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Abstract

Over the past decades, the use of molecular markers has revolutionized biology and led to

the foundation of a new research discipline—phylogeography. Of particular interest has

been the inference of population structure and biogeography. While initial studies

focused on mtDNA as a molecular marker, it has become apparent that selection and

genealogical lineage sorting could lead to erroneous inferences. As it is not clear to what

extent these forces affect a given marker, it has become common practice to use the

combined evidence from a set of molecular markers as an attempt to recover the signals

that approximate the true underlying demography. Typically, the number of markers

used is determined by either budget constraints or by statistical power required to

recognize significant population differentiation. Using microsatellite markers from

Drosophila and humans, we show that even large numbers of loci (>50) can frequently

result in statistically well-supported, but incorrect inference of population structure using

the software BAPS. Most importantly, genomic features, such as chromosomal location,

variability of the markers, or recombination rate, cannot explain this observation. Instead,

it can be attributed to sampling variation among loci with different realizations of the

stochastic lineage sorting. This phenomenon is particularly pronounced for low levels of

population differentiation. Our results have important implications for ongoing studies

of population differentiation, as we unambiguously demonstrate that statistical signif-

icance of population structure inferred from a random set of genetic markers cannot

necessarily be taken as evidence for a reliable demographic inference.
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Introduction

With the advent of PCR, the 1980s saw the dawn of the

field of phylogeography, a discipline that deals with the

study of processes that lead towards the observed dis-

tribution of genetic variation within and between popu-

lations or species in a geographical and temporal

context. In its early stages, it focused on the distribution
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of mitochondrial (mtDNA) genetic variation (Avise

et al. 1987; Avise 2001). Nonetheless, mtDNA represents

a single locus, and as expected by the stochasticity of

the coalescent process (Kingman 1982), its genealogy

may not reflect that obtained with other independent

molecular markers such as nuclear microsatellites

(Avise 2001; Brito & Edwards 2009; Degnan & Rosen-

berg 2009; Than & Nakhleh 2009).

Inference of population structure is at the core of

phylogeographic studies as it reflects divergence

between populations. While the primary focus in phy-

logeographic studies is on population differentiation

caused by genetic drift, it must be kept in mind that

some genomic regions are also affected by selection.
� 2011 Blackwell Publishing Ltd
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Contrasting the pattern of population structure for dif-

ferent genomic regions has been advocated as an

approach to distinguish between neutrally evolving and

selected regions in the genome (Lewontin & Krakauer

1973; Beaumont 2005; Excoffier et al. 2009; Turner et al.

2010). Furthermore, identification of the underlying

population structure is also important for other research

areas such as personalized medicine. Neglecting popu-

lation subdivision can lead to development of drugs

with undesired population-specific phenotypical

responses (Wilson et al. 2001). Moreover, not account-

ing for population structure will result in a high false

discovery rate in association studies (Holsinger & Weir

2009; Kang et al. 2010; Zhang et al. 2010). Hence, a reli-

able identification of population structure is of utmost

importance as it reflects past biological processes that

can explain the distribution of genetic variation.

For most species, the characterization of population

structure is still limited by the availability of informative

markers. Microsatellites are a very powerful tool for such

studies as their high polymorphism and mutation rates

allow differentiating even between recently diverged

populations or species (Goldstein & Pollock 1997; Schlöt-

terer 2001; Hofer et al. 2009). While microsatellites are

highly abundant in most species, their isolation requires

a considerable investment, thus many studies rely on

only a handful of microsatellites (<50 markers) to make

inferences on the evolutionary history of populations

and species (Dirienzo et al. 1994; Beaumont et al. 2001;

Chiari et al. 2006; Lukoschek et al. 2008).

In this study, we analyse how the number of markers

and their chromosomal location affect the inference of

population structure using the software BAPS. We dem-

onstrate that different combinations of microsatellite
Region name

abbreviation

Cytological

position Physical distanc

X region 1 Xr1 2D1–2D5 1 939 294–2 0

X region 2 Xr2 4C2–4C4 4 241 724–4 3

X region 3 Xr3 8A4–8B2 8 573 624–8 6

X region 4 Xr4 11B5–11B10 12 460 031–12 5

X region 5 Xr5 14A8–14B1 15 907 856–16 0

2 region 1 2r1 21F3–21F4 1 229 519–1 2

2 region 2 2r2 27E1–27E3 7 087 509–7 1

2 region 3 2r3 33E10–33F2 12 568 931–12 6

2 region 4 2r4 46C4–46D1 5 804 822–5 8

2 region 5 2r5 57E9–57F2 17 401 824–17 4

3 region 1 3r1 62A5–62A10 1 552 864–1 6

3 region 2 3r2 65D3–65D6 6 903 595–6 9

3 region 3 3r3 70C3–70C4 13 711 295–13 7

3 region 4 3r4 89F3–90A2 13 062 204–13 1

3 reigon 5 3r5 98B2 23 528 849–23 6

4 region 4r1 102B5–102C1 366 587–4

� 2011 Blackwell Publishing Ltd
markers often result in significantly different inference

of population structure. Most importantly, each of the

different clustering solutions found is statistically well

supported with posterior probabilities larger than 0.95.

The smaller the number of markers, the more pro-

nounced this effect is. For the data set of Drosophila mel-

anogaster used here, a consistent genetic mixture model

was obtained only when more than 120 loci were

included, i.e. in such analyses, we found that the

inferred population structure was always the same.

Interestingly, we do not only detect this effect in the

data of D. melanogaster but also in a large human data

set (Rosenberg 2006).
Materials and methods

Microsatellite design

Previous studies surveyed the genetic diversity of Dro-

sophila melanogaster using multiple genetic markers

scattered across its genome (Dieringer & Schlötterer

2003; Glinka et al. 2003; Ometto et al. 2005; Schlötterer

et al. 2006; Nunes et al. 2008). Contrary to these studies,

we inferred population structure using markers

restricted to 16 different genomic regions. On average,

each of these regions encompasses 83.3 (±16) kb, and the

microsatellites within them are spaced by 11 kb

(±2.5 kb) (Fig. S1, Supporting information). Each chro-

mosome is represented by five such regions except the

4th chromosome that is represented by a single region.

Table 1 provides detailed information about the position

of the markers on each chromosome using the D. mela-

nogaster genome release 5.1 as reference. Throughout the

manuscript, we refer to the chromosomal regions using
Table 1 Drosophila melanogaster regions’

description. Position of regions accord-

ing to cytological bands and physical

distance. Physical distance is measured

in base pairs within each Muller element

e

Number

of loci

07 054 8

45 590 8

75 060 12

33 695 12

03 183 8

79 955 8

61 029 8

58 369 8

91 266 8

81 742 8

62 817 8

71 788 8

94 749 8

40 538 8

00 270 8

67 371 9



Table 2 Drosophila melanogaster sam-

ples’ description. Country and location

refer to the geographical location where

the samples come from. n is the number

of isofemale lines collected in the corre-

sponding location. F1 and inbred indi-

cate whether the samples used in this

study are the first offspring generation

of the isofemale lines collected in the

wild (F1) or if they are an unknown

generation, which has been subject to

inbreeding (inbred)

Country Location Abbreviation n F1 ⁄ Inbred

China Heilongiiang Chi 38 F1

Taiwan Hsin Chu Hchu 11 Inbred

Malaysia Kuala Lumpur KL 20 Inbred

Philippines Cebu CEB 20 Inbred

Poland Katowice Kat 40 F1

The Netherlands Texel Tex 40 F1

Italy Napoli Np 30 F1

Austria Vienna KaBe 38 F1

Portugal Evora Evo 29 F1

Germany Neustadt Neu 30 Inbred

USA Penn State Pe 15 F1

USA New Jersey NJ 30 F1

Belize La Milpa Bel 16 F1

Brazil Campinas Cbr 33 F1

Bolivia Unknown BOL 19 Inbred

Australia Wooton Woo 36 Inbred

Australia Moruya Mor 31 Inbred

Australia (Tasmania) Cygnet Cyg 30 Inbred

Australia (Tasmania) Trial Bay Orchard Tbo 26 Inbred

Zimbabwe Sengwa Zs 13 Inbred

Zimbabwe Victoria Falls Zw 24 Inbred
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the nomenclature in Table 1. Using this design, it is pos-

sible to compare population structure inferred from (i)

16 different genomic regions, (ii) entire chromosomes,

and (iii) the whole genome.
Microsatellite data

DNA was extracted from single females of iso-female

lines collected from 21 localities around the world (569

samples; Table 2). These samples were genotyped for

137 microsatellites (Table S1, Supporting information;

the genotype data set has been deposited in Dryad:

http://dx.doi.org/10.5061/dryad.8038). The microsatellite

primer pairs were designed based on the D. melanogaster

genome sequence available in Flybase (http://www.fly

base.org) using Primer3 (Rozen & Skaletsky 2000). Multi-

plex PCRs were carried out for sets of 10 microsatellite

primer pairs at a time using fluorescently labelled for-

ward primers (Hex, Tet and Fam). Each twenty micro-

liters PCR reaction consisted of 100 ng of genomic DNA

as template, 3.2 lL of Buffer B 10·, 2 lL MgCl2 25 mM,

0.4 lL dNTPs (10 mM each), 0.2 lL of each primer

(20 lM) and 0.4 lL of Taq polymerase (5 U ⁄ lL). PCR

products were analysed on a MegaBACE-500 Sequencer

(GE Healthcare) and scored with Genetic Profiler (v2.2,

GE Healthcare).
Analysis

Initially we determined if our markers recovered previ-

ously reported patterns of population structure and

genetic diversity in D. melanogaster when analysing (i)
all markers simultaneously and (ii) markers separated

by chromosome. We further dissected how the inferred

population structure changed when the different chro-

mosomal regions were analysed individually. For all

analyses, we inferred the pattern of population struc-

ture using the group-based clustering approach imple-

mented in BAPS 5.2 (Corander & Marttinen 2006). As

previous work suggested small, but significant differ-

ences among cosmopolitan D. melanogaster samples, we

performed the genetic mixture analysis at the level of

populations instead of individuals. The latter would

also be possible using the options available in BAPS soft-

ware; however, the bootstrap analyses would be com-

putationally much more time-consuming. In addition,

statistical power to correctly detect the underlying pop-

ulation structure is increased by the conditioning on the

sample groups when it is biologically feasible (Corander

& Marttinen 2006). A major part of the increase in

power stems from the fact that in clustering of popula-

tions, the prior probability mass is distributed over an

enormously smaller set of biological hypotheses com-

pared to the situation where sampled individuals can

be freely clustered into groups. Under a typical evolu-

tionary scenario, the larger set of hypotheses about

genetic population structure defined by clustering of

individuals contain a considerable fraction of popula-

tion structures that are extremely implausible in the

light of sampling design and auxiliary knowledge about

the organism. Thus, when a uniform prior distribution

over clusterings of individuals is used, the implausible

hypotheses are given disproportionate amount of prior

support. In contrast, when clustering of populations is
� 2011 Blackwell Publishing Ltd
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adopted, most implausible hypotheses about genetic

population structure underlying the samples are

assigned prior probability equal to zero (Corander &

Marttinen 2006). A recent enhancement of the STRUCTURE

software exploits similar reasoning (Hubisz et al. 2009).

For all BAPS analyses, we assumed a uniform prior dis-

tribution of the number of clusters ranging from 1 to

the maximum number of groups in the analysis, e.g. 21.

We confirmed the results from the analyses by repeat-

ing each run three times (results not shown). We com-

puted standard summary statistics (e.g. heterozygosity)

in MSA 4.05 (Dieringer & Schlötterer 2003). For the

expected heterozygosity, which is influenced by the ran-

dom loss of allelic variation because of inbreeding in

isofemale lines, we report the average heterozygosity

calculated from 200 data sets where in each of them,

one of the alleles was randomly discarded from each

individual.
Comparison of clustering solutions

Comparing the clustering solutions from different data

sets (same populations but different loci) is not a

straightforward task. If different clustering solutions are

obtained, it is necessary to assess their statistical sup-

port and whether they significantly differ from each

other. It is not possible to contrast the marginal likeli-

hoods of clustering solutions directly as these values

depend on the number of markers used and their infor-

mation content (i.e. number of alleles, gene diversity).

Hence, rather than comparing two clustering solutions

directly, we determined their relative compatibility with

respect to a set of reference loci. This approach is com-

putationally considerably simpler than a direct compari-

son of concordance of the obtained clusters. Using, for

instance, the adjusted Rand Index (Rand 1971) would

necessitate the storage of all obtained clustering solu-

tions for different data sets. Specifically, the following

steps were performed in our procedure:

(i) BAPS was run to determine the best clustering solu-

tion of the data set of interest (test data set). (ii) The

same number of loci as in the test data set was sampled

without replacement from a larger data set that

excluded the loci from the test data set (random data

set). (iii) BAPS was run on the random data set and the

marginal likelihood of the best clustering solution given

the random data set was recorded (mlrandom). (iv) The

marginal likelihood (ml) of the clustering solution from

the test data set when applied to the random data set

was determined (mltest) and (v) the difference between

these values (mltest and mlrandom) was calculated. If the

test data set and the random data set result in the same

clustering solution, then the difference in ml is zero (or

very close to zero). Note that this procedure compares
� 2011 Blackwell Publishing Ltd
the ml of two clustering solutions with the same data

set (i.e. the random data set), thus eliminating the prob-

lems mentioned earlier. (vi) Steps 2–5 were repeated

10 000 times to obtain a distribution of differences in

ml-values. (vii) Test data sets were compared pairwise

to each other with a two-sample non-parametric Kol-

mogorov–Smirnov (KS) test using the ml-difference dis-

tributions. The KS test was calculated with R 2.9.1 (R

Development Core Team 2009). A significant KS test

indicates that the distributions of ml-differences of two

test data sets differ from each other, indicating that the

clustering solutions of the two data sets are different.

For the comparison among regions, the test data set

consisted of one region. The random data set consisted

of the remaining markers on the same chromosome or

the markers in a different chromosome. For the chromo-

some-wise comparison, the test data set was the chro-

mosome and the random data set consisted of all

remaining markers in the data set.
Genetic features that affect the accuracy of
demographic inference

As the genomic regions exhibit different genetic fea-

tures such as their sequence length, the number of

genes contained or average heterozygosity, we sought

to determine if such features could explain why regions

differed in how well the markers recovered the correct

clustering solution. For this purpose, we computed lin-

ear models using the features of interest as explanatory

variables (x) and the marginal likelihood (from condi-

tioning the complete data set on the clustering solution

of each region) as response variable (y). We tested the

following features as explanatory variables (calculated

for each region): the length of the region, the number of

genes annotated, the number of transposable elements

present, the number of non-coding RNAs annotated,

the presence ⁄ absence of inversions, the average hetero-

zygosity, the average FST, the average h estimated from

gene diversity and the stepwise mutation model, and

the recombination rate (Fiston-Lavier et al. 2010). For

the tests involving average heterozygosity and h esti-

mates, we repeated the analyses using the non-African

populations only to avoid obscuring any potential sig-

nal in the data because of higher genetic variability of

the African populations (Begun & Aquadro 1993; Carac-

risti & Schlötterer 2003). These analyses were performed

in R v 2.9.1.
Effect of divergence on the inference of population
structure

To determine the effect of divergence on the inference

of population structure, we simulated five populations
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that simultaneously diverged from their common ances-

tor (i.e. an unresolved polytomy) and presented on

average the same divergence from each other as mea-

sured with pairwise FST. We simulated four scenarios

with a different degree of divergence between popula-

tions, i.e. an average pairwise FST of 0.01, 0.05, 0.1 or

0.15. Each simulated population was represented by 50

individuals and 1000 independent loci. The simulations

were produced with ms and converted to microsatellite

data with ms2ms.pl (Pidugu & Schlötterer 2006) (ms

command lines are available in Data S1, Supporting

information). We performed 1000 random draws of sets

of n loci (n = 10, 20, …, 100) from the data set of 1000

simulated loci using BAPS. For each data set, we counted

(i) how many times the simulated population structure

(five clusters) was inferred, (ii) how many different

clustering solutions were found, and (iii) whether clus-

tering solutions other than the simulated one had high

statistical support (i.e. posterior probability (pp): >0.95).
Fig. 1 Genealogical lineage sorting. The black contour lines

indicate the population history of three populations that

recently diverged from a common ancestor. The two panels

show the genealogy of two loci. For each locus, three alleles are

shown by different colours and individuals are represented by

the tips of the tree. Owing to random drift, the alleles are differ-

ently assigned to the three populations (genealogical lineage

sorting). Importantly, the genealogical lineage sorting differs

between the two loci, resulting in a different clustering solution.

While the inferred clustering is concordant with the population

history for locus 1, a different clustering is obtained for locus 2.
Genealogical lineage sorting

We considered three recently diverged populations (A,

B and C) genotyped with five classes of markers. The

classes were defined as follows: the first class recovers

the true underlying structure of the populations with

population B clustering with C and separately from A

[i.e. A(BC)] (Fig. 1). The 2nd and 3rd class of markers

result in clustering solutions different from the true

underlying structure, i.e. population A clusters with

either B or C, respectively, and separately from the

third population [e.g. B(AC)]. The 4th class results in a

single population cluster [i.e. (A,B,C)], and the 5th class

results in each population clustering separately from

the others [i.e. (A)(B)(C)]. To show the effect of genea-

logical lineage sorting, we sampled with replacement

1000 times a set of n loci from a distribution of the five

marker types. We considered eight distributions of the

five markers. The relative frequency of makers of class

2–5 were kept equal, while the frequency of the 1st type

of marker (supporting the true clustering) was varied

between 20% and 90%. For each of the random draws

of n loci, we used a majority rule to determine which of

the patterns of population structure was supported by

the data set [i.e. A(BC), (AB)C, (AC)B, (ABC) or

(A)(B)(C)]. We repeated this process for values of n in a

range from 10 to 100.
Frequency of the clustering solutions

As inference of population genetic structure is fre-

quently based on substantially fewer markers than in

this study, we aimed to determine the number of loci

required to obtain the clustering solution obtained with
the full data set. For this purpose, we performed 1000

random draws of a set of n loci from the full microsatel-

lite data set (i.e. 137 markers). We analysed each of the

random subsets of loci with BAPS and determined the

frequency of the expected clustering solution among the

1000 random draws. This procedure was repeated for

values of n in the range from 4 to 136. However, it

should be noted that for values of n close to the upper

limit, the random subsets will be overlapping to a large

degree because of the limited number of all possible

subsets of the total set of loci.

As our results based on the D. melanogaster microsat-

ellites may be specific to our data set, we compared
� 2011 Blackwell Publishing Ltd
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them to a neutrally simulated data set of independent

loci produced with the program ms (Hudson 2002) to

assert their repeatability. The coalescence simulations

were performed in such way that (i) they reflected the

evolutionary history of 13 D. melanogaster populations

(two African, six European, two North-American and

three Asian populations), i.e. showed a high differentia-

tion between African and Non-African populations, a

reduced genetic divergence between European and

North-American populations and the reported higher

divergence between the Asian populations (Schlötterer

et al. 2006) and (ii) that summary statistics (pairwise

population FST, h, expected heterozygosity and allelic

richness) calculated from 137 randomly picked loci

among the simulated ones would match those from our

full microsatellite data set (ms command line available

in Data S1, Supporting information). The ms outputs

were converted to microsatellite data following the

stepwise mutation model using the script ms2ms.pl and

analysed with MSA and BAPS.

We repeated the analysis performed on the D. mela-

nogaster data set on the curated extensive human micro-

satellite data set H971 (Ramachandran et al. 2005;

Rosenberg 2006) and considering the Bantu SW and SE

as different populations (Romero et al. 2009) (Tables S2

and S3, Supporting information).
Results

Our analyses based on 137 polymorphic microsatellites

confirm several features of the global pattern of varia-

tion in Drosophila melanogaster and reflects the pattern of

population differentiation inferred by FST (Table 3).

African populations harbour more genetic variation

than non-African populations (Table S4, Supporting

information). This trend was significant for all major

chromosomes (Wilcoxon rank sum test P-value <0.01),

which is consistent with previous reports (Begun &

Aquadro 1993; Kauer et al. 2002). After correcting for

the different effective population sizes of the X chromo-

some and the autosomes (Kauer et al. 2002), the reduc-

tion in variation was slightly more pronounced on the

X chromosome than on the major autosomes. This

observation is consistent with previous studies (Kauer

et al. 2002), but we note that the difference is not statis-

tically significant for the fourth chromosome (Wilcoxon

rank sum test, P = 0.297).

Using the full data set of 137 loci, we used a model-

based clustering method for multilocus data as imple-

mented in BAPS (using the option of clustering of

groups) and obtained eight distinct clusters (posterior

probability = 1) (Fig. 2). These eight clusters support

the well-characterized distinction between African and

non-African D. melanogaster (Begun & Aquadro 1993;
� 2011 Blackwell Publishing Ltd
Caracristi & Schlötterer 2003), as well as a separation of

the European, North-American and Asian populations

(Schlötterer et al. 2006; Nunes et al. 2008). Interestingly,

the Chinese population and the Kuala Lumpur popula-

tion previously reported to cluster separately from each

other (Schlötterer et al. 2006; Nunes et al. 2008) belong

to the same cluster in our analysis.

We repeated the population structure analysis by

splitting the data according to chromosomal location.

Contrary to expectations, the chromosome-based analy-

sis yielded different clustering solutions for each chro-

mosome with respect to the total data set (Fig. S2,

Supporting information). For the X chromosome, the

European population of Evora clustered with the

North-American ⁄ Australian populations. The 2nd chro-

mosome data set showed a lack of differentiation

between the North-American ⁄ Australian and the Euro-

pean populations, and between the Asian populations.

The 3rd chromosome data grouped Texel (Europe) sep-

arately of the remaining European populations; while

for the 4th chromosome, the four Asian populations

clustered together and the Tasmanian populations were

grouped in the same cluster with the populations of

Evora, Texel and the North-American ⁄ Australian

populations.

An even greater diversity of different clustering solu-

tions was obtained when we used sets of eight or 12

microsatellites separated by no more than 14 kb

(Fig. S3, Supporting information). The number of clus-

ters varied between a minimum of five (Xr3) and a

maximum of eight (multiple regions on different chro-

mosomes), and only Xr2 resulted in the same clustering

solution as the full data set. Interestingly, the statistical

support (i.e. posterior probability) was high (‡0.90) for

all but two of the 16 regions. Lower support was

obtained for region 3r4 (pp = 0.65) and 2r4 (pp = 0.85).
Significant heterogeneity in clustering among genomic
regions

Our analyses indicated that even though all genomic

regions resulted in different clustering solutions, most

of them were statistically well supported as reflected by

their high posterior probabilities. However, it is not

clear from this analysis whether these optimal cluster-

ing solutions are significantly different from each other.

Based on comparisons using a common reference data

set (see Materials and methods), we found that the clus-

tering solutions of different genomic regions signifi-

cantly differed from each other (Kolmogorov–Smirnov

test, P < 0.0004 after Bonferroni correction; Data S1,

Supporting information). A chromosome-wise analysis

also resulted in all pairwise comparisons significant

(P < 0.008 after Bonferroni correction). Visual inspection
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Fig. 2 BAPS clustering solution for the full data set. Population order from left to right: Bolivia, Brazil, Belize, New Jersey (USA),

Pennsylvannia (USA), Cebu (Philippines), China, Hsin-Chu (Taiwan), Kuala Lumpur (Malaysia), Evora (Portugal), Kahlenberg (Aus-

tria), Katowice (Poland), Neustadt (Germany), Naples (Italy), Texel (The Netherlands), Trial-Bay (Tasmania), Cygnet (Tasmania),

Wooton (Australia), Moruya (Australia), Sengwa (Zimbabwe), Victoria Falls (Zimbabwe). Each population is represented by a single

rectangle that is coloured according to the cluster to which the population belongs to (e.g. the two African populations belong to the

same cluster). Cluster 1: Bolivia (red), Cluster 2: Brazil (purple), Cluster 3: North-America ⁄ Australia (green), Cluster 4: Cebu (light

orange), Cluster 5: China ⁄ Kuala Lumpur (yellow), Cluster 6: Europe (light blue), Cluster 7: Tasmania (brown) and Cluster 8: Africa

(dark blue).

Table 4 Support of each region’s data set to the full Drosophila

melanogaster data set clustering solution. Results are ordered

from top to bottom according to their marginal likelihood (the

values refer to each clustering solution when applied to the full

data set)

Clustering region Log (marginal likelihood)
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of the distributions of ml-differences for each region

comparison against random data sets of the three major

chromosomes (Fig. S4, Supporting information) con-

firmed that the regions differ in their ml-differences.

While some regions have a narrow distribution centred

on small ml-differences, others have a broad distribu-

tion with large ml-differences.
Xr2 )144 746.726

Xr4 )144 875.0135

2r4 )144 980.7091

2r5 )145 053.5297

3r2 )145 356.1026

4r2 )145 694.1783

3r5 )145 735.4679

Xr5 )145 886.1499

2r2 )146 170.216

Xr3 )146 426.5436

3r1 )146 530.5746

2r3 )146 550.7418

Xr1 )146 664.9901

2r1 )146 982.8241

3r3 )147 103.3378

3r4 )148 003.3915
Predictive power of different marker sets

Given that all regions differed significantly from each

other, we compared them for their ability to recover the

clustering solution of the complete data set. Hence, we

calculated the marginal likelihood of the complete data

set resulting in the clustering solution of each of the

regions. The three regions with the highest marginal

likelihood score were Xr2, Xr4 and 2r4. The smallest

marginal likelihood score was obtained for regions 3r3,

2r1 and 3r4 (Table 4) with region 3r3 failing to reveal

any population structure between the European, North-

American, Australian, the Brazilian and the Asian

samples (except Cebu) (Fig. 3).

Given the large heterogeneity in significant clustering

solutions observed for the 16 regions analysed, we were

interested whether some properties of the analysed

regions affect the ability to recover the clustering of the

complete data set. A wide range of explanatory vari-

ables (e.g. gene diversity, number of genes, inversions)

was examined, but none of them could explain the clus-

tering heterogeneity among regions (Table S5 and

Fig. S5, Supporting information).

We further suspected that selective sweeps—res-

tricted to local genomic regions—may have affected the

partitioning of allelic variation among the populations,

resulting in alternative clustering solutions for the dif-

ferent regions (Beisswanger et al. 2006; Turner et al.

2010). We tested this hypothesis by genotyping four

additional microsatellites in two randomly selected

regions with a clustering solution different from that of

the full data set (Xr3 and Xr4). Other than expected
� 2011 Blackwell Publishing Ltd
under a scenario of selective sweeps, increasing the

number of markers by 50% resulted in a significantly

different clustering solution (Kolmogorov–Smirnov test,

P < 0.0005, Fig. S3, Supporting information) supported

with a posterior probability higher than 0.98. Based on

this result, we concluded that natural selection is not

the cause for the different clustering solutions among

genomic regions.
Reliability of the clustering solution depends on the
number of loci

As linkage disequilibrium does not extend beyond 2 kb

in D. melanogaster (Miyashita & Langley 1988; Langley

et al. 2000), we expect markers to behave independently

even within the genomic regions analysed by us. This

allowed us to randomly pick subsets of markers from



Fig. 3 Clustering solutions of the three

regions supported with the highest (top)

and lowest (bottom) likelihood by the

full data set. From top to bottom: clus-

tering solutions of the regions Xr2, Xr4,

2r4, 3r3, 2r1 and 3r4. Populations order

in the figure is the same as in Fig. 2.
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the full D. melanogaster data set to test the effect of the

number of loci on clustering solution.

Interestingly, data sets similar to those used for typi-

cal biogeographical surveys (i.e. comprising less than 30

loci) did not perform well—the probability of obtaining

the globally best clustering solution was less than 15%.

More than 95 loci were required to have 80% chance to

capture the globally best clustering solution, and only

when more than 120 markers were analysed, all data

sets resulted in the best clustering solution. Similarly,

we found that the total number of different clustering

solutions obtained decreased with an increasing num-

ber of markers, indicating that the power to recover the

best clustering solution depends on the number of

markers analysed (Fig. 4a).

We repeated this analysis using a human data set

representing 54 populations and 783 polymorphic

microsatellites (Romero et al. 2009). Similarly to the
(a) (b

Fig. 4 Change in frequency of the best clustering solution for differe

frequency of the best clustering solution obtained with the complete d

clustering solutions for the different numbers of randomly sampled lo
D. melanogaster data set, we found that a large number

of microsatellites need to be analysed to have high con-

fidence in the obtained clustering solution. To obtain

95% confidence on the assignation of the populations to

the five clusters described in the literature, 600 micro-

satellites are needed (Fig. 4b). Like for D. melanogaster

up to 91.3% of the clustering solutions differed from

each other when only five markers where randomly

sampled, and the number of inconsistent clustering

solutions rapidly dropped when larger sets of loci were

analysed (Fig. 4b).

We complemented our result by computer simula-

tions. We simulated 137 independent loci with ms using

simulation parameters that coarsely matched the

patterns of differentiation and variability in natural

D. melanogaster populations (Begun & Aquadro 1993;

Caracristi & Schlötterer 2003; Nunes et al. 2008). Like

the real D. melanogaster data set, we found that a
)

nt number of loci. The black solid line represents the change in

ata set. The grey dashed line represents the different number of

ci. (a) Drosophila melanogaster data set, (b) Homo sapiens data set.

� 2011 Blackwell Publishing Ltd
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moderate number of loci frequently resulted in statisti-

cally well-supported clustering solutions that did not

match the simulated demography. Only with a large

number of loci, the true clustering could be recovered

(i.e. 105 loci are needed to reach a 95% reliability on

the clustering solution).
Fig. 5 Simplified illustration of the effect of genealogical line-

age sorting. The black line represents the frequency with which

the true clustering solution [i.e. A(B,C)] occurs among 1000

random draws of a set of n loci (n from 10 to 100). The distri-

bution of marker classes used to perform the random draws of

n loci for this figure consisted of 50% of the loci reflecting the

true clustering solution and an even proportion of the other

types of loci resulting in different clustering solutions than the

true one. The results based on other distributions of marker

classes are shown in Data S1, Supporting information.
Genealogical lineage sorting

So far, we demonstrated that a large number of loci are

required to recover the genealogy of populations by

using a Bayesian clustering method. We did not pro-

vide an explanation for the counter-intuitive observa-

tion of highly supported, but incorrect clustering

solutions. The key insight explaining this result is

depicted in Fig. 1. Genetic drift after the split of popu-

lations results in a stochastic lineage sorting, with some

alleles being under-represented or even lost in one pop-

ulation, while highly frequent in another one. Unlinked

loci will capture independent realizations of the drift

process, possibly resulting in a different grouping of

populations (Fig. 1).

To illustrate how genealogical lineage sorting could

result in the counter-intuitive result of a statistically

well supported, but incorrect clustering solution, we

analysed a scenario where three populations (A, B and

C) recently diverged (Fig. 1) and were genotyped for

five classes of loci. The classes result in either a clus-

tering solution reflecting the correct pattern of popula-

tion divergence [i.e. class 1 = A(B,C)] or in wrong

clustering solutions [classes 2–5 = other clustering solu-

tions than A(B,C)]. Using a majority rule, the results

of this example recapitulate the observations with the

real and simulated data sets (Figs 5 and S6, Support-

ing information), i.e. with a small number of loci, it is

possible to obtain the incorrect clustering solution sim-

ply by chance as the majority of the sampled loci sup-

ports a wrong clustering solution. Furthermore, if the

proportion of loci supporting the correct population

structure is small relative to the proportions of other

loci resulting in different clustering solutions (e.g.

dashed blue line in Fig. S6, Supporting information),

the probability of retrieving the true population struc-

ture does not increase despite the larger number of

loci sampled.

We performed coalescent simulations to test how

divergence among populations affects the genealogical

lineage sorting. We assumed a simple demography

with five populations branching off at the same time

in the past. Using different numbers of loci and time

points of the population split, we evaluated the clus-

tering solutions. Consistently with previous results

(Latch et al. 2006), very low differentiation (FST £ 0.01)

always resulted in a single population cluster with
� 2011 Blackwell Publishing Ltd
high statistical support. On the contrary, high differen-

tiation (FST = 0.1) led to the inference of the correct

number of populations, even with a small number of

loci (e.g. 30). Intermediate levels of differentiation (FST

0.01–0.05) showed the effect of genealogical lineage

sorting, where for a low number of loci (e.g. 30), fewer

than five populations were detected and supported

with posterior probabilities larger than 0.95 (Fig. 6).

This suggests that with intermediate levels of popula-

tion differentiation, by chance the allele frequencies for

two (or more) populations have not diverged to an

extent that would allow distinguishing these popula-

tions as separate units. Most important, this should

not be confounded with insufficient statistical power,

as the posterior probability was generally high. Inter-

estingly, we obtained qualitatively similar results when

we used STRUCTURE (Pritchard et al. 2000) rather than

BAPS with a smaller data set (50 replicates for each

draw of n loci in each FST scenario; Fig. S7, Supporting

information). This suggests that the variation in infer-

ences over sets of loci is not simply a consequence of

the estimation algorithms used by BAPS, but a more

common feature of Bayesian clustering–based inference

in this context, which reflects true stochastic variation

in biological signals.



Fig. 6 Relationship between population differentiation and

genealogical inference. We used computer simulations to deter-

mine the frequency of correctly inferred clustering solutions in

relationship to the number of loci used and population differ-

entiation. Results are shown for FST values of: 0.01 (dashed

grey line), 0.05 (solid blue line), 0.1 (dashed light blue line)

and 0.15 (dotted black line).
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Discussion

This study reports the most comprehensive microsatel-

lite data set (137 loci) in Drosophila melanogaster covering

all chromosomes in 21 populations. With a significantly

larger number of loci analysed than other worldwide

microsatellite surveys in D. melanogaster, we recover

features of the global pattern of genetic variation and

divergence known in the species.

A distinct feature of this data set is that microsatel-

lites were not randomly distributed over the genome,

but clustered in 16 groups of markers within intervals

of 83.3 (±16) kb. The naı̈ve expectation would be that

each group captures the same genealogy—or a slight

modification of it, which statistically is not significantly

different from the true underlying genealogy. Our anal-

ysis revealed, however, that all groups of markers

resulted in highly supported clustering solutions

(pp > 0.9), which nonetheless differed significantly from

each other. Only a single group of eight markers

resulted in the same clustering solution as the full data

set. Strikingly, this heterogeneity in clustering solutions

cannot be attributed to different properties of the geno-

mic regions. Based on the analysis of additional mark-

ers in the same regions and computer simulations, we

conclude that the markers in a region are independent

of each other. Consistent with this, our computer simu-

lations showed that random subsets of unlinked mark-

ers also produced strongly supported clustering

solutions that differed significantly from each other.
Only when a large number of loci are analysed jointly,

it is possible to accept the obtained clustering solution

with high confidence.

Interestingly, this effect cannot be attributed to insuf-

ficient statistical power with fewer loci, as most cluster-

ing solutions have high statistical support. Rather, the

better performance with more markers is probably the

outcome of a lower weight given to loci supporting an

alternative clustering solution. Unfortunately, there is

currently no tool available that predicts the number of

loci required to have confidence in the obtained cluster-

ing solution.

Our observation contrasts a previous study, which

suggested that in D. melanogaster as few as four micro-

satellite loci are sufficient to recover the known popula-

tion structure of the species if the most informative

markers are used. When selecting markers randomly,

10 markers are enough for 93% correct population

assignment (Rosenberg 2005). We think that this dis-

crepancy largely stems from the fact that Rosenberg

(2005) used fewer populations than we did. Nonethe-

less, our observation that an extensive number of loci

are also required for data sets other than the D. mela-

nogaster one is supported by previous findings (Take-

zaki & Nei 1996, 2008). Using 12 populations of the

H971 data set (Homo sapiens), the authors suggested that

500 microsatellites are required to obtain the expected

tree topology with 95% certainty for average population

sample sizes of 20 individuals. Furthermore, the results

of Takezaki & Nei (2008) and our small computational

experiments with STRUCTURE software (see previous sec-

tion) support the conclusion that these observations are

not dependent on the method used (e.g. BAPS) but

instead represent an intrinsic biological property of the

data sets analysed.

Our results have important implications for the inter-

pretation of clustering solutions, as many population

surveys use only a moderate number of microsatellites

to infer population structure. The naı̈ve expectation is

that too few loci should result in no evidence for popu-

lation structure, rather than in a well-supported cluster-

ing solution that does not reflect the true population

structure. Hence, statistically highly supported cluster-

ing solutions are currently presented in the literature as

the true population structure without considering the

important drift effects we have demonstrated in this

report. However, it should also be kept in mind that

the stochasticity in the population structure estimates as

a function of the particular genomic regions surveyed

will decrease when the level of genetic differentiation

increases among the lineages. Thus, the problem is most

accentuated for data sets showing low levels of genetic

differentiation and gradually vanishes when the aver-

age differences between allele frequencies tend towards
� 2011 Blackwell Publishing Ltd
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their maximum values. For strongly differentiated lin-

eages, it is expected that even moderately sized random

sets of informative loci will lead to highly concordant

inferences about population structure (i.e. consistent

clustering solutions).

One interesting example for the consequences of this

is given by the comparison of population structure in

D. melanogaster using X-linked and autosomal microsat-

ellites (Schlötterer et al. 2006). One population from

China grouped with Asian populations based on 23 X-

linked microsatellites, but with European and American

ones when using 26 markers on the second chromo-

some. In the data set of this study, we did not find evi-

dence for a clustering with European and American

populations when only second chromosomal microsatel-

lites were used, suggesting that the results of Schlötter-

er et al. (2006) was an artefact of too few microsatellites

used.

Based on our results, we advocate that authors

should not only rely on probabilities obtained by clus-

tering software, such as BAPS or STRUCTURE, but use com-

puter simulations, similar to the ones we used to obtain

some power estimates about the number of loci needed

to obtain reliable clustering solutions. In addition, mea-

sures of genetic differentiation, such as FST, among the

obtained clusters will also enable one to assess the

expected stability of the population structure estimates

for other sets of loci.
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Data S1 Materials and methods.

Table S1 Drosophila melanogaster Microsatellite primer pairs.

Table S2 Populations used for the human population study.

Table S3 Microsatellite used for the human population study.

Table S4 Heterozygosities for the different chromosomes in

African and Non-African Drosophila melanogaster populations.

Table S5 Results of the linear models.

Table S6 Relationship between the number of loci and diver-

gence for the estimate of population structure.

Fig. S1 Microsatelite marker design. Schematic of a chromo-

some where one region wherein microsatellites where geno-

typed has been magnified. The enlarged region shows eight

marks in red which represent the microsatellite positions

within the region. The X, 2nd and 3rd chromosomes have 5

such regions along their length and the 4th chromosome due

to its small size only one.

Fig. S2 Clustering solutions for each chromosome.

Fig. S3 Clustering solutions for each genomic region. Each clus-

tering solution is labeled with its correspondent region label.

Fig. S4 Histograms of the ml-differences distribution for the

regions against each of the chromosomes. (A) comparison for

the X regions, (B) comparison for the 2nd chromosome regions,

(C) comparison for the 3rd chromosome regions and (D) com-

parison for the region in the 4th chromosome.

Fig. S5 Correlation plots of the region’s properties against the

region’s ranking position. Log(ml): logarithm of the marginal

likelihood of the regions’ clustering solutions.

Fig. S6 Simplified illustration of the effect of genealogical line-

age sorting. Each line represents the frequency with which the

true clustering solution [i.e. A(B,C)] occurs among 1000 ran-

dom draws of a set of n loci (n from 10 to 100). The lines corre-

spond to the results from drawing loci from a distribution of
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markers where the proportion of loci resulting in the true pop-

ulation structure is: 20% (dashed blue), 30% (dotted gray),

40% (dashed-dotted green), 50% (long-dashed orange), 60%

(dashed red). When the loci that result in the true population

structure occur with a frequency of 70% or higher in the gen-

ome 10 or more loci result in the expected clustering solution

(solid-black line).

Fig. S7 Relationship between population differentiation and

genealogical inference. We used computer simulations to deter-

mine the frequency of correctly inferred clustering solutions in

relationship to the number of loci used and population differ-
� 2011 Blackwell Publishing Ltd
entiation when using two Bayesian methods to infer popula-

tion structure, i.e. BAPS and STRUCTURE. Results are shown for 50

simulations of 5 populations with average FST values of: 0.01

(dashed grey line), 0.05 (solid blue line) and 0.1 (dashed light

blue line). For a detailed explanation of the simulated datasets

see Data S1, Supporting information.
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