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Abstract Myalgic encephalomyelitis (ME) is a complex, het-
erogeneous illness of unknown etiology. The search for bio-
markers that can delineate cases from controls is one of the
most active areas of ME research; however, little progress has
been made in achieving this goal. In contrast to identifying
biomarkers that are directly involved in the pathological pro-
cess, an immunosignature identifies antibodies raised to pro-
teins expressed during, and potentially involved in, the path-
ological process. Although these proteins might be unknown,
it is possible to detect antibodies that react to these proteins
using random peptide arrays. In the present study, we probe a
custom 125,000 random 12-mer peptide microarray with sera
from 21 ME cases and 21 controls from the USA and Europe
and used these data to develop a diagnostic signature. We
further used these peptide sequences to potentially uncover
the naturally occurring candidate antigens to which these an-
tibodies may specifically react with in vivo. Our analysis
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revealed a subset of 25 peptides that distinguished cases and
controls with high specificity and sensitivity. Additionally,
Basic Local Alignment Search Tool (BLAST) searches sug-
gest that these peptides primarily represent human self-
antigens and endogenous retroviral sequences and, to a minor
extent, viral and bacterial pathogens.
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Introduction

Myalgic encephalomyelitis (ME), also commonly referred to
as chronic fatigue syndrome or ME/CFS, is a heterogeneous
illness characterized by a number of physical symptoms and
comorbid conditions including neurocognitive dysfunction,
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systemic inflammation, innate immune activation, and gastro-
intestinal abnormalities [1]. Current estimates suggest that as
many as 2.5 million individuals suffer from ME, with an an-
nual productivity loss in excess of US$9 billion in the USA
alone, underscoring the importance of ME as a major public
health concern both economically and socially.

Exactly what causes ME is unknown at this time; however,
a number of potential triggers are associated with the devel-
opment of the disease including physical trauma, emotional
distress, infection, and chemical exposure [2—4]. Familial
studies and genetic screening studies indicate that a genetic
predisposition also plays an important role in the pathophys-
iology of ME [5-8]. Presently, there are no unique physical
symptoms or reproducible biomarkers that can delineate this
disease. For this reason, a diagnosis can only be made when an
individual meets a series of inclusion and exclusion criteria,
typically through a lengthy and expensive diagnostic process
[9, 10]. Although the search for potential biomarkers has been
one of the most active areas of ME research, little progress has
been made in achieving this goal. Here, we report the progress
in applying the immunosignature technology to this problem.

While not universally prevalent, a number of clinical ob-
servations such as natural killer (NK) cell dysfunction, viral
reactivation, and inflammatory cytokine production have been
consistently reported in the ME literature over the years and
support an organic basis for this disease [11-15]. However,
the mechanisms responsible for these observations remain
elusive, but, if identified, this knowledge would lead to a
greater understanding of ME pathology, potentially leading
to effective treatment options.

Antibodies are glycoproteins, produced by B lymphocytes
(B-cells) and plasma cells, in response to foreign molecules (an-
tigens), such as those found in bacteria and viruses. As the central
component of humoral immunity, they limit the spread of infec-
tion by binding to and neutralizing the pathogen or by activating
other adaptive immune responses. B-cells also produce antibod-
ies directed against self-antigens, but they are normally removed
in the bone marrow early in their development. Although on rare
occasion, however, this system fails, leading to autoimmunity.

Identifying the antigens to which antibodies react with dur-
ing the course of a disease may lead to a greater understanding
of the humoral immune response associated with that disease.
For instance, ascertaining a dominant epitope may help in the
development of an effective vaccine or identifying reactive
antigens that are homologous to self-proteins may reveal au-
toimmune pathology [16]. Immunosignatures (IMS) are
screens of serum antibodies using random peptide arrays,
and this technique has been used successfully to identify bio-
markers in diseases that are difficult to diagnose such as can-
cer, valley fever, and Alzheimer’s disease [17-19].

In the present study, we utilized a microarray consisting of
125,000 random peptide sequences to screen the serum of
healthy control subjects and those who present with symptoms
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consistent with a diagnosis of ME. Our data identified an IMS
that accurately delineated ME cases from controls with 92.9%
specificity and 97.6% sensitivity. Additionally, Basic Local
Alignment Search Tool (BLAST) searches suggest that these
peptides have sequence homology primarily to human self-
antigens and endogenous retroviral sequences, but also to a
minor extent, viral and bacterial antigens. This proof-of-
concept study potentially represents the first step toward a
specific and sensitive diagnostic for ME and also may provide
important knowledge regarding the pathophysiology of the
disease.

Materials and Methods
Study Subjects

For this study, a total of 42 subjects were recruited from across
the USA and Europe. ME cases consisted of 11 US and 10
European subjects and controls consisted of 12 US and 10
European subjects. Informed consent was obtained from each
participant according to a human subjects protocol approved by
the University of Nevada Biomedical Institutional Review
Board (protocol B12-031). The cases identified as having ME
were physician diagnosed and met Carruthers et al.’s criteria for
ME as well as 1994 Fukuda et al.’s criteria for CFS [9, 10, 20].

Microarray

Serum samples from respective cases and controls were dilut-
ed 1:1 in glycerol and stored at —20 °C until analyzed. The
125,000 random 12-mer peptide microarrays were
manufactured according to the methods of Leguti et al. [21]
and blocked in 0.5% BSA (Sigma, St. Louis, MO) and 1x
PBS, pH 7.2. Samples were diluted to 1:1000 in 1x PBS,
0.5% BSA, and 0.05% Tween 20 pH 7.2 and exposed to the
microarrays for 1 h at 37 °C with gentle agitation. After 1 h,
the arrays were washed in distilled water 3x and incubated
with 4 nM of Alexa Fluor 555 conjugated goat anti-human
IgG (H & L) and 5 nM of Alexa Fluor 647 conjugated goat
anti-human IgM heavy chain (Thermo Fisher) for 1 h at room
temperature, then washed 3x in distilled water and 1% in 90%
isopropyl alcohol, and dried in a centrifuge. Slides were
scanned on an Innopsys 1100 scanner at 0.5-um resolution,
and TIFF images were aligned in GenePix 6.0.

Data Analysis

Peptide expression data were subjected to the following qual-
ity control steps. First, array images were evaluated for clearly
identifiable spatial variation, including streaks and bubbles.
Peptide array background values were subtracted from signal
values in both Cy3 and Cy5 channels using simple
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background subtraction. Before normalization, peptides with
an incidence of high background values were filtered.
Specifically, peptides having more than 50% incidence in ei-
ther channel of negative background-corrected values (signal
background) were excluded. The remaining raw values were
normalized first within each array via the median method and
then between arrays using the Aquantile method, with the
limma package in R [22].

Normalized data were then averaged across replicated pep-
tides and replicated samples. Peptides were again filtered after
normalization and averaging for high incidence of low signal
intensities with respect to background intensities. (These are
seen as missing values in the data, as normalization includes a
logarithmic transform that is not applicable to negative
values.) Specifically, any peptide having more than 25% miss-
ing values for either cohort was excluded.

This final data set (103,385 peptides) was analyzed using
the data mining algorithm Random Forest [23] in a progres-
sive stepwise process of reduction using each respective pep-
tide sequence as the predictive variable and subject status (ME
case or control) as the target variable. For each iteration, 5000
random decision trees were built using one half the square root
of N with a minimal of two parental nodes at each branch.
Small classes were upweighted to equal the size of the largest
target class and “out of bag” testing with replacement was
employed to test the model. In the first step, the top 30% of
peptides were selected and rescreened; then, the top 40% of
peptides were rescreened. In the final step, multiple iterations
were preformed systematically, removing the least contribut-
ing peptides until the signature did not improve.

In order to potentially identify the biological antigens to
which the synthetic random peptides represent, the penulti-
mate iteration, consisting of 233 peptides, was searched
against viral, bacterial, human, and endogenous retroviral pro-
teins, each derived from the National Center for
Biotechnology Information (NCBI) nr database using the
ncbi-blast+ BLASTP protein sequence similarity search tool
(v. 2.4.0). The virus protein database was produced by filter-
ing nr for virus species with human hosts as recorded at NCBI
Taxonomy. Similarly, the bacterial protein database was gen-
erated by restriction of nr to the subset of bacterial species
identified within the PATRIC database to be associated with
human hosts (http://www.patricdb.org). The human protein
database contained those found in NCBI RefSeq. The
HERV(d protein database was generated by the combination
of nr proteins self-identified in human endogenous retroviral
lineages with a set of human endogenous retrovirus (HERV)-
like proteins reported as proteins of Homo sapiens origin.
BLAST parameters were set as follows: wordsize 2, win-
dow_size 15, threshold 16, PAM30 scoring matrix, gapopen
9, gapextend 1, evalue 1000, maximum reported alignments
per high scoring pair (HSP) of query/subject (max_hsps) 1,
and minimum query coverage by HSP percent (qcov) 34.

Additional BLAST output format options were set to record
NCBI taxonomic identifiers (taxids) of proteins and the
BLAST traceback operations (btop), a text string that encodes
the alignment, mismatch, and gap information. Hits lacking
any ungapped subalignment of five or more amino acid iden-
tities were identified using btop information and excluded
from the analysis set. Species and genus taxa of subject pro-
teins were mapped to each protein from the reported taxids
with ETE Toolkit (http://etetoolkit.org; v3.0.0b35); a Python
framework for phylogenetic tree analysis. In order to limit
biasing as a result of protein size, we implemented a simple
metric adjustment (Adj.), whereby the number of amino acids
in a given protein was divided by the number of peptides
having homology to that protein. Potentially conserved
peptide motifs were investigated using the multiple sequence
alignment tool Clustal X [24].

Results
Classification by Random Forest

In order to test whether differences exist between the antibody
profiles of ME cases and controls, analysis was carried out
using the Random Forest (RF) classification algorithm. The
RF algorithm uses an ensemble of unpruned classification or
regression trees produced through bootstrap sampling of the
training data set and random feature selection in tree genera-
tion. Prediction is made by a majority vote of the predictions
ofthe ensemble. The strength of the analysis was evaluated by
out of bag sampling with replacement of the original data. RF
is an attractive method since it handles both discrete and con-
tinuous data, it accommodates and compensates for missing
data, and it is invariant to monotonic transformations of the
input variables. The RF algorithm is well suited for peptide
microarray analysis in that it can handle highly skewed values
well and weighs the contribution of a given peptide according
to its relatedness with others.

Through multiple iterations of RF processing, we identified
a signature of 25 peptides that was able to identify ME cases
from controls with 92.9% specificity and 97.6% sensitivity
(Table 1). Each peptide was ranked according to its contribu-
tion to the signature, with the top peptide being ranked at 100
and subsequent peptides ranked relative to this peptide. The
relative contribution of these 25 peptides and their sequence
are given in Fig. 1. We conclude that, at least based on the
analysis with this small sample set, IMS can distinguish ME
from non-ME samples.

Homology BLAST Search and Sequence Alignment

In order to potentially identify the biological antigens to which
the synthetic random peptides may represent, we developed
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Table 1 Results of 21 ME cases and 21 controls each screened for
reactivity with IgG and IgM

Actual class Total class Percent class Predicted classes
Control ME case
N=44 N=44

Control 42 97.62% 41 1

ME case 42 92.86% 3 39

Total 84

Average 95.24%

Overall % correct 95.24%

Specificity 92.86%

Sensitivity/recall 97.62%

Precision 93.18%

F1 statistic 95.35%

an analytical pipeline and used this to search the 233 peptides
from our penultimate RF iteration against the human prote-
ome. Additionally, we have previously reported that gastroin-
testinal plasmacytoid dendritic cells (pDCs) produce proteins
that are consistent with human endogenous retroviral se-
quences [25]; therefore, we also included these sequences in
our search. Finally, we used this pipeline to search for homol-
ogy to bacterial and viral antigens of pathogens known to
infect humans.

Our initial analysis identified over 5000 human protein
sequences that met our search criteria. When filtered to
limit those proteins that were identified by four or more
random peptides, this number was reduced to 166 pro-
teins. In an attempt prevent overrepresentation of larger

Variable Importance by
Random Forest Analysis

FWRQPDAFDVVG
EFRAKQWNSVAL
LHDWEALGVASG

HVVWRVSGVALG
GWKNHRVLSGLS

KEESQRPNVLSA
RLRHLQSWVGVL
VQWWRPALGVAL
LKLAFNGVALSG
LRVVWLSGVASG
KDRVSDYNKDVS
KGYRPNPHLGAS
RQQWARVSGVAL
EPRRYSGKLGVL
EPRERHLRNAVL:
WGAVKVGVALSG
YLPHREASDGLS
HADALGDGPHLG
WPRLHLSGVALG
VKGYGVGVALSG
VREHAHQFEKHS
GFYSAGQYNLAL
QWLRWAPNVHLG
RKRADEPYKVLV
KFQYNQNGVLSG

Peptide Sequence
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Fig. 1 Random forest prediction. Horizontal bars represent the relative
importance that each random peptide contributes to the final diagnostic
signature
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proteins, which have a greater chance of having homolo-
gous sequences to a given random peptide, we used the
simple metric of dividing the number of amino acids of
the protein by the number of peptides that were homolo-
gous to that protein. The top 30 human proteins, adjusted
for size, are given in Table 2. Among the likely most
relevant human proteins identified in this search were
proteins involved in mitochondrial function (AMACR,
ETFDH, SLC25A40), lipid metabolism (AGK, ACOXL,
CEL SEC23A), neurological function (APBA3, ASICI,
GABRB3, STAC), and immune responses (CD274,
LGMN, MX1, MX2).

Previous studies have proposed that HERV elements
may be associated with neurological diseases including
multiple sclerosis [26], amyotrophic lateral sclerosis
[27], and schizophrenia [28]. With this, and our previous
studies in mind, we included HERV sequences in our
homology search. Nine HERV sequences were identified
with sequence homology to at least two of our top 233
random peptide sequences; the most relevant HERV se-
quence showed homology to seven of the 233 peptides
(Table 3). Importantly, the seven sequences were not ran-
domly represented throughout the HERV sequence but
largely converged the same position in the protein, as
revealed by Clustal X alignment (Fig. 2). Further analysis
showed that this conserved motif is well represented in 40
of the 233 random peptides (Fig. 3), suggesting that this
motif significantly contributes to the observed IMS.

Immunoreactivity to a given synthetic random peptide
may be the result of cross-reactivity to pathogen-derived
antigens encountered during an infection. To explore this
possibility, we surveyed our top 233 random peptides
against the proteomes of bacteria and viruses known to
infect humans (Table 4). As before, the proteins were fil-
tered to limit those that were hit by multiple peptides;
however, the threshold was reduced to three peptides.
When adjusted for protein size, the six most significant
viral proteins with sequence homology to our random pep-
tides were the gp120 protein of HIV (six hits); followed by
the polyprotein of GB virus Ccpz (three hits); the envelope
glycoprotein I of Human herpesvirus 2 (four hits); the
phosphoprotein of canine distemper virus (four hits); the
RNA-dependent RNA polymerase, rodent paramyxovirus
(three hits); and finally, the outer capsid protein of porcine
rotavirus C (three hits). When adjusted for protein size, the
most significant bacterial peptides with sequence homolo-
gy to our top random peptides were a hypothetical protein
from Serratia marcescens (four hits), a diaminopimelate
aminotransferase from Paenibacillus senegalensis (five
hits), the peptidase M16 of Anaerofustis stercorihominis
(three hits), the type IV secretion protein Rhs of Hafnia
alvei (three hits), and the SusC/RagA family TonB-linked
outer membrane protein of Bacteroides nordii (three hits).
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Table 2 Number of peptides homologous to a respective human protein sequences

Peptides Accession Symbol Description Length Adj.
4 Q8NAP1 GATS Stromal antigen 3 opposite strand 163 40.8
13 NP 033173 SEC23A Sec23 homolog A 765 58.8
10 AKI70819 ETFDH Electron transfer flavoprotein Dehydrogenase 617 61.7
9 NP_073150 EBF2 Early B-cell factor 2 575 63.9
5 AAH27322 SLC25A40 Solute carrier family 25 Member 40 338 67.6
5 EAX02872 ARMCX4 Armadillo repeat containing, X-linked 4 360 72
4 EAW58763 CD274 CD274 molecule 290 72.5
7 NP_056530 PLA2G3 Phospholipase A2 group 111 509 72.7
7 QO6PJ69 TRIM65 Tripartite motif containing 65 517 73.9
4 NP_001103408 Cé6orf136 Chromosome 6 open reading frame 136 315 78.75
4 CAG46638 HMOX2 Heme oxygenase 2 316 79
7 NP_004877 APBA3 Amyloid beta precursor Protein binding family A member 3 575 82.1
9 P19835 CEL Carboxyl ester lipase 753 83.7
7 NP_001171517 MX1 MX dynamin-like GTPase 1 662 94.6
4 ABQ59031 AMACR Alpha-methylacyl-CoA racemase 382 95.5
4 NP 003140 STAC SH3 and cysteine-rich domain 402 100.5
6 NP 001307526 DDXS5 DEAD-box helicase 5 614 102.3
4 NP_060708 AGK Acylglycerol kinase 422 105.5
5 NP_001086 ASIC1 Acid sensing ion Channel subunit 1 528 105.6
7 NP 758441 CTAGELl Cutaneous T-cell Lymphoma-associated antigen 1 745 106.4
5 CAG33352 CCT2 Chaperonin containing TCP1 subunit 2 535 107
4 CAG33687 LGMN Legumain 433 108.3
10 NP_006217 PLCL1 Phospholipase C-like 1 1095 109.5
5 NP_000449 HNF1B HNF1 homeobox B 557 1114
4 NP _ 068712 GABRB3 Gamma-aminobutyric acid type A receptor Beta3 subunit 473 118.25
6 P20592 MX2 MX dynamin-like GTPase 2 715 119.7
7 NP_060868 CACNA2D3 Calcium voltage-gated channel auxiliary subunit alpha2delta 3 1091 121.2
5 P30825 SLC7A1 Solute carrier family 7 member 1 629 125.8
4 NP_004557 PFKFB3 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 520 130
4 XP 011509718 ACOXL Acyl-CoA oxidase-like 547 136.8

Numerous other human pathogens were identified that

contained homologous sequences to our random peptides  not shown).

Table 3  Number of peptides homologous to respective human endogenous retroviral sequences

but were excluded because of our adjusting metric (data

Peptides Accession Symbol Description Length Adj.
7 NP_001138567 HHLA1 HERV-H LTR-associating protein 1 precursor 531 75.8
3 P61566 ERVK-24 Endogenous retrovirus group K member 24 588 196
3 AAYS87455 ERVK-6 Env type 1, partial 603 201
4 AAMS8I1188 HRV-5 Pol protein, partial 863 215.7
3 P61570 ERVK-25 Endogenous retrovirus group K member 25 661 220.3
3 P61565 ERVK-21 Endogenous retrovirus group K member 21 698 232.6
2 P60507 ERVFCl1 Endogenous retrovirus group FC1 env polyprotein 584 292
2 Q14264 ERV3-1 Endogenous retrovirus Group 3 member 1 604 302
2 ABB52637 ERVPABLB-1 Endogenous retrovirus group PABLB member 1 665 3325
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Discussion

In this report, we present a “proof-of-concept” study where
random peptide arrays show utility in delineating ME cases
from healthy controls. The ultimate goal of this work is the
development of a non-subjective clinical tool for diagnosing
patients with ME. To this end, we utilized a random peptide
array, which has previously produced IMS for other chronic
and complicated diseases that are difficult to diagnose such as
cancer, valley fever, and Alzheimer’s disease [17—19]. Given
the complexity and the size of the data set, we elected to use
the machine learning data mining algorithm Random Forest to
identify potential candidates that may lead to a diagnostic
signature. Using out of bag testing with replacement, our mod-
el was able to predict cases and controls with 92.9% specific-
ity and 97.6% sensitivity using 25 peptides. Finally, we devel-
oped an analytical pipeline to BLAST these peptides against
the human, HERYV, virus, and bacterial proteomes for se-
quence homology, in order to explain the underpinnings of

--KPLWLLSGAL

233_93 14
2337180 --VDGWDYSGAL| 14
23376 --AHRWPLSVAL| 14
233792  --KNQSALGVAL| 14
233794  --KRRFALGVAL| 14
233710  --ANVNRLGVAL| 14
233755  --GAYKKLGV. 14
233_199 --VRDDKLGVAL 14
2337186 --VKGYGVGVAL| 14
2337210 --WEGGSGPGVAL| 14
2337230 --YOGKYAGVAL| 14
233771  --HEAN¥DGV. 14
2337171 -RSVSNFKGVAL| 14
233712  -ARFRWWSGVALS- 14
2337122 --NWRLWSGVAL| 14
2337100 -LKVH-WSGVAL| 14
233797  --LERQWKGVAL| 14
2337111 --NERHNSGVAL 14
2337106 --LVRSPVGVAL| 14
233_218 —--WRRSNDGVAL 14
233757 --GGRGYSGVAL| 14
233768  --GWRKSFGVAL| 14
233713  --ARLAGSGV. 14
233799  --LKLAFNGVAL| 14
2337205 VWRWNQALGVAL—- 14
233726 -DQGASRLGVAL-G 14
233758 -GKNAEHLSVAL-G 14
233741  FAQPQVALGLS--G 14
233718  -AVLVKASGVLSG- 14
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2337193 VNVVRVLSGVAS-- 14
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U 10

Fig. 3 Clustal X alignment. Clustal X alignment of 40 random peptides
showing the largely conserved motif of GVALSG
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the IMS. This pilot study supports the premise that
immunosignatures represent a viable approach to achieve
our overarching goal of developing a diagnostic tool and fur-
ther potentially identify naturally occurring antigens to these
antibodies.

A number of studies have attempted to identify a reproduc-
ible biomarker for ME [29-33]. In particular, serum or plasma
cytokine and chemokine analyses have shown promise, in that
several investigators, including our group, have reported clear
differences when comparing ME cases to healthy controls [11,
15, 34-36]. Additionally, cytokine differences may provide
valuable information regarding the pathophysiology of the dis-
ease. For instance, previous studies have suggested that ME is
characterized by a Th2 shift [37, 38], an observation that may
explain the prevalence of persistent viral infections associated
with this disease [39]. However, most cytokines that are pro-
duced in response to innate immune activation, as is seen with
ME, are not consistently expressed [40]. In contrast, serum
antibodies are much more stable. For example, most IgG sub-
classes have half-lives of more than 20 days [41].

Immunosignatures have been used successfully to provide
understanding to the pathophysiology of chronic diseases. For
example, Restrepo et al. reported that plasma antibodies from
subjects with Alzheimer’s disease (AD) could be used to pro-
vide an IMS that can distinguish AD cases from non-AD
controls reproducibly over time [42]. It was also shown that
eight of the 50 signature random peptides have the ability to
react with antibodies initially raised against native amyloid-[3
[19], a protein shown to be significantly involved in
Alzheimer’s disease [43].

These observations raise the possibility that an IMS may
provide clues to the pathophysiology of ME. However, in
contrast to AD, there are no proteins known to be ubiquitous
in the pathological process of ME with which to test.
Although we have identified a number of peptides that accu-
rately identify ME cases from controls, divining naturally oc-
curring homologous peptides is challenging. An antibody typ-
ically covers approximately 15 amino acids of its cognate
epitope; however, only about five or six amino acids contrib-
ute to the AG® of antigen/antibody binding [44, 45] and these
amino acids may not necessarily be contiguous. Therefore, the
natural antigen is likely to be very short and may contain gaps
in the primary sequence. In an attempt to overcome these
obstacles, we developed a custom analytical pipeline to con-
duct BLAST searches against the NCBI human protein
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Table 4 Number of peptides homologous to a respective viral and bacterial protein sequences
Peptides Accession Symbol Description Length Adj.
Viruses
6 CADS87195 Q70QU7 gp120 protein, human immunodeficiency virus 1 198 33
3 ADL29714 EOADF8 Polyprotein GB virus Ccpz 242 80.7
4 AMB66322 P06764 Envelope glycoprotein I human herpesvirus 2 372 93
4 AJO72800 P06940 Phosphoprotein canine distemper virus 507 126.8
3 BAO04373 U6CTN8 RNA-dependent RNA polymerase rodent Paramyxovirus 549 183
3 AJL35076 AO0A0C5B217 Outer capsid protein Porcine rotavirus C 733 2443
Bacteria
4 WP 033638106 None Hypothetical protein [Serratia marcescens]| 284 71
5 WP_010273745 None diaminopimelate aminotransferase 397 79.4
[Paenibacillus senegalensis]
3 WP_007050391 BICSL1 Peptidase M 16 [Anaerofustis stercorihominis) 422 140.7
3 WP_004091469 G9Y4SS5 Type IV secretion protein Rhs [Hafnia alvei] 644 2147
3 WP 007483701 19H2D3 SusC/RagA family TonB-linked outer 1046 348.7

membrane protein [Bacteroides nordii)

database. In addition to annotated human proteins, we also
queried against HERV proteins as well as proteins from bac-
teria and viruses known to infect humans. As it was probable
that very large proteins would be more likely to be identified
over smaller proteins by random chance, we implemented a
metric to adjust for this issue. Interestingly and somewhat
unexpectedly, we identified a number of protein hits in the
human database. Previous studies by Fluge et al. showed that
anti-CD20 B-cell depleting drug, rituximab, showed efficacy
in treating subjects with ME [46, 47]. Although the mecha-
nism responsible for this observation remains to be elucidated,
it does suggest that self-reactive antibodies may contribute to
the pathophysiology of this disease. Indeed, several studies
have reported self-reactive antibodies in subjects with ME
[48-50] so our results are potentially consistent with this
supposition.

Previously, we reported that gut-associated pDCs in sub-
jects with ME were immunoreactive to antibodies that react
with endogenous retroviral proteins [25]. Other studies have
also reported retroviral protein sequences in subjects with neu-
rological and autoimmune disease; however, the meaning of
these observations has yet to be resolved [28, 51, 52].
Nonetheless, these sequences, if uniquely expressed in a dis-
ease state, may prove to be a useful biomarker. We thus in-
cluded the HERVd databases in our query space and observed
seven of our significant peptide-1displayed sequence homol-
ogy to the HERV-H LTR-associating protein 1 precursor
(HHLAT). If dispersed through the protein, the probability
of seven random peptides hitting this sequence would be ex-
ceedingly small. However, upon further examination, it was
discovered that all seven peptides represented a largely con-
served sequence (LSGVLS) in the HERV protein. A similar
and overlapping conserved sequence motif (GVALSG) was

observed in at least 40 of the 233 top peptides identified by
our RF analysis. This observation raises two important issues.
First, the discovery of this conserved peptide motif may rep-
resent a critical discovery in resolving the pathophysiology of
ME, assuming it is confirmed in other cohorts and it is shown
to be unique to ME. Secondly, because this motif is short and
present in many pathogens, we cannot say with absolute cer-
tainty that we have identified the naturally occurring antigen
that gave rise to the antibodies that react with this motif. When
this sequence is considered in isolation, we have observed it
within several other proteins, in particular, the bacteria genus
Burkholderia and also in the human protein calcium voltage-
gated channel protein CACNA2D3 (Table 2). Further studies
will be required to identify with greater certainty the native
antigen to this conserved motif.

Lastly, we BLASTed the 233 random peptides identified by
RF against the proteomes of viruses and bacteria known to
infect humans. The most prevalent viral hit was to the gp120
protein of human immunodeficiency virus 1. This sequence
was homologous to the conserved motif; therefore, it is likely
the result of cross-reactivity to antibodies raised to HERVs or
another similar sequence. Of the bacterial hits that have been
previously associated with ME, the type IV secretion protein
Rhs of H. alvei was identified in our search. H. alvei is Gram-
negative, facultative anaerobic intestinal bacteria. A previous
study by Maes et al. reported that ME cases have elevated
serum IgA and IgM antibodies, to H. alvei, that likely result
from intestinal bacterial translocation [53]. Given the diversity
of gastrointestinal bacteria, it may be possible that antibodies
raised to translocated bacterial products could potentially
cross-react with self-proteins. Indeed, a number of studies
have identified gastrointestinal comorbidity and/or an altered
gut microbiome as a potential associating factor with ME
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[54-58]. However, at this point, it has yet to be determined if
these observations are cause or effect.

In conclusion, the data presented in this report represents a
proof-of-concept study that random peptide arrays show util-
ity in delineating ME cases from healthy controls.
Additionally, our study has identified a conserved peptide
motif that is preferentially recognized by serum antibodies in
a large number of ME cases over that of healthy controls. This
study warrants further investigations using additional ME co-
horts as well as cohorts of subjects with other chronic diseases
with overlapping symptomology.
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