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Many disease fighting strategies have focused on the generation of NK cells, since

they constitute the main immune barrier against cancer and intracellular pathogens

such as viruses. Therefore, a predictive model for the development of NK cells would

constitute a useful tool to test several hypotheses regarding the production of these

cells during both physiological and pathological conditions. Here, we present a boolean

network model that reproduces experimental results reported on the literature regarding

the progressive stages of the development of NK cells in wild-type and mutant

backgrounds. The model allows for the simulation of different conditions, including

extracellular micro-environment as well as the simulation of genetic alterations. It also

describes how NK cell differentiation depends on a molecular regulatory network that

controls the specification of lymphoid lineages, such as T and B cells, which share a

common progenitor with NKs. Furthermore, the study shows that the structure of the

regulatory network strongly determines the stability of the expression patterns against

perturbations.
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1. INTRODUCTION

NK cells are part of the cell mediated immunity and constitute the main defense barrier against
tumorigenic and virus-infected cells in mammals (Herberman et al., 1975; Mandelboim et al.,
2001). They promote cell death of their targets through the secretion of cytotoxic enzymes perforin
and granzyme B, the release of pro-inflammatory cytokines (such as IFN-γ ), and the induction of
apoptosis through the expression of FAS ligand or membrane receptor TRAIL (Smyth et al., 2002).

Hematopoietic stem cells (HSCs) may differentiate to progenitors of the myeloid or the
lymphoid lineages. Expression of the transcription factor PU.1 determines the output between these
two possibilities. High levels of PU.1 skew the differentiation to the myeloid fate, while low levels
determine the appearance of lymphoid-committed cells (Nutt et al., 2005). Common lymphoid
progenitors (CLP) give rise to T, B, and NK lymphocytes, depending on the presence of specific
molecular signals. Relevant to this process are: (1) Flt3-L, which promotes the progression of
lymphoid commitment, (2) Il-7, involved in the differentiation of the B lineage, (3) Notch ligands,
which mainly trigger T-cell differentiation, and (4) Il-15, which induces NK cell development
in vivo, and in vitro (Deftos and Bevan, 2000; Sitnicka et al., 2002; Dias et al., 2005; Williams et al.,
1998) (see Figure 1).
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FIGURE 1 | Differentiation of NK cells. Extracellular molecular signals in lymphoid tissues coordinate the differentiation process giving rise to the different lineages of

blood cells. Cytotoxic NK cells may appear in the bone marrow, while low cytotoxic and regulatory NK cells may appear in the thymus. Small circles inside mNK cells

represent cytotoxic granules.

Three progressive stages in the differentiation of NK cells,
identified under experimental conditions, are characterized by
the expression of key genetic regulators. The expression of
transcription factors E4BP4 and ETS1 establish the commitment
of NK progenitors (pNK) (Gascoyne et al., 2009; Ramirez et al.,
2012; Male et al., 2014). Later, suppressor Id2 and transcription
factors Tox2 and RUNX3 are activated and lead the cells to the
immature stage (iNK) (Levanon et al., 2014; Vong et al., 2014).
Finally, the presence of the transcription factors T-bet and Eomes
mark the transition from iNK to mature NKs (mNK) (Cruz-
Guilloty et al., 2009; Vong et al., 2014). Functional NKs may be
cytotoxic or regulatory depending on differentiation site as well
as the expression of T-bet and Eomes (Daussy et al., 2014), and
are characterized by the production of granzyme B, perforin, and
IFN-γ (Boos et al., 2007; Gordon et al., 2012; Luetke-Eversloh
et al., 2014).

During the differentiation process, pNKs can share immediate
precursors with progenitors of B lymphocytes (proB) or with
progenitors of T cells (ETP, for early thymoid progenitor). If this
process is carried out entirely in the bone marrow, pNKs share
precursors with proB and express transcription factor E4BP4, and
in turn induces high Eomes expression, thus becoming mature
NK cells (Male et al., 2014). Otherwise, lymphoid progenitors
in thymus, or other lymphoid tissues, may differentiate to T
lymphocytes or NK cells. These NKs are independent of E4BP4
activation, expressing low Eomes and high T-bet and becoming
a different subtype of NK (Crotta et al., 2014). It is currently
unknown if these populations exhibit cell plasticity and might
interconvert into one another.

A large quantity of experimental data in the literature
highlights the relevance of specific molecules, and of some

regulatory interactions, involved in the development of NK
cells. However, the regulatory network that gives rise to the
gene expression patterns found during the NK differentiation
process remains unknown. The inference and analysis of the
dynamical properties of such regulatory network is necessary
to understand the molecular mechanism by which lymphocytes
progress from a common precursor to a fully differentiated
NK cell. This general approach has been fruitful in the study
of related hematopoietic processes such as the specification
of myeloid and lymphoid lineages (Collombet et al., 2017),
the differentiation of granulocytes and monocytes-derived cells
(Ramírez and Mendoza, 2018), the differentiation of T and B
lymphocytes (Martínez-Sosa and Mendoza, 2013; Mendoza and
Méndez, 2015; Méndez and Mendoza, 2016), as well as T-helper
cell plasticity (Abou-Jaoudé et al., 2015).

The dynamical analysis of the NK differentiation regulatory
network shows that it was necessary to postulate the existence
of four regulatory interactions not yet reported in literature.
With the incorporation of these interactions, the model is able to
recover stationary states that correspond to HSCs, CLPs, proBs,
ETPs, and distinct subpopulations of NK cells. Importantly, the
model reproduces the progressive pathway leading from stem
cells to mature NK cells. All these results fit with experimentally
expression patterns reported not only for wild type but also
mutant backgrounds. The model reproduces the reprogramming
of T to NK lymphocytes (Li P. et al., 2010), and points to the
existence of plasticity between subtypes of NK cells mediated by
Il-15R signaling. Finally, we show that the dynamical stability of
the genetic expression patterns corresponding to NK cells, while
compared against their progenitors, is a property of the structure
of the regulatory network.
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2. MATERIALS AND METHODS

2.1. Network Inference
To determine the structure of the regulatory network,
information supporting regulatory interactions among several
genes and their products was searched in the published
literature. Additionally, we made use of the information
provided by the databases BioGRID (https://thebiogrid.org)
(Stark et al., 2006), iHOP (http://www.ihop-net.org/) (Hoffmann
and Valencia, 2004), and string-db (https://string-db.org)
(Jensen et al., 2009). By manually curating the information,
we obtained 114 interactions among 36 molecules. The
information used to infer the topology of the network is
contained in Supplementary Table 1 and summarized in the
section 3.1.

2.2. Dynamical Analysis of the Network
A regulatory network is defined by a set of nodes, representing
genes and their products, and edges that connect them,
representing regulatory interactions (activations or inhibitions).
Each node is described by a variable xi that takes the value
of 0 to represent the inactivation or absence of a molecule,
or takes a value of 1 to represent the presence and activity
of a molecule. The state of xi is updated at discrete time
steps according to a Boolean function Fi such that xi(t +

1) = Fi(x1(t), x2(t), . . . , xn(t)), where x1(t), x2(t), . . . , xn(t) is
the activation state of the set of regulators of the node xi
at time t. The state of the network is the set of values of
each node at a given time, X(t) = x1(t), . . . , xn(t). During a
simulation, the initial network state evolves to a fixed point or
a cyclic state, also known as an attractor. The full set of Fi’s,
shown in Supplementary Table 2, is expressed in terms of logic
operators. To obtain the full set of steady states, we simulated
the dynamic behavior of our model using GINsim software
(Chaouiya et al., 2012) and compared with expression patterns
expected from bibliographic review. Further, we simulated the
effect of all possible single mutants of loss and gain of function
by fixing the value of each node to 0 or 1, respectively. We
then compared the attractors of these model variants with those
of the original (wild type) model. In case of loss of function
mutants, simulations were performed starting from a specific
cell type resembling experimental conditions found in literature.
By contrast, gain of function mutants were simulated starting
from all possible initial states. The biological interpretation of
results were based on genetic expression patterns extracted from
published experimental observations.

Additionally, to study the differentiation progress in response
to extracellular signals, we made bit-flip perturbations for all
combinations of the 4 input nodes for all attractors of the
network. Since an input node represents an extracellular signal
(Flt3L, Il-7, Notch-ligandDelta, Il-15), this analysis simulated cell
type response to distinct microenvironments.

2.3. Steady State Stability and Robustness
Analyses
To analyze the stability of steady states, bit-flip perturbations
for each node were performed for all steady states in the

absence of extracellular signals which could stabilize them
(Flt3L=Il-7=Delta=Il-15=0). In order to find transitions to
diverse attractors, each perturbation was done 10 times under
asynchronous updating; this means that nodes were updated only
one at a time, and in random order (Garg et al., 2008).

To evaluate the robustness of the NK network due to
the boolean functions used to build the model, we analyzed
the attractors of 200,000 networks, each of these including
one random perturbation of the functions. In this case, bit-
flip perturbations correspond to one change in the vectorial
representation of the transition function of one node. We
compared the percentage of attractors that are conserved with
respect to the wild-type network. Furthermore, we quantified
the frequency by which the perturbation of a function generated
changes in the steady states.

Differentiation progress due to extracellular signals, genetic
perturbations, and functions robustness analyzes were performed
using functions from BoolNet R package (Müssel et al., 2010).

3. RESULTS AND DISCUSSION

3.1. Molecular Basis of the Regulatory
Network
In adult bone marrow (BM), HSCs express transcription factor
Myb, which prevents differentiation and is associated to maintain
cells in proliferation (Volpe et al., 2015). Myb is an upregulator of
miR-155, which in turn can inhibit the expression of gene PU.1,
a negative regulator of Myb, thus forming a negative feedback
loop (Basova et al., 2013). The fine tuning of PU.1 is fundamental
for determination of hematopoietic lineages (Lieu and Reddy,
2009). Low concentrations of PU.1 results in common lymphoid
progenitors development, while high concentration give rise to
common myeloid progenitors (CMP) (Dahl et al., 2006). High
concentrations of PU.1 activate CEBPα and EGR1, which are
two transcription factors relevant to commitment of CMPs. They
have a mutual inhibitory regulation with factors involved in
CLP commitment; namely, when the expression of PU.1 is high
enough to activate CEBPα and EGR1, it inhibits Flt3 receptor
and Irf4, Ikaros, and Gfi-1 transcription factors. On the contrary,
low concentrations of PU.1 allow the expression of these
factors that regulate early lymphoid progression. A regulatory
model related to CLP commitment (Spooner et al., 2009) was
incorporated into the network presented here. Additionally,
the incorporation of regulations involved in other cell types,
such as B and T progenitors, was fundamental to generate a
model that provided us with information about decisions for
NK differentiation process and the extracellular signals that
regulate it.

Lymphoid progenitors, in the presence of Flt3 signaling,
express the Il-7 receptor, which positively regulates the connected
triad of transcription factors E2A, Ebf1, and Pax5 to induce B
cell differentiation, (Nutt and Kee, 2007). Alternatively, CLPs
may migrate to thymus and differentiate to Early Thymoid
Progenitors (ETP) by the program triggered by Notch signaling.
Thus, Notch-ligand Delta activates a gene regulatory circuit
suggested by Braunstein and Anderson, the connected triad
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of transcription factors Notch1, HEB, and Bcl11b, which
establish T cell commitment (Braunstein and Anderson, 2011).
The programs leading to B or T cell lineages inhibit each
other, resulting in the specificity of the differentiation process,
excluding a distinct cell phenotype at this stage.

Development of NK cells may start from CLPs in BM and,
once committed to NK fate, cells may migrate to the periphery
and carry out its later stages in liver and other lymphoid tissues.
Also, CLPs may migrate to the thymus and differentiate to NK
(Huntington et al., 2007). Initial stages of NK differentiation
depend on Il-15 cytokine in vivo and in vitro. Addition of
Il-15 to cell culture is necessary for CLPs to commit to NK
progenitors (Carson et al., 1994). This interleukin acts via CD122
(β-chain of Il-15 receptor) and triggers a signaling cascade
through kinase PDK-1 which, in turn, induce E4BP4 expression
(Yang et al., 2015). Transcription factor E4BP4 promotes the
transcription of Id2, an important repressor of transcription
factors E2A and HEB, suppressing B and T cell differentiation
program, and thus allowing for the NK cell specification and
progression of its development (Boos et al., 2007; Schotte et al.,
2010). However, Schotte et al. proposed that Id2 and E4BP4
may act synergistically and, reports from Ramírez et al. and
Zook et al., observed that Id2 transcription is also promoted by
transcription factor ETS1 (Schotte et al., 2010; Ramirez et al.,
2012; Zook et al., 2016). An alternative pathway, reported by
Grund and collaborators, is the induction of ETS1 by MAPK
signaling in response of Il-15R activation (Grund et al., 2005).
Thus, ETS1 induce Id2 expression in a pathway that does
not require E4BP4 activation. This is consistent with Crotta
et al. who reported that, in some tissues other than BM, the
generation of NK cells is independent from E4BP4 (Crotta et al.,
2014). The inclusion of the negative feedback loop between
E4BP4 and ETS1, as suggested by Male in Male and Brady
(2014), was not necessary to obtain expression patterns of NK
cells. Instead, observations from the model set the possibility
that Il-15R triggers two independent pathways where both
transcription factors may participate independently. Later, ETS1
induce expression of RUNX3, a transcription factor involved
in maturation of cytotoxic cells (Zamisch et al., 2009). Thus,
based on the relevance of Tox2 in NK maturation observed by
Vong et al. we propose an interaction between ETS1 and Tox2,
mentioned in detail in the section 3.1.1.

Transition to the mNK stage requires the activation of
transcription factors T-bet and Eomes, which regulate expression
of functional molecules and determine subpopulations of NK
cells in mice and humans. T-bet is induced by Tox2 and ETS1
and it can be self-regulated, resulting in its stable expression
(Kanhere et al., 2012; Ramirez et al., 2012; Vong et al., 2014).
Similarly, Eomes is upregulated by E4BP4, RUNX3, and its self-
regulation (Cruz-Guilloty et al., 2009; Kidder and Palmer, 2010;
Kartikasari et al., 2013; Male et al., 2014). Although there are
discrepancies about the origin and functions of subpopulations
of NK cells, distinct groups agree that one of the classifications of
mNKs is given by the expression pattern of both factors. Finally,
T-bet, Eomes, and ETS1 are capable of inducing expression of
CD-122, establishing a positive feedback loop where signals of
extracellular Il-15 not only activate important regulators, but also

ensures self-responsiveness (Intlekofer et al., 2005; Ramirez et al.,
2012).

3.1.1. Inference of Unreported Regulatory

Interactions

Dynamical behavior of the network, based exclusively on
the logical functions determined by manual curation of
literature, did not result in expression patterns expected for
NK cells, or progenitors (Supplementary Figure 1). Specifically,
such model lacks a steady state corresponding to NK cells.
Therefore, it was necessary to postulate the existence of four
regulatory interactions, which might be direct or indirect,
in order to reproduce the observed expression patterns. The
proposed interactions are based on biological information,
specifically on genetic expression patterns observed in different
cell types. These regulatory interactions, therefore, constitute
predictions of our modeling effort, and the experimental
observations that support them are detailed in the next
paragraphs.

Activation of Tox2 by ETS1. A lack of regulation from
Tox2 to ETS1 has been reported (Vong et al., 2014), but a
possible interaction in the opposite direction has not been
evaluated. Since Tox2 shows an expression pattern similar
to ETS1 (Vong et al., 2014) and the stabilization of mature
NK cells result from T-bet self-regulation after its induction
by ETS1 and Tox2, we propose that the activation of Tox2
by ETS1 play an important role in the last stage of NK
differentiation.

Inhibition of Flt3 by CD122. We propose a negative
feedback between Flt3 and CD122 allowing for the transition
from CLP (Flt3+) to NK progenitors (CD122+) (Rosmaraki
et al., 2001). The induction of CD122 due to Flt3L activity
has been previously reported (Yu et al., 1998). Then, it
was observed that Il-2 signaling counteracts the activity of
Flt3 in dendritic cells (Lau-Kilby et al., 2011). As it turns
out, Il-2R and Il-15 share CD122 (Grabstein et al., 1994).
Therefore, it seems likely that Il-15 might signal through
CD122 to suppress the expression of Flt3 or signals downstream
it, starting the transition from CLP to NK committed
cells.

Activation of CD122 by Notch1. Transient Notch signals
induce responsiveness to Il-15 in cells with multi-lineage
potential –proB Pax5(−/−)– , leading to NK differentiation
(Carotta et al., 2006). As mentioned before, Il-15 signals
inside the cell are mainly transduced by CD-122 (Grabstein
et al., 1994). In addition, incorporation of this interaction
allows the model to reproduce T-cell reprogramming
to NK after the suppression of Bcl11b as reported by
Li P. et al. (2010).

Inhibition of Myb by CD122. Although the role of Myb
is poorly understood in NKs development, it is known that
the molecule permits maintenance of the proliferation potential
in multi-potent cells. It was shown that Myb inhibition is
necessary for the maturation of NK cells, achieved through
the activity of miR-15/16 (Sullivan et al., 2015). We propose
that a molecule downstream CD122 is a likely candidate to
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repress the Myb factor, thus giving rise to NK cell development
progression.

3.2. The NK Regulatory Network
We inferred the genetic regulatory network that modulates
differentiation from multi-potent HSCs to mature NK cells.
The network consists of 114 interactions—64 activations, 47
inhibitions, and 3 dual (activation or inhibition depending on
the context)—among 36 molecules (Figure 2). The network
has four nodes that act as inputs: Flt3L, Il-7, Delta, and Il-
15. These nodes are used to incorporate, to the model, the
signaling of key cytokines present in the microenvironment,
allowing for the simulation of extracellular signals found in bone
marrow, peripheral lymphoid tissues, or under experimental
conditions. The remaining 32 nodes represent different types of
molecules that are expressed internally. Specifically: microRNA
miR-155; transcription factors Myb, CEBPα, EGR1, PU.1, Irf4,
Ikaros, GFI1, Foxo1, E2A, Ebf1, Pax5, Bcl6, Notch1, Bcl11b,
HES1, HEB, E4BP4, ETS1, Tox2, RUNX3, T-bet, and Eomes;
E-proteins repressor Id2; membrane receptors Flt3, Il-15R,
and CD122 (β chain of Il-15R); signaling proteins PDK1
and MAPK; cytotoxic enzymes Perforin and Granzyme B;
and cytokine IFN-γ . PU.1 and CD122 have two levels of
regulation, therefore, two levels of activation were added in
GINsim dynamic model, or two more nodes were added to
represent this property for the dynamic analysis of node and
function perturbations, with BoolNet. The regulatory interactions
among these molecules are summarized in Supplementary
Table 1.

3.3. The Regulatory Network Governs
Molecular Expression Patterns During the
NK Differentiation
Dynamical simulations were performed on the NK network
to find all the steady states. The network was implemented
as a logical system with the rules for each node as described
in Supplementary Table 2. Notice that PU.1 and CD122 were
modeled with three values so as to be able to describe three levels
of activation; namely, zero, low, and high.

The dynamics of the NK network eventually reaches one
of seven cell expression patterns, regardless of the initial
state and encompassing the steady states excluding differences
due to inputs (Figure 3). Importantly, each of these states
correspond to the expression patterns of the cell types during
the differentiation of NK cells; namely, HSC, CLP, proB, ETP, and
three distinct mature NK cells (T-bet+Eomes+, T-bet+Eomes−,
and T-bet−Eomes+). The patterns of the molecular markers used
to identify these cell types were extracted from references of
Supplementary Table 1, genes that must be present or active
are enlisted: Hematopoietic Stem Cell, HSC: Myb and miR-
155; Common Lymphoid Progenitor, CLP: Flt3, PU.1, Irf4,
Ikaros and GFI1; B cell committed progenitor, proB: PU.1,
Irf4, Ikaros, GFI1, E2A, Ebf1, Pax5, Foxo1 and Bcl6; Early
Thymoid Progenitor, ETP: Notch1, HES1, Bcl11b and HEB; NK
T-bet+Eomes+, NK1: CD122, RUNX3, T-bet, Eomes, GzmB,
Perforin and IFN-γ ; NK T-bet+Eomes−, NK2: CD122, RUNX3,

T-bet, GzmB and IFN-γ ; and NK T-bet−Eomes+, NK3: Eomes,
Perforin and GzmB.

Attractors that correspond to NK cells (NK1, NK2, and NK3)
resemble subpopulations observed experimentally in mice and
humans(Gordon et al., 2012; Daussy et al., 2014; Knox et al.,
2014; Harmon et al., 2016). Although the origin and function
of these NK subpopulations are not well established, diverse
reports studied the relation among expression of Eomes and T-
bet transcription factors to classify NK subtypes. Both factors,
in turn, are markers of the different NK related attractors of
the network. Peripheral blood NKs in mice and human are T-
bet+Eomes− and exert high cytotoxicity (Knox et al., 2014).
While in human liver there are T-bet+Eomes+, T-bet+Eomes−,
and T-bet−Eomes+, this last subtype is enriched and more
cytotoxic (Harmon et al., 2016). This is opposite to what is
observed in mouse liver, where NKs are mainly T-bet+Eomes−

being low cytotoxic, while in BM, NKs are T-bet−Eomes+, with
high cytotoxic capacity (Gordon et al., 2012; Daussy et al., 2014).

As mentioned in the introduction, under experimental
conditions, pNK and iNK stages are identified as intermediate
states of NK differentiation before these cells become mature.
Therefore, we analyzed if the model replicates this behavior and
searched for pNK and iNK expression patterns as transition states
during the simulation. We plotted the average asynchronous
transitions of 5,000 simulations using CLP attractor as initial
state and simulated addition of Il-15 (Il15 = 1) alongside
the simulation (Supplementary Figure 2). After the initial
presence of IL-15, the signal passes through IL-15R, thus trigger
specific signaling cascades related to NK differentiation. This
characteristic constraints the number of possible paths leading
to a mature NK. The transition states show a Flt3 decrease,
sequential activation and subsequent decrease of E4BP4, Id2, as
well as T-bet increase (Supplementary Figure 2A). This sequence
corresponds to the transition from stages CLP to pNK, pNK to
iNK, and iNK to mNK, respectively. The full set of nodes in the
transition of the cell stages is shown in Supplementary Figure 2B.

Of the large number of possible states, namely 234 without
considering input nodes, only 7 states are stationary. These
stationary states correspond to cell expression patterns observed
during the differentiation of NK cells. While these results depend
on the set of logical rules used for the specification of the model,
these logical rules can be somewhat modified without changing
the stationary states (see ahead), strongly suggesting that the
stationary states of the network are largely determined by its
topology, rather than the specificity of the rules.

3.4. Simulation of Genetic Mutants
Knockout and over-expression mutants were simulated by fixing
nodes to 0 or 1, respectively. Results of these simulations are
shown in Supplementary Table 3. Note that 16 out of 23
knockouts qualitatively resemble experimental observations, 6
knockout simulations produced no change, and one phenotype
has not been experimentally reported in the context of NK cell
determination. It is remarkable that the knockout simulation
of Pax5, Bcl11b, and HEB reproduce the reprogramming
phenomenon to NK cells observed experimentally (Carotta
et al., 2006; Li H. et al., 2010; Braunstein and Anderson,
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FIGURE 2 | NK regulatory network. Graph of the 36 nodes representing molecules that participate in NK differentiation process and their interactions: activations in

green, inhibitions in red, and dual in black. The dotted lines are predictions of the model.

FIGURE 3 | Steady states of the model. Active, inactive, and in any of both states genes are shown as dark blue, white, and light blue squares, respectively. Tags on

the columns are the names of the genes. Here, IL-15, Delta, IL-7, and FLT3L are inputs of the network and represent extracellular cytokines. NK 1, NK 2, NK 3, ETP,

proB, CLP, and HSC are distinct cell types.

2011). Furthermore, as mentioned in section 3.1, the simulated
knockout of either E4BP4 or ETS1 results in the loss of different
subtypes of NKs (attractors NK 1 and 3 in case of E4BP4;
attractors NK 1 and 2 in case of ETS1), suggesting the existence of
two signaling pathways that give rise to distinct subpopulations
(see Supplementary Figure 3). This is in accordance with
experimental reports where some populations of NK cells, like
splenic NK, depend of ETS1 (Barton et al., 1998) and are
independent of E4BP4 expression (Crotta et al., 2014), while
other NKs depend on E4BP4 (Gascoyne et al., 2009). Thus, two
independent pathways triggered by Il-15 result in differentiation
to subtypes NK 2 and 3, and are redundant for subtype NK
1. Regarding the simulation of over-expression mutants, 11
simulations reproduce the observed phenotypes, 2 simulations

disagree with the reported experimental results, and there are
no reports regarding the over-expression of 10 genes in the
context of NK cell determination, which allows us to propose
the phenotypes of these last as predictions of the model. It is
noteworthy that the simulated over-expression of FLT3 resulted
in an attractor FLT3+RUNX3+, which resembles the phenotype
of some leukemic cells as shown by Damdinsuren et al. (2015).
However, to delve in the study of this disease, more information
about regulators related to it must be incorporated.

3.5. The Model Recovers Cell Progression
Abiological feature of any differentiation process is that the stable
expression patterns change in response to specific cues, at the
same time cells progressively pass from a state of multi-potency
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to an increasingly specialized state. This phenomenon does not
occur in the reverse direction under physiological conditions.
In order to evaluate this biological feature, we simulated the
presence of extracellular signals, by means of perturbations
of the input nodes when the system is in any of its steady
states. As mentioned above, the input nodes in the network
represent key cytokines that might be present in the bonemarrow
(Flt3L, Il-7, and Il-15), and human liver, or mice thymus (Delta
and Il-15), which control lymphopoiesis in vivo (Beck et al.,
2009). The model is able to recapitulate the response of cells
to specific cytokines in the microenvironment (Figure 4A). The
HSC attractor changes to CLP in response to Flt3L. In turn, CLP
changes to proB in response to Il-7, to ETP in response to Delta,
and to NK (specifically NK1) in response to Il-15.

FIGURE 4 | Perturbation of attractors with differentiation signals. (A) Inputs

representing extracellular signals that regulate NK differentiation (Flt3L, Il-7,

Delta, and IL-15) were perturbed in all the steady states. The diagram shows

the only five perturbations that result in a change of state, which correspond to

biological transitions during the differentiation process. (B) Destiny map after

perturbing each node. The black arrow corresponds to physiological

transitions between cells, the gray dotted line to a transition to a previous

state, and the blue dotted line to transition between distinct cell types.

The model is also able to describe the appearance of NK
subtypes, depending on the combination of input signals.
Specifically, the combination of Il-15 and Il-7, which simulates
a BM environment, results in the appearance of NK3. These
cells are Eomes+T-bet−, a subtype of NKs enriched in BM of
mice and human liver (Gordon et al., 2012; Daussy et al., 2014;
Harmon et al., 2016). In turn, Il-15 plus Delta, which resembles
the microenvironment in the thymus (Li P. et al., 2010) or
liver (Geisler and Strazzabosco, 2015), result in the appearance
of NK2. These cells are T-bet+Eomes−, and can be found in
peripheral blood in human (Knox et al., 2014), as well as liver
in human and mice (Gordon et al., 2012; Daussy et al., 2014;
Harmon et al., 2016).

The generation of NK2 and NK3 in different contexts is in
accordance with experimental observations (Daussy et al., 2014),
concluding that highly cytotoxic NKs Eomes+ are generated in
the bone marrow, while regulatory NK T-bet+Eomes− found
in liver are promoted by Notch signals. Other authors also
separate distinct populations of NKs depending on the tissue
of differentiation, being bone marrow NK Eomeshigh, and
pehipheral NKs T-bethigh Eomeslow (Simonetta et al., 2016).

3.6. Perturbation of Genetic Expression
Patterns
The genetic expression patterns used to define a cell type
are relatively stable to disturbances. Therefore, we wanted to
explore the relative stability of the attractors of the network by
performing bit-flip perturbations. This was done by changing the
value of one node when the network is in an attractor, and then
following its response to evaluate if the temporal perturbation
was sufficient to move the network to another attractor or not.
This was done in absence of extracellular signals; this is, all input
nodes were maintained at 0.

Given that not all possible perturbation are observed under
physiological conditions, it is not surprising to observe in the
model some transitions that do not occur in vivo. The attractors
of the model have a varying degree of stability against bit-
flip perturbations. Figure 4B shows that only two perturbations
change NK3 to CLP. The rest of the perturbations in NK
related attractors produce a transition between the three types
of NK cells, suggesting the existence of plasticity between
these subpopulations. This is relevant because there is a lack
of experimental reports on the plasticity between subtypes of
NK cells. The existence of transitions among ETP, or proB
with NK cells suggest possible reprogramming process due to
both attractors correspond to cells at immature stages. Another
possibility is that the network lacks some regulatory interactions
relevant during T and B cell specification, which are outside the
scope of this work. In any case, our model might be useful for
pointing to possible experimental treatments inducing a plastic
response. Finally, the low number of perturbations that result
in transitions shows the relative stability of mature NK cells, as
determined by the underlying network.

3.7. Dynamical Robustness of the Network
To asses the robustness of the network, we evaluated to what
extent its dynamical behavior depends on the specific selection
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of the logical rules. We performed random bit-flip perturbations
of the Boolean functions and compared the attractors obtained
by the perturbed network against those of the original model.
The larger the number of attractors shared between the original
and the modified versions of the network, the more robust is
the original network; in other words, the less dependent is the
dynamical behavior of the network on the specific choice of rules.
After the simulation of 200,000 perturbations, 64% of them did
not produce any change in the steady states compared with the
wild type network. The remaining 36% conserved an average
of 89.73 ± 0.16% of the total steady states in the network.
This indicates that 36% of the changes have repercussion on the
attractors, but mostly (89.73%) in the loss of only one cell type.
This result is indicative that further characterization of the system
likely would show the high redundancy of logical rules on the
dynamical behavior of the regulatory network.

The network is to a large degree insensitive to changes in
the logical functions that define the response to the regulatory
inputs. This indicates that the observed behavior of the network
depends on the connectivity of the network, rather than on the
use of specific logical rules. This, of course, drastically reduces the
possibility of fitting the dynamics of the network by introducing
changes into the rules equivalent to parameter fitting. These
results strengthen the hypothesis that most of the dynamical
properties of the network are due to the connectivity of its nodes.

4. CONCLUSION

We presented a boolean model of the regulatory network that
controls the differentiation of NK cells. While there are several
models describing different aspects of the differentiation of
lymphocytes, to the best of our knowledge this is the first effort
to recover the network directly involved in the differentiation
of NK cells. The model qualitatively replicates the biological
behavior of the process in terms of expression patterns of mature
NKs, its progenitor and the related lymphocytes. It also replicates
three aspects of biological relevance: (1) the genetic expression
of key transitory stages (pNKs and iNKs) from CLP to NK; (2)
a high accuracy in replicating the effect of knock out and over-
expression mutants; and (3) the progressive transition from a
multipotent progenitor to specialized and mature cells.

The model largely lacks parameters to fit, and thus its
dynamical behavior is dependent mostly on its connectivity.
The incorporation of four specific, and therefore experimentally
testable, regulatory interactions resulted in a qualitative
description of the model at the molecular level. Such results,
also turned out to be very robust, while at the same time they
are able to replicate the response to specific extracellular signals
coming from the microenvironment. The network model is
also able to describe the differentiation of NK subtypes under

distinct molecular environments, thus providing a mechanistic
explanation for the existence of different subpopulations of NK
cells.

It is currently unknown if the cytotoxic and regulatory NK
subpopulations are plastic, being able to interconvert into each
other. The network model suggests that this is indeed the case,
with the possibility of NK cells exhibiting plasticity with the
capacity of transdifferentiate under specific conditions, involving
IL-15R signals as well as T-bet or Eomes induced expression.

Regarding interaction predictions, the model suggests
an outstanding participation of CD122, not only inducing
differentiation as it is already known, but also turning off genes
important for the differentiation of other cell types. Experimental
efforts focused on CD122 downstream factors and its regulation
over Flt3, Il-7R, Irf4, Ikaros, and PU.1 might clarify specific
aspects of the molecular key events leading a progenitor to
become a NK cell.

Finally, the analysis of the dynamical behavior of the network
supports the hypothesis that the collective behavior of the
molecules included in a regulatory network is highly constrained.
The elaboration of a computational model allowed us to study
dynamical properties of the regulatory network underlying
the differentiation of NK cells, which might pave the way to
eventually control it in the laboratory so as to help in the fight
against diseases.
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