDAT, LDLT groups (p < 0.05, 
Table 2). 

4. Discussion
Many studies have shown that AMPK activation is a key 
mechanism in antidiabetic treatment [12,25]. Some 
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benzimidazoles have been reported to have antidiabetic 
effects by mainly activation of AMPK and PPAR, 
inhibition of α-amylase and α-glucosidase enzymes and 
other antidiabetic mechanisms.[10,26-28]. However, these 
effects on AMPK may vary depending on the dose, the 
ratio of binding to the AMPK, and activating different 
subunits of AMPK [5]. Therefore, the benzimidazoles can 
be considered as multitarget antidiabetic agents.

Furthermore, some benzimidazole molecules cause 
regeneration of pancreas β cell, and the regulation of 
adipose tissue [21,22,26,27]. It was emphasized that 
telmisartan and lansoprazole, benzimidazole derivatives, 
could be used as an antidiabetic in the treatment of T2D 
by activating PPAR [27]. Other benzimidazole derivatives 
compound 991 and lansoprazole have increased glucose 
transport into tissues by AMPK activation or other 

mechanism [22,29,30]. Metformin contributes to the 
anthelmentic effect of albendazole by providing AMPK 
activation in the larval period of Echinococcus granulosus 
[31]. 

In the present study, the LDAT may prevent 
gluconeogenesis and increase the effects of glucose 
transporters by providing the AMPK activation in liver 
and skeletal muscles. Also, the effects of albendazole on 
the inhibition of α-amylase and α-glucosidase may have 
contributed to its antidiabetic effect. In the literature, the 
antidiabetic effects of benzimidazoles have been reported 
to be dose-dependent, and the LDAT may have resulted 
partially decrease in glucose and HbA1c in the current 
study. In addition, the LDAT and LDLT can cause partially 
the reduction in triglyceride levels by suppressing lipogenic 
genes and AMPK activation. The LDAT may regulate 

Table 1. Effect of lansoprazole (15 and 30 mg/kg, SC) and albendazole (5 and 10 mg/kg/day, oral) treatment on biochemical parameters 
in type 2 diabetic rats [median (IQR)]. 

Parameters Healthy
control

Diabetes
control

Diabetes +
Low-dose 
Lansoprazole 

Diabetes +
High-dose 
Lansoprazole 

Diabetes +
Low-dose 
Albendazole 

Diabetes +
High-dose 
Albendazole 

Glucose (mg/dL) 129.5
(122.5–158.8)

486.5 #
(295.8–522.8) 

467.0 #
(430.5–469.5) 

477.0 #
(473.0–493.0) 

221.5
(187.3–287.5)

433.0 #
(206.5–492.5) 

HbA1c (%) 5.3
(5.0–5.5)

12.1 #
(7.3–12.7) 

12.0 #
(11.5–13.1)

12.0 #
(11.4–12.7) 

7.15
(6.0–9.3)

10.5 #
(8.2–11.1) 

Triglycerides (mg/dL) 171.0
(149.5–183.3) 

435.5 #
(387.5–557.0) 

484.0
(143.5–635.0)

457.0 #
(271.0–536.5) 

356.5
(197.5–472.3)

465.5 #
(432.5–681.5) 

Cholesterol (mg/dL) 71.0
(67.0–99.3) 

139.0
(72.3–334.8)

86.0
(76.5–92.5) 

77.0
(72.5–227.5) 

77.5
(72,5–83.0)

108.0
(87.0–187.5)

HDL (mg/dL) 50.0
(47.8–74.3)

45.0
(36.5–52.8)

34.0
(26.0–57.5)

30.0
(28.5–39.5) #

45.5
(42.8–55.3)

38.0
(31.5–58.0)

LDL (mg/dL) 7.69
(6.0–9.0)

19.5 #
(14.5–47.8) 

21.0 #
(15.5–32.0) 

20.0 t
(18.0–30.0) 

11.0 *
(10.3–12.8) 

22.4 #
(13.5–33.5)

AST (U/L) 136.5
(106.8–149.0)

67.5 #
(39.0–99.0) 

102.0
(91.0–124.5)

88.0 t
(60.0–99.0)

81.0 #
(70.3–95.8) 

75.0 #
(70.3–95.8) 

ALT (U/L) 69.0
(58.3–75.5) 

31.0 #
(25.8–46.8) 

54.0 *
(34.5–61.5) 

48.0
(34.5–61.5)

28.0 #
(23.3–40.0) 

37.0 #
(28.0–50.0) 

Urea (mg/dL) 45.0
(42.8–53.5)

43.0
(35.0–48.8) 

41.0
(36.5–76.5) 

32.0 *
(29.5–36.5) 

38.5 #
(30.5–45.0)

39.0 #
(30.5–42.0) 

Creatinine (mg/dL) 0.50
(0.46–0.54)

0.55
(0.49–0.60)

0.61 t, *
(0.57–0.63) 

0.59 #
(0.57–0.61) 

0.53
(0.50–0.55)

0.54 #
(0.50–0.62) 

TAS (nmol) 1.05 
(1.0–1.31)

1.05 
(1.05–1.15)

1.08
(1.02–1.23) 

1.09
(1.0–1.17)

1.18
 (1.13–1.25)

1.08
(1.05–1.11) 

# denotes significant difference vs. healthy control group at p ˂ 0.05.
* denotes significant difference vs. diabetes control group at p ˂ 0.05.
HDL: High density cholesterol, LDL: Low density cholesterol, AST: Aspartate aminotransferase, ALT: Alanine aminotransferase, HbA1c 
(%): Hemoglobin A1c, TAS: Total antioxidant status.
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lipoprotein lipase in muscles by activation of the PPAR 
pathway and LDAT significantly decreased LDL level and 
partially increased HDL level. However, the short duration 
of the current study and the feeding of HFD (strong 
diabetic and lipidemic effects) during the study may have 
masked the antidiabetic treatments. 

Biochemical parameters of the present study are 
observed to be within the reference range reported for rats 
[32,33] although there are statistical differences between 
groups in ALT, AST, creatinine, and urea values. In the 
present study, the biochemical changes show that there are 
no side effects of the drugs used for treatment in diabetic 
rats.

The LDLT and HDLT significantly increased insulin 
levels compared to diabetes group in the present study. This 
effect may occur as a result of β cell regeneration. Because 
the treatment provides regeneration of β cell through 
activation of PPARγ and AMPK [3,8,22]. HOMA-β, an 

indicator of B cell functionality, was significantly higher 
in the low-dose albendazole treatment group from the 
diabetes group. This shows that LDAT may provide 
regeneration of β cells through more than one antidiabetic 
pathway.

Adiponectin levels has negative correlation, while 
leptin and resistin levels has positive correlation with 
insulin resistance in diabetic individuals [34]. The increase 
of leptin level induces the formation of free oxygen radicals. 
This situation triggers hyperglycemia, adiponectin level 
and leads to insulin resistance [22]. In the present study, 
the positive effect of LDAT via PPAR and AMPK effects 
on insulin resistance may cause the decrease in leptin 
and resistin levels and the increase in adiponectin levels. 
However, insulin resistance may be inadequately treated by 
lansoprazole treatments, as the leptin level did not decrease 
enough in the current study. As lipid-lowering effects of 
higher doses of lansoprazole treatments have been reported 

Table 2. Effect of lansoprazole (15 and 30 mg/kg, SC) and albendazole (5 and 10 mg/kg/day, oral) treatment on endocrinological 
parameters in type 2 diabetic rats [median (IQR)]. 

Parameters Healthy
control

Diabetes
control

Diabetes +
Low-dose 
Lansoprazole 

Diabetes +
High- dose 
Lansoprazole 

Diabetes +
Low- dose 
Albendazole 

Diabetes +
High- dose 
Albendazole 

Insulin (ng/mL) 1.30 
(1.16–1.69) 

0.93 #
 (0.85–0.98) 

1.19 
(1.06–1.29) 

1.42 *
(0.98–1.54) 

1.41 *
(1.34–1.65) 

1.18 
(1.05–1.27) 

Adiponectin (pg/mL) 128.0
(58.5–162.5) 

53.0 
(30.8–131.5) 

7.0
(0–118.5) 

0 
(0–56)

79.0
(45.5–458) 

175.0
(28.3–342) 

Resistin (ng/mL) 0.19
(0.6–2.84) 

4.10
(1.74–5.94) 

0
(0–2.39)

0
(0–8.30)

0.63
(0.38–1.83)

0
(0–0.82)

Leptin (ng/mL) 1.49
(0.27–2.24) 

38.2 #
(6.63–56.9) 

9.41 #
(6.83–19.26) 

7.05 t
(3.65–20.8) 

3.32 
(2.60–7.20)

8.48 #
(3.27–22.9) 

# denotes significant difference vs. healthy control group at p ˂ 0.05.
* denotes significant difference vs. diabetes control group at p ˂ 0.05.

Table 3. Effect of lansoprazole (15 and 30 mg/kg SC) and albendazole (5 and 10 mg/kg/day, oral) treatment on HOMA 
parameters in type 2 diabetic rats [median (IQR)]. 

Parameters Healthy
control

Diabetes
control

Diabetes +
Low-dose 
Lansoprazole 

Diabetes +
High- dose 
Lansoprazole 

Diabetes +
Low- dose 
Albendazole 

Diabetes +
High- dose 
Albendazole 

HOMA-IR 11.19
(10.4–12.7)

26.37 #
(25.9–27.8) 

32.27 #
(29.2–35.8) 

27.45 #
(16.8–38.8) 

19.52 #
(16.3–37.7)

21.0 #
(14.0–31.0)

HOMA–β 160.4
(102.5–235.8) 

19.4 #
(16.1–21.4)

26.5 #
(22.5–27.7) 

36.0  #
(28.0–138.2) 

78.5*
(28.0–138.2) 

48.03 #
(25.4–73.7) 

# denotes significant difference vs. healthy control group at p ˂ 0.05.
* denotes significant difference vs. diabetes control group at p ˂ 0.05.
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[22,23],  the albendazole treatments might prevented the 
increase of leptin level in the current study. This effect may 
be reduction of adipose tissue mass because it decreased 
the leptin synthesizes in adipose tissue [5,6]. Therefore, the 
percentage changes in adiponectin level could be caused by 
the regulator role of insulin in fat cells and the differences 
in the effects of treatment on organs [35,36]. The positive 
effects of albendazole on insulin and the short duration of 
treatment for diabetes may have caused partial changes 
in adiponectin level. Resistin is an important factor for 
insulin resistance; however, its expression reportedly 
changed in two different directions (increase / decrease) 
by treatments in different studies [35,36]. In the current 
study, the low-dose albendazole treatments may decrease 
the insulin resistance and hyperlipidemia through AMPK, 
PPARγ, and other pathways.

Metformin has been caused a nonsignificant change in 
HOMA-IR, although it has been activated the AMPK in 
the obese mice [37]. Also, berberine was reported to be 
antidiabetic effects by AMPK activation and decreased 
HOMA-IR value and insulin resistance [38]. However, the 
AMPK activation may produce different effects because 
the activation of different subunits of AMPK has effective 
at different ability and potential in different tissues [4,39]. 
Although all the treatments in the current study could not 
change HOMA-IR levels, these treatments may prevent 
gluconeogenesis in the liver and improve the pancreatic 
regeneration by AMPK activation. This situation can be 
confirmed by the increase in HOMA-β and insulin levels, 
in particularly albendazole treatments groups.

In conclusion, new studies are carried out to show that 
different benzimidazole derivatives may have antidiabetic 
effects through AMPK, PPARγ, α-glucosidase, and other 

pathways. Structural compatibility of benzimidazoles on 
antidiabetic mechanisms is especially important [28,40,41]. 
The AMPK and PPARγ activation have been considered 
as alternative important targets for the treatment of T2D 
and obesity in recent years. The detailed research with 
benzimidazole has not been conducted yet, because 
antidiabetic mechanisms of benzimidazoles are just under 
investigation. The differences between albendazole and 
lansoprazole may have been caused by the difference in 
the 3-dimensional structure of benzimidazoles that is 
important for AMPK-drug interaction, the dose of the 
drugs and activation of AMPK and PPARγ in different 
organs. 

Further studies including molecular and biochemical 
mechanisms, pharmacodynamics, molecular docking, 
and pharmacophore model is necessary to determine the 
antidiabetic effect of various benzimidazole (particularly 
albendazole) at different doses in T2D treatment. In 
addition, comparative studies between AMPK activator 
benzimidazoles and antidiabetic drugs such as metformin 
and thiazolidinediones will contribute to the effective 
antidiabetic treatment in future.
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