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Abstract

Motivation: Differential coexpression—the alteration of gene coexpression patterns observed in

different biological conditions—has been proposed to be a mechanism for revealing rewiring of

transcription regulatory networks. Despite wide use of methods for differential coexpression ana-

lysis, the phenomenon has not been well-studied. In particular, in many applications, differential

coexpression is confounded with differential expression, that is, changes in average levels of ex-

pression across conditions. This confounding, despite affecting the interpretation of the differential

coexpression, has rarely been studied.

Results: We constructed high-quality coexpression networks for five human tissues and identified

coexpression links (gene pairs) that were specific to each tissue. Between 3 and 32% of coexpres-

sion links were tissue-specific (differentially coexpressed) and this specificity is reproducible in an

external dataset. However, we show that up to 75% of the observed differential coexpression is

substantially explained by average expression levels of the genes. ‘Pure’ differential coexpression

independent from differential expression is a minority and is less reproducible in external datasets.

We also investigated the functional relevance of pure differential coexpression. Our conclusion is

that to a large extent, differential coexpression is more parsimoniously explained by changes in

average expression levels and pure links have little impact on network-based functional analysis.

Contact: paul@msl.ubc.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Coexpression networks have been adopted as a convenient represen-

tation of the pairwise similarities between gene RNA levels in tran-

scriptomic datasets (Gillis and Pavlidis, 2011; Lee et al., 2004). A

key feature of coexpression is that pairs of coexpressed genes have a

tendency to be functionally related (Brown et al., 2000; Eisen et al.,

1998; Wen et al., 1998). For this reason coexpression networks have

been widely used in computational function prediction frameworks,

based on the Guilt By Association (GBA) principle (Mostafavi et al.,

2008; Pavlidis and Gillis, 2013; Quackenbush, 2003) and various

types of coexpression analysis are prominent features of many

transcriptomic studies (Amar et al., 2013; de la Fuente, 2010; Gillis

and Pavlidis, 2009; Langfelder and Horvath, 2008).

An extension of coexpression analysis is differential coexpression

analysis (DCA), referring to changes in coexpression between differ-

ent conditions. DCA is commonly used as a complementary tool to

differential expression analysis (DEA), where it is applied in an ef-

fort to reveal changes in regulatory ‘wiring’ between genes which is

not otherwise captured through DEA (Amar et al., 2013; de la

Fuente, 2010; Gaiteri et al., 2014; Gillis and Pavlidis, 2009; Kaushik

et al., 2015; Kostka and Spang, 2004; Mentzen et al., 2009).

An issue central to this paper is that differential coexpression and
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differential expression are often confounded. At one extreme, two

genes cannot be coexpressed if one (or both) of the genes is not

expressed at all and some observed differential coexpression is sim-

ply explained by the absence of expression (see Fig. 1, ‘expression-

induced’ links). Also in general the variance of expression is fre-

quently a function of expression level (Law et al., 2014; Rocke and

Durbin, 2001). Examining differential coexpression in the absence

of differential expression is also appealing for reasons of parsimony:

if two genes are found to be differentially expressed, it is not neces-

sarily clear what new information is gained if one (or both) of them

are also differentially coexpressed. For these reasons, it is of interest

to investigate the degree to which differential coexpression is

explained by differential expression, and to isolate cases where dif-

ferential coexpression is not accompanied by changes in mean ex-

pression level. The latter ‘pure differential coexpression’ (Fig. 1)

would be good candidates for instances of ‘rewiring’, though even

then the interpretation is not necessarily straightforward.

In this paper, we study differential coexpression in different

human tissues with a specific goal of accounting for the impact of

changes in mean expression levels, and to thereby identify ‘pure’ dif-

ferential coexpression between tissues. Tissue based coexpression

networks have been previously used to improve GBA-based predic-

tion for tissue related disease and functions (Greene et al., 2015;

Guan et al., 2012; Pierson et al., 2015). They have also been used in

integrated or individual frameworks for studying tissue-specific gene

regulation (Saha et al., 2017; Sonawane et al., 2017). We hypothe-

sized that different tissues should be a relatively rich source of cases

of ‘network rewiring’, due to their wide biological differences, and

establishment of the principles would open the door to application

in other scenarios such as different disease conditions. To this end,

we built coexpression networks for five human tissues by combining

coexpression networks from multiple datasets [tissue aggregated

networks (TANs)]. We identified tissue-specific links in the TANs,

forming tissue-specific networks (TSNs; Fig. 2). We then modeled

how much of the observed differential coexpression between tissues

(tissue-specific links) is predictable by the mean expression level of

the genes. Based on this, we identified pure links as a subset of TSN

links for each tissue. We found that the average expression level of

genes is indeed a strong confound for much tissue-specific coexpres-

sion and that pure links are rare. We show that our TAN, TSN and

pure links are generally reproducible in external datasets, while pure

links are reproduced to a lesser extent. We further searched for the

biological significance of the pure links and compared them to the

expression-induced links regarding their functional implications in

TSNs.

2 Materials and methods

All code and key data files for the analyses presented are available as

Supplementary Materials.

2.1 Datasets
We used two collections of expression datasets to build and examine

the reproducibility of our networks, a collection of Affymetrix

microarray datasets and RNA-seq data from GTEx. The TANs and

TSNs were built from Affymetrix microarray datasets. The pure

links are also identified based on the Affymetrix datasets and GTEx

data was used for validation of these three groups of links. The

Affymetrix datasets consist of 53 datasets that used Affymetrix

U133 Plus 2.0 GeneChips, reanalyzed from raw data (see

Supplementary Tables S1–S5, Supplementary Fig. S1,

Supplementary Section 1). The final data matrix included 18 494

genes and 3563 samples. For each tissue, genes were filtered based

on their expression level and only genes which were marked as

expressed were considered for building the coexpression networks.

For GTEx data, we used the gene-level expression data from version
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Fig. 1. Different types of tissue-specific links. (A) Schematic representation of

the effect of the average expression levels on differential coexpression, in

three extreme cases. In reality links lie on a continuum among these classes.

(B) Examples of the link classes from our data, with brain being the target tis-

sue. Corr: correlation. Exp: expression levels. Gene symbols are indicated in

the legend at right. Top panel: ‘pure’ differential coexpression between

TOMM20 and SLC25A44. The two genes have moderate to high expression

levels in all the tissues, but correlation values in brain are higher. Middle

panel: expression-induced 1: AMER2 is only expressed in brain. Bottom

panel: expression-induced 2: both AMPH and AP3B2 are only expressed in

brain
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Fig. 2. Overview of the network construction approach. Tissue aggregated

networks (TANs) are built by combining binary networks from individual

datasets. In each TAN, tissue-specific links are identified based on their cor-

relation values in all the datasets. The tissue-specific links comprise tissue

specific networks (TSNs)
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6, downloaded from the GTEx portal (Lonsdale et al., 2013) for the

five tissues blood, brain-cortex, liver, lung and skeletal-muscle.

2.2 Tissue aggregated networks (TAN)
The process of network generation is outlined in Figure 2. TANs

were built by aggregating binary coexpression networks from

Affymetrix datasets for each tissue (Fig. 2–1), similar to the ap-

proach used in Lee et al. (2004). Specifically, from each dataset, a

raw coexpression matrix was first computed using pairwise Pearson

correlations between the gene pairs. Binary networks were built

from these raw networks by selecting the gene pairs having coex-

pression value >90th percentile within the dataset (Fig. 2–2). These

selected pairs are referred throughout as ‘links’. For each tissue those

links present in at least in n binary networks were marked as pre-

sent. The value of n was chosen for each tissue to maintain a false

discovery rate (FDR) of 10�4, using the binomial distribution as the

null (Fig. 2–3). This FDR was chosen to obtain networks of reason-

able density, but our key findings are not affected by the exact

choice.

2.3 Identification of tissue-specific links
Tissue-specific links were identified for each tissue as a subset of the

links in the tissue’s TAN. This process has two steps: (i) measuring a

tissue-specificity score (TSS) for each link and (ii) setting thresholds

for TSSs to control false discovery rates.

2.3.1 Measuring the TSS for each of the links in TANs

Our goal was to capture pairs of genes which consistently have rela-

tively high coexpression in one tissue (the target tissue), while hav-

ing consistently lower coexpression in all the other tissues. To

implement this, we first define the correlations for a pair of genes

(gi, gj) in each of the k data sets, referred to as Sij:

Sij ¼ corr i; j;kð Þf j i 6¼ j; 1 � k � 53g: (1)

Where corr(i, j, k) is the Pearson correlation value between the

genes gi and gj from dataset k (Dk). We modify these raw correlation

values for each of the links in two steps. The first step is the normal-

ization between the datasets using a binned rank transformation.

The corr(i, j, k) is replaced with the per mille it belongs to between

coexpression values from all the expressed genes in Dk (this binning

was used to simplify the implementation). Since we were attempting

to capture the presence of coexpression in the target tissue and the

absence of it in the other tissues, negative correlations were not of

interest, and they could affect the measurements as outliers.

Therefore, all negative correlations were assigned to bin 500, corre-

sponding to approximately a zero correlation. More formally:

SBij ¼ max bin r;kð Þ; 500ð Þf j r 2 Sij; i 6¼ j; 1 � k � 53g: (2)

Where bin(r, k) gives the per mille of the correlation value r in

dataset k. Next, having the tissue tm and the link lij, we define two

subsets of SBi, j as follows:

CTt ¼ rkf j rk 2 SBij; dataset k is from tissue tg (3)

CTt ¼ SBij �CTt: (4)

From this, the TSS of a given pair of genes (gi, gj) and a given tis-

sue tm is calculated as follows:

TSS gi; gj; tm

� �
¼

P
p2CTt

P
q2CTt f ðrp � rqÞ

CTtj j CTt
�� �� (5)

f xð Þ ¼
x; x > 0

0; x � 0
:

(
(6)

We also applied an alternative method using the P-value from a

Wilcoxon rank sum test, comparing the ranks of the correlations for

the gene pair in one tissue to that in all others. The results of the two

approaches are highly correlated (Supplementary Fig. S3) and we

focused on the TSS as defined above.

2.3.2 Controlling false discovery rates for TSSs

To assess the null distribution of TSS, we created random subsets of

the 53 datasets pseudo-tissues and computed TSSs for each of them

the same way as the real tissues. Each pseudo-tissue was constructed

to have all five tissues represented equally. We built 30 sets of

pseudo-tissues for each tissue, with the same count of datasets as the

tissue. The TSS-FDR for the tissue t at a given value tss is calculated

as follows:

FDRt tssð Þ ¼
X30

pt¼1

!tss
pt

��� ���=30

 !
1

!tss
t

�� �� : (7)

Where !tss
pt is the set of TSS values for pseudo-tissue pt which are

greater than tss. Similarly, !tss
t is defined for tissue t. We selected

our TSS threshold for the FDR 0.01 for each tissue. Selected TS links

were further filtered to select those with their TSS < 0.4 in all the

other tissues.

2.4 Modeling the effect of expression level on tissue-

specific links
We used a linear model to examine the predictive power of expres-

sion level of pairs of genes for their coexpression value:

bin corr i; jð Þ;kð Þ ¼ b0þb1 eikþ ejk

� �
þb2 eik� ejk

�� ��; i 6¼ j; 1 � k � 53:

(8)

Where eik is the mean expression level of gene i in dataset k. This

model captures the predictive value of the total expression of the

two genes (ß1) and their difference (ß2). The model was fit to all the

links in the five TSNs. The R2 of the model fit is a continuous
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measurement of the predictability of each of link based on the

expressed level of their genes. These R2 values were compared to a

null R2, which was computed by shuffling the mean expression level

of the genes across datasets and refitting the models.

2.5 Coexpression networks built from GTEx datasets for

validation
We built binary and raw coexpression networks for the five GTEx

datasets. Raw coexpression matrices were computed with the

Pearson correlation of the gene expression profiles. To create

binary networks, the threshold was selected so that each resulting

network had the same density to the TAN of the tissue it was

compared to.

3 Results

3.1 Tissue aggregated networks (TANs)
Our primary analysis is based on 53 high-quality datasets represent-

ing five human tissues (brain, lung, skeletal-muscle, blood and liver),

collected on Affymetrix GeneChips (7–15 datasets per tissue, 3563

samples in total, assaying 18 494 genes; Supplementary Fig. S1A).

For each tissue, we identified ‘expressed’ genes based on their mean

expression levels (Supplementary Table S6, Supplementary Material

1). We then built TANs for each tissue by aggregating binary coex-

pression networks constructed from each dataset for that tissue,

retaining links that were observed in multiple data sets, where the

threshold minimum number of dataset networks was set to control

the false discovery rate (FDR < 10�4, Fig. 2, Methods 2.2). Each

TAN has a different number of links (Supplementary Table S6), but

this was not significantly correlated with the number of genes pre-

sent in the networks or the count of datasets for each tissue. The

TANs form the basis for the ensuing analysis.

3.2 Many links are tissue-specific
We next identified tissue-specific links in each TAN. Our definition

of a tissue-specific link is a link which has higher correlation values

in one tissue (the ‘target’ tissue) versus all the ‘other’ tissues, while

allowing for a certain level of noise. To do so we computed a TSS

for each TAN link and a tissue, based on the average of the positive

difference between normalized correlation values from the target tis-

sue versus the rest of the tissues (Methods 2.3). The TSS for a link

and a tissue reflects its specificity to that tissue. We generated null

distributions for TSS to control the FDR for identification of tissue-

specific links (Methods 2.3). Figure 3A–E shows the distribution of

TSS for pseudo-tissues, all the expressed gene pairs and the TAN

links. We identified a fraction between 0.03 and 0.32 of the TAN

links as tissue-specific (Supplementary Table S7, FDR < 0.01).

3.3 Expression level changes explains much of the

tissue-specific coexpression
To capture the relation between mean expression level and coex-

pression, we considered linear models in which the correlation be-

tween two genes is modeled as a function of the mean expression

levels of the linked genes (Methods 2.4). The fitted models were

then examined for how well they could explain the correlation of

the link in the five tissues compared to a null using shuffled expres-

sion values. We find that for most of the tissue-specific links, the

model R2 is higher compared to the null at FDR > 0.01 (Fig. 4A).

This confirms that differences in mean expression can at least partly

explain differences in coexpression.

Tissue-specific links that were not substantially associated with

mean expression levels (having a low R2 for the model fit) are

candidates for pure rewiring, since they are relatively uninfluenced

by the confound of overall expression level shifts (as captured by the

model). However, failure for the models to predict coexpression is

not a sufficient constraint, so we also required that pure links have

both genes marked as ‘expressed’ in all the tissues. This results in a

smaller number of tissue-specific links, noted with dashed boxes

in Figure 4B. Thus ‘pure differential coexpression’ links are by

definition between genes expressed in all tissues, and variability

in mean expression level across tissues does not appear to be

associated with tissue-specificity of coexpression. We stress that

this definition is fairly stringent, but still allows for some variation

in mean expression levels. An example of a pure differentially-

coexpressed link is shown in Figure 1 and additional examples

are given in Supplementary Figure S6. We conclude that while

much of the difference in coexpression among tissues is attribut-

able to changes in mean expression level, there is a small number

of links that appear to undergoing ‘pure’ differential coexpression.

3.4 Reproducibility and validation of the networks
We examined the reproducibility of our TAN, TSN and pure net-

works in the five GTEx datasets: blood, brain-cortex, liver, lung and

skeletal-muscle. We expected that links coming from a tissue will

have generally higher correlation values in the same tissue in GTEx,

compared to the other tissues. We examined the distribution of the

correlation values in each of these GTEx datasets for any given

groups of links (TAN, TSN and pure) from the five tissues.

Figure 5A shows the distribution of correlation values for different

groups of links in GTEx brain-cortex dataset. As expected, TAN,

TSN and pure links from brain have generally much higher correl-

ation values than the null in GTEx brain-cortex. TAN links from

other tissues have higher correlation values than the null as well

(though much less than the brain TAN), and this is expected due to

the common links between TANs. On the contrary, TSN and pure

links from other tissues have generally much lower correlation val-

ues than the null. This is also expected since the TSN and pure links

from other tissues are not expected to have high correlation values

in GTEx brain-cortex. Supplementary Figure S4 has similar plot for

the rest of the tissues and Figure 5B summarizes the reproducibility

of the TAN links in the five GTEx tissues in terms of likelihood

ratio. On average, reproducibility of the pure links is less than TSN

links (52% of tissue-specific links versus 25% of pure links are

reproduced in GTEx - Supplementary Section 4).

One of the known characteristics of coexpression links is that

they can capture functional similarity between genes. In a valid-

ation, we examined this for our binary networks and show that in

the TANs, TSNs and GTEx binary networks, genes sharing a
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coexpression link are more likely to share some functional terms

with each other than that expected by chance. This is also true for

genes with pure links (Fig. 5C).

3.5 Characterization of pure differential coexpression
Despite the relatively small number of pure links, it is naturally of

interest to understand if they have any particular biological rele-

vance, but this presents a challenge. By definition, the genes partici-

pating in pure links are expressed in all of the tissues, and therefore

tend not to have any easily identifiable tissue-specific function.

Furthermore, 86% of genes expressed in all tissues (those eligible to

have pure links) have at least one pure link (6658/7745) and 4267

have pure links in more than one tissue. We were unable to identify

any distinguishing functional feature of the genes with pure links

compared to the minority that lack them. They also do not stand

out in terms of functional similarity: genes associated by a pure link

are more likely to be functionally similar, but no more than the

other classes of links (Fig. 5C). We also found that the neighbor-

hoods of genes paired with pure links show higher topological over-

lap in the target tissue compared to the other tissues (Supplementary

Fig. S5, Supplementary Material 5). This helps validate pure links as

robust differential coexpression, but does not address their biologic-

al meaning.

We next turned to analyzing how pure links contribute to the

network-level representation of gene function. We defined the en-

richment of a term in a network-based on the number of links con-

necting the genes annotated with that term compared to a null, so a

function is enriched if genes with that function have a statistically

significant number of links joining them (Supplementary Section 6).

We hypothesized that pure links in a tissue could contribute to

tissue-specific enrichment of common cellular processes and tested

this by examining what happens if we remove pure links from the

network. We first found that 146, 91 and 43 functions are enriched

exclusively in the brain, liver and lung TSNs, respectively

(FDR < 0.01; too few functions were enriched for blood and skel-

etal-muscle for further analysis). When pure links were removed

from these TSNs, the count of functions enriched in brain dropped

by 20, by 3 in liver and by 4 in lung. The number of such ‘drop-out’

functions for brain and lung is less than those affected by removing

equivalent numbers of random links (P < 0.05, Supplementary

Section 6). It is also less than removing random sets of expression-

induced links (P < 0.01, Supplementary Section 7). Enrichment of

five functions in brain were sensitive only to the removal of pure

links including ‘regulation of mitochondrion organization’ (GO:

0010821) and ‘phospholipid biosynthetic process’ (GO: 0008654—

see Supplementary Tables; none of the enriched functions in lung

and liver showed such sensitivity). We also performed an analysis of

disease associations (rather than functions defined by the gene ontol-

ogy; Supplementary Section 8). Brain and lung had 18 and 30 dis-

eases exclusively enriched in their TSN. Of these, 1 and 5

(respectively) were sensitive to the removal of pure links. However,

all of these terms were also sensitive to the removal of random sets

of links and expression-induced links.

4 Discussion

In this paper, we studied coexpression in five human tissues in an at-

tempt to document the effect of the mean expression level on tissue-

specific coexpression. In each of the five tissues that we have

studied, we were able to identify robust coexpression links which

are, to great extent, reproducible in external datasets (TANs) and

represent functional similarity between the genes. We were also able

to identify tissue-specific links (TSNs). However, we found that, as

hypothesized, the majority of differential coexpression between the

tissues (tissue-specific links) can be substantially explained by

changes in mean expression level of one or both genes and that cases

of pure differential coexpression are relatively rare. Many of our

pure links are reproduced in GTEx datasets but as a group, pure

links contribute to the tissue-specific enrichment of a few functional

terms while in comparison, expression-induced links contribute to

the tissue-specific enrichment of many functional terms. Our work

has implications for other studies of differential coexpression, as we

now discuss.

We have stressed the importance of controlling for the confound-

ing effects of mean expression level on coexpression. Some previous

literature also distinguishes differential expression and differential

coexpression and refer to their complementary role (Amar et al.,

2013; Gaiteri and Sibille, 2011; Lai et al., 2004). The confounding

role of the differential expression has also been noted in the tissue

based coexpression networks, where It was observed that the coex-

pression modules in tissues are enriched with tissue-specific genes

(Langfelder et al., 2011; Pierson et al., 2015). Despite this, we are

aware of only one attempt to control for expression levels in DCA,

in an analysis of a brain development data set (Crow et al., 2016).

More commonly differential expression is merely reported or com-

mented upon alongside differential coexpression results (Hu et al.,

2009; Jiang et al., 2016; Kostka and Spang, 2004; Mentzen et al.,

2009). But most studies of differential coexpression do not even go

that far. We suggest that when differential expression is present, dif-

ferential coexpression should be interpreted very carefully. This

seems especially important given the biological relevance or meaning

all links
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of differential coexpression has rarely matched the hopes of reveal-

ing ‘rewiring’. In fact, we are not aware of any case where ‘regula-

tory rewiring’ has been uncovered in an unbiased DCA, especially in

the absence of differential expression.

One of the challenges in identifying differential coexpression is

controlling sensitivity and specificity. To help control multiple test

penalties that would be incurred by testing every pair of genes, most

studies use data reduction approaches such as considering only a

subset of genes, or ‘gene modules’ in the networks, comparing their

attributes or their preservation (Langfelder et al., 2011; Ray et al.,

2016; Southworth et al., 2009; Tesson et al., 2010). A drawback of

the module-based DCA is that it leaves little room to control for the

effect of expression level on the individual genes.

Validation also remains a challenge. While some studies report

findings based on DCA (Hu et al., 2009; Jiang et al., 2016;

Kostka and Spang, 2004; Mentzen et al., 2009) to our knowledge

they do not present any validation or replication of the differen-

tial coexpression. A strength of our work is that we use large

quantities of data [as required to obtain robust coexpression

results (Gillis and Pavlidis, 2011)], and we show that some ‘pure’

differential expression is reproduced in the GTEx RNA-seq data

set. This was facilitated by the relative ease of finding data sets

for tissues compared to more specialized conditions, but even so

we were not able to find sufficient data to test more tissues.

Similarly, it is unclear how sensitive previous studies have been.

Thus most analyses for differential coexpression are likely to be

underpowered or overwhelmed by noise, but also have an unclear

false positive rate.

At this point we have yet to identify any clear biological signifi-

cance for any of our pure links individually. This is partly because

the nature of the genes makes it difficult to apply bioinformatic

characterization methods to them. First, pure differential coexpres-

sion links are between genes expressed in all five tissues. This is in

contrast to genes that are tissue-specific, which often have known,

or more easily inferred, tissue-specific functions. Thus, we cannot

ascribe a tissue-specific function of a pure link based on the expres-

sion pattern of the genes across tissues. Also, most of the genes

expressed in all the tissues have at least one pure link—they are not

a ‘special’ small subset of genes. Second, functional annotations of

genes are rarely tissue-specific. That is, there are few cases where a

gene expressed in multiple tissues has known distinct functions in

those tissues (at least, such information is not captured by resources

such as the gene ontology). Overall, this means there is a dearth of

information on tissue-specific gene functions that are not attribut-

able to differences in mean expression level, and thus evaluation of

pure links is a challenge. Our results from a network-wide function-

al enrichment analysis showed that pure links in brain contribute to

the tissue-specific enrichment of a few functional terms. This does

not lead to any clear biological conclusion, but could assist the

interpretation of results from other genomic or transcriptomic

studies on the brain. Finally, unlike protein–protein interactions,

coexpression is not a discrete property of a pair of genes nor an

actual physical interaction. Coexpression is derived from the

correlation matrix of the entire data set, so any tightly coexpressed

pair of genes is essentially guaranteed to be part of a larger pattern

(i.e. cluster or module) of genes. Therefore, coexpression links do

not map cleanly to regulatory relationships nor protein–protein

interactions. As a result, the core idea of DCA as reflecting

‘rewiring’ by necessity involves gene neighborhoods, modules or

clusters. Taken together, these issues mean that the ability to

extract specific (i.e. biochemical or physical) interactions from

differential coexpression is severely limited. This limitation does

not necessarily detract from the potential utility of tissue- or other

context-specific data to improve the relevance of function predic-

tions from coexpression.
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